Skip to main content

Therapeutic Strategies Based on Pharmacological Modulation of p53 Pathway

  • Chapter
The p53 Tumor Suppressor Pathway and Cancer

Part of the book series: Protein Reviews ((PRON,volume 2))

  • 1253 Accesses

Abstract

p53 plays a dual role in cancer treatment being, on one hand, a major cancer preventive factor, which can kill or sensitize tumors to radio- and chemotherapy and, on the other hand, a determinant of cancer treatment side effects by inducing apoptosis in normal tissues during cancer therapy. This dualism defines two major therapeutic applications targeting p53: p53 activation to reduce viability of tumor cells and p53 inhibition to increase the viability of normal cells thereby reducing treatment side effects. Prospective new anticancer agents are being developed that recover p53 function in tumor cells by disrupting its interactions with natural inhibitors, such as MDM2 or E6, or restore wild-type conformation of mutant p53. In parallel, p53 inhibitory strategy is being developed to protect normal tissues from chemo- and radiotherapy and to treat other pathologies associated with stress-mediated activation of p53.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdulkarim B, Sabri S, Deutsch E, Chagraoui H, Maggiorella L, et al. (2002). Antiviral agent Cidofovir restores p53 function and enhances the radiosensitivity in HPV-associated cancers. Oncogene 21:2334–2346.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Salas LM, Cullinan AE, Siwkowski A, Hampel A, DiPaolo JA. (1998). Inhibition of HPV-16 E6/E7 immortalization of normal keratinocytes by hairpin ribozymes. Proc Natl Acad Sci USA 95:1189–1194.

    Article  PubMed  CAS  Google Scholar 

  • Alves da Costa C, Paitel E, Mattson MP, Amson R, Telerman A, et al. (2002). Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons. Proc Natl Acad Sci USA 99:4043–4048.

    Article  PubMed  CAS  Google Scholar 

  • An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM. (1998). Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature 392:405–408.

    Article  PubMed  CAS  Google Scholar 

  • Bassi L, Carloni M, Fonti E, Palma de la Pena N, Meschini R, Palitti F. (2002). Pifithrin-alpha, an inhibitor of p53, enhances the genetic instability induced by etoposide (VP16) in human lymphoblastoid cells treated in vitro. Mutat Res 499:163–176.

    PubMed  CAS  Google Scholar 

  • Bast R, Kufe D, Pollock R, Weichselbaum R, Holland J, Frei E. (2000). Cancer Medicine. Hamilton: B C Decker.

    Google Scholar 

  • Beerheide W, Bernard HU, Tan YJ, Ganesan A, Rice WG, Ting AE. (1999). Potential drugs against cervical cancer: zinc-ejecting inhibitors of the human papillomavirus type 16 E6 oncoprotein. J Natl Cancer Inst 91:1211–1220.

    Article  PubMed  CAS  Google Scholar 

  • Blagosklonny MV, An WG, Romanova LY, Trepel J, Fojo T, Neckers L. (1998). p53 inhibits hypoxia-inducible factor-stimulated transcription. J Biol Chem 273:11995–11998.

    Article  PubMed  CAS  Google Scholar 

  • Bonini P, Cicconi S, Cardinale A, Vitale C, Serafino AL, et al. (2004). Oxidative stress induces p53-mediated apoptosis in glia: p53 transcription-independent way to die. J Neurosci Res 75:83–95.

    Article  PubMed  CAS  Google Scholar 

  • Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV. (2002). The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55:244–265.

    PubMed  CAS  Google Scholar 

  • Bottger V, Bottger A, Garcia-Echeverria C, Ramos YF, van der Eb AJ, et al. (1999). Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene 18:189–199.

    Article  PubMed  CAS  Google Scholar 

  • Brachman DG, Beckett M, Graves D, Haraf D, Vokes E, Weichselbaum RR. (1993). p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines. Cancer Res 53:3667–3669.

    PubMed  CAS  Google Scholar 

  • Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, et al. (2000). Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60:1878–1886.

    PubMed  CAS  Google Scholar 

  • Bullock AN, Fersht AR. (2001). Rescuing the function of mutant p53. Nat Rev Cancer 1:68–76.

    Article  PubMed  CAS  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, et al. (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104:263–269.

    PubMed  CAS  Google Scholar 

  • Butz K, Denk C, Ullmann A, Scheffner M, Hoppe-Seyler F. (2000). Induction of apoptosis in human papillomaviruspositive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci USA 97:6693–6697.

    Article  PubMed  CAS  Google Scholar 

  • Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, et al. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8:282–288.

    Article  PubMed  CAS  Google Scholar 

  • Chene P. (2001). Targeting p53 in cancer. Curr Med Chem Anti-Canc Agents 1:151–161.

    Article  CAS  Google Scholar 

  • Chene P. (2003). Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 3:102–109.

    Article  PubMed  CAS  Google Scholar 

  • Chene P, Fuchs J, Carena I, Furet P, Garcia-Echeverria C. (2002). Study of the cytotoxic effect of a peptidic inhibitor of the p53-hdm2 interaction in tumor cells. FEBS Lett 529:293–297.

    Article  PubMed  CAS  Google Scholar 

  • Chow BM, Li YQ, Wong CS. (2000). Radiation-induced apoptosis in the adult central nervous system is p53-dependent. Cell Death Differ 7:712–720.

    Article  PubMed  CAS  Google Scholar 

  • Chow WH, Devesa SS, Warren JL, Fraumeni JF, Jr. (1999). Rising incidence of renal cell cancer in the United States. Jama 281:1628–1631.

    Article  PubMed  CAS  Google Scholar 

  • Cordon-Cardo C, Dalbagni G, Sarkis AS, Reuter VE. (1994). Genetic alterations associated with bladder cancer. Important Adv Oncol 71–83.

    Google Scholar 

  • Cui YF, Zhou PK, Woolford LB, Lord BI, Hendry JH, Wang DW. (1995). Apoptosis in bone marrow cells of mice with different p53 genotypes after gamma-rays irradiation in vitro. J Environ Pathol Toxicol Oncol 14:159–163.

    PubMed  CAS  Google Scholar 

  • Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, et al. (2001). A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem 77:220–228.

    Article  PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Jr., et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221.

    Article  PubMed  CAS  Google Scholar 

  • Doorbar J, Foo C, Coleman N, Medcalf L, Hartley O, et al. (1997). Characterization of events during the late stages of HPV16 infection in vivo using high-affinity synthetic Fabs to E4. Virology 238:40–52.

    Article  PubMed  CAS  Google Scholar 

  • Duan W, Zhu X, Ladenheim B, Yu QS, Guo Z, et al. (2002). p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neurol 52:597–606.

    Article  PubMed  CAS  Google Scholar 

  • Duncan SJ, Gruschow S, Williams DH, McNicholas C, Purewal R, et al. (2001). Isolation and structure elucidation of Chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. J Am Chem Soc 123:554–560.

    Article  PubMed  CAS  Google Scholar 

  • Falette N, Paperin MP, Treilleux I, Gratadour AC, Peloux N, et al. (1998). Prognostic value of P53 gene mutations in a large series of node-negative breast cancer patients. Cancer Res 58:1451–1455.

    PubMed  CAS  Google Scholar 

  • Fang B, Roth JA. (2003). Tumor-suppressing gene therapy. Cancer Biol Ther 2:S115–S121.

    PubMed  CAS  Google Scholar 

  • Foster BA, Coffey HA, Morin MJ, Rastinejad F. (1999). Pharmacological rescue of mutant p53 conformation and function. Science 286:2507–2510.

    Article  PubMed  CAS  Google Scholar 

  • Friedler A, Veprintsev DB, Hansson LO, Fersht AR. (2003). Kinetic instability of p53 core domain mutants: implications for rescue by small molecules. J Biol Chem 278:24108–24112.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Echeverria C, Chene P, Blommers MJ, Furet P. (2000). Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J Med Chem 43:3205–3208.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin EC, DiMaio D. (2000). Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc Natl Acad Sci USA 97:12513–12518.

    Article  PubMed  CAS  Google Scholar 

  • Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, et al. (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91.

    Article  PubMed  CAS  Google Scholar 

  • Gudkov AV, Komarova EA. (2003). The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 3:117–129.

    Article  PubMed  CAS  Google Scholar 

  • Gurova KV, Hill JE, Razorenova OV, Chumakov PM, Gudkov AV. (2004). p53 pathway in renal cell carcinoma is repressed by a dominant mechanism. Cancer Res 64:1951–1958.

    Article  PubMed  CAS  Google Scholar 

  • Gurova KV, Kwek SS, Koman IE, Komarov AP, Kandel E, et al. (2002). Apoptosis inhibitor as a suppressor of tumor progression: expression of Bcl-2 eliminates selective advantages for p53-deficient cells in the tumor. Cancer Biol Ther 1:39–44; discussion 5–6.

    PubMed  CAS  Google Scholar 

  • Halterman MW, Miller CC, Federoff HJ. (1999). Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J Neurosci 19:6818–6824.

    PubMed  CAS  Google Scholar 

  • Hamada K, Sakaue M, Alemany R, Zhang WW, Horio Y, et al. (1996). Adenovirus-mediated transfer of HPV 16 E6/E7 antisense RNA to human cervical cancer cells. Gynecol Oncol 63:219–227.

    Article  PubMed  CAS  Google Scholar 

  • Huibregtse JM, Scheffner M, Howley PM. (1993). Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol 13:775–784.

    PubMed  CAS  Google Scholar 

  • Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, et al. (2004). Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10:1321–1328.

    Article  PubMed  CAS  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, et al. (2003). Puma is an essential mediator of p53-dependent and-independent apoptotic pathways. Cancer Cell 4:321–328.

    Article  PubMed  CAS  Google Scholar 

  • Jiang M, Milner J. (2002). Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21:6041–6048.

    Article  PubMed  CAS  Google Scholar 

  • Kanovsky M, Raffo A, Drew L, Rosal R, Do T, et al. (2001). Peptides from the amino terminal mdm-2-binding domain of p53, designed from conformational analysis, are selectively cytotoxic to transformed cells. Proc Natl Acad Sci USA 98:12438–12443.

    Article  PubMed  CAS  Google Scholar 

  • Kelly KJ, Plotkin Z, Vulgamott SL, Dagher PC. (2003). P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J Am Soc Nephrol 14:128–138.

    Article  PubMed  CAS  Google Scholar 

  • Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, et al. (1999). A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285:1733–1737.

    Article  PubMed  CAS  Google Scholar 

  • Komarova EA, Chernov MV, Franks R, Wang K, Armin G, et al. (1997). Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J 16:1391–1400.

    Article  PubMed  CAS  Google Scholar 

  • Komarova EA, Gudkov AV. (1998). Could p53 be a target for therapeutic suppression? Semin Cancer Biol 8:389–400.

    Article  PubMed  CAS  Google Scholar 

  • Komarova EA, Gudkov AV. (2001). Chemoprotection from p53-dependent apoptosis: potential clinical applications of the p53 inhibitors. Biochem Pharmacol 62:657–667.

    Article  PubMed  CAS  Google Scholar 

  • Komarova EA, Kondratov RV, Wang K, Christov K, Golovkina TV, et al. (2004). Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene 23:3265–3271.

    Article  PubMed  CAS  Google Scholar 

  • Lain S, Lane D. (2003). Improving cancer therapy by non-genotoxic activation of p53. Eur J Cancer 39:1053–1060.

    Article  PubMed  CAS  Google Scholar 

  • Lakkaraju A, Dubinsky JM, Low WC, Rahman YE. (2001). Neurons are protected from excitotoxic death by p53 antisense oligonucleotides delivered in anionic liposomes. J Biol Chem 276:32000–32007.

    Article  PubMed  CAS  Google Scholar 

  • Landis SH, Murray T, Bolden S, Wingo PA. (1999). Cancer statistics, 1999. CA Cancer J Clin 49: 8–31, 1.

    PubMed  CAS  Google Scholar 

  • Lowe S, Schmitt E, Smith S, Osborne B, Jacks T. (1993). p53 is required for radiation-induced apoptosis in mouse thymocytes. In Nature, pp. 847–849.

    Google Scholar 

  • Lowe SW. (1995). Cancer therapy and p53. Curr Opin Oncol 7:547–553.

    PubMed  CAS  Google Scholar 

  • Maehama T, Patzelt A, Lengert M, Hutter KJ, Kanazawa K, et al. (1998). Selective down-regulation of human papillomavirus transcription by 2-deoxyglucose. Int J Cancer 76:639–646.

    Article  PubMed  CAS  Google Scholar 

  • Mantovani F, Banks L. (2001). The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20:7874–7887.

    Article  PubMed  CAS  Google Scholar 

  • Merritt AJ, Potten CS, Kemp CJ, Hickman JA, Balmain A, et al. (1994). The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res 54:614–617.

    PubMed  CAS  Google Scholar 

  • Michael D, Oren M. (2002). The p53 and Mdm2 families in cancer. Curr Opin Genet Dev 12:53–59.

    Article  PubMed  CAS  Google Scholar 

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590.

    Article  PubMed  CAS  Google Scholar 

  • Molina R, Segui MA, Climent MA, Bellmunt J, Albanelll J, et al. (1998). p53 oncoprotein as a prognostic indicator in patients with breast cancer. Anticancer Res 18:507–511.

    PubMed  CAS  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G. (1995). Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206.

    Article  PubMed  CAS  Google Scholar 

  • Munger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, et al. (2001). Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20:7888–7898.

    Article  PubMed  CAS  Google Scholar 

  • Nieder C, Petersen S, Petersen C, Thames HD. (2000). The challenge of p53 as prognostic and predictive factor in gliomas. Cancer Treat Rev 26:67–73.

    Article  PubMed  CAS  Google Scholar 

  • Offringa R, Vierboom MP, van der Burg SH, Erdile L, Melief CJ. (2000). p53: a potential target antigen for immunotherapy of cancer. Ann NY Acad Sci 910:223–33; discussion 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Ohnishi K, Wang X, Takahashi A, Okaichi K. (1999). Restoration of mutant TP53 to normal TP53 function by glycerol as a chemical chaperone. Radiat Res 151:498–500.

    Article  PubMed  CAS  Google Scholar 

  • Pani L, Horal M, Loeken MR. (2002). Rescue of neural tube defects in Pax-3-deficient embryos by p53 loss of function: implications for Pax-3-dependent development and tumorigenesis. Genes Dev 16:676–680.

    Article  PubMed  CAS  Google Scholar 

  • Parkin DM, Pisani P, Ferlay J. (1999). Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer 80:827–841.

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Li C, Chen L, Sebti S, Chen J. (2003). Rescue of mutant p53 transcription function by ellipticine. Oncogene 22:4478–4487.

    Article  PubMed  CAS  Google Scholar 

  • Pirkkala L, Nykanen P, Sistonen L. (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. Faseb J 15:1118–1131.

    Article  PubMed  CAS  Google Scholar 

  • Prives C, Hall PA. (1999). The p53 pathway. J Pathol 187:112–126.

    Article  PubMed  CAS  Google Scholar 

  • Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, et al. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14:34–44.

    PubMed  CAS  Google Scholar 

  • Rippin TM, Bykov VJ, Freund SM, Selivanova G, Wiman KG, Fersht AR. (2002). Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene 21:2119–2129.

    Article  PubMed  CAS  Google Scholar 

  • Roninson IB, Broude EV, Chang BD. (2001). If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 4:303–313.

    Article  PubMed  CAS  Google Scholar 

  • Schafer T, Scheuer C, Roemer K, Menger MD, Vollmar B. (2003). Inhibition of p53 protects liver tissue against endotoxin-induced apoptotic and necrotic cell death. Faseb J 17:660–667.

    Article  PubMed  CAS  Google Scholar 

  • Scheffner M, Munger K, Byrne JC, Howley PM. (1991). The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci USA 88:5523–5527.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt CA, Lowe SW. (2001). Bcl-2 mediates chemoresistance in matched pairs of primary E(mu)-myc lymphomas in vivo. Blood Cells Mol Dis 27:206–216.

    Article  PubMed  CAS  Google Scholar 

  • Schuler M, Maurer U, Goldstein JC, Breitenbucher F, Hoffarth S, et al. (2003). p53 triggers apoptosis in oncogene-expressing fibroblasts by the induction of Noxa and mitochondrial Bax translocation. Cell Death Differ 10:451–460.

    Article  PubMed  CAS  Google Scholar 

  • Seo YR, Kelley MR, Smith ML. (2002). Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc Natl Acad Sci USA 99:14548–14553.

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Weber JD. (2000). The ARF/p53 pathway. Curr Opin Genet Dev 10:94–99.

    Article  PubMed  CAS  Google Scholar 

  • Slichenmyer WJ, Nelson WG, Slebos RJ, Kastan MB. (1993). Loss of a p53-associated G1 checkpoint does not decrease cell survival following DNA damage. Cancer Res 53:4164–4168.

    PubMed  CAS  Google Scholar 

  • Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, et al. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409:207–211.

    Article  PubMed  CAS  Google Scholar 

  • Sohn TA, Bansal R, Su GH, Murphy KM, Kern SE. (2002). High-throughput measurement of the Tp53 response to anticancer drugs and random compounds using a stably integrated Tp53-responsive luciferase reporter. Carcinogenesis 23:949–957.

    Article  PubMed  CAS  Google Scholar 

  • Song S, Lambert PF. (1999). Different responses of epidermal and hair follicular cells to radiation correlate with distinct patterns of p53 and p21 induction. Am J Pathol 155:1121–1127.

    PubMed  CAS  Google Scholar 

  • Soussi T. (2000). The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann NY Acad Sci 910:121–37; discussion 37–39.

    Article  PubMed  CAS  Google Scholar 

  • Stoll R, Renner C, Hansen S, Palme S, Klein C, et al. (2001). Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. Biochemistry 40:336–344.

    Article  PubMed  CAS  Google Scholar 

  • Tommasino M, Accardi R, Caldeira S, Dong W, Malanchi I, et al. (2003). The role of TP53 in Cervical carcinogenesis. Hum Mutat 21:307–312.

    Article  PubMed  CAS  Google Scholar 

  • Tweddle DA, Pearson AD, Haber M, Norris MD, Xue C, et al. (2003). The p53 pathway and its inactivation in neuroblastoma. Cancer Lett 197:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Vargas DA, Takahashi S, Ronai Z. (2003). Mdm2: A regulator of cell growth and death. Adv Cancer Res 89:1–34.

    Article  PubMed  CAS  Google Scholar 

  • Vassilev LT. (2004). Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3:419–421.

    PubMed  CAS  Google Scholar 

  • von Knebel Doeberitz M, Rittmuller C, zur Hausen H, Durst M. (1992). Inhibition of tumorigenicity of cervical cancer cells in nude mice by HPV E6-E7 anti-sense RNA. Int J Cancer 51:831–834.

    Article  Google Scholar 

  • Vousden KH, Lu X. (2002). Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Cui Y, Lord BI, Roberts SA, Potten CS, et al. (1996). Gamma-ray-induced cell killing and chromosome abnormalities in the bone marrow of p53-deficient mice. Radiat Res 146:259–266.

    Article  PubMed  CAS  Google Scholar 

  • Westphal CH, Rowan S, Schmaltz C, Elson A, Fisher DE, Leder P. (1997). atm and p53 cooperate in apoptosis and suppression of tumorigenesis, but not in resistance to acute radiation toxicity. Nat Genet 16:397–401.

    Article  PubMed  CAS  Google Scholar 

  • Willis AC, Chen X. (2002). The promise and obstacle of p53 as a cancer therapeutic agent. Curr Mol Med 2:329–345.

    Article  PubMed  CAS  Google Scholar 

  • Woods DB, Vousden KH. (2001). Regulation of p53 function. Exp Cell Res 264:56–66.

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Liu W, Ding D, Salvi R. (2003). Pifithrin-alpha suppresses p53 and protects cochlear and vestibular hair cells from cisplatin-induced apoptosis. Neuroscience 120:191–205.

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Wang M, Chen J, Luo A, Wang X, et al. (2002). The initial evaluation of non-peptidic small-molecule HDM2 inhibitors based on p53-HDM2 complex structure. Cancer Lett 183:69–77.

    Article  PubMed  CAS  Google Scholar 

  • Zheleva DI, Lane DP, Fischer PM. (2003). The p53-Mdm2 pathway: targets for the development of new anticancer therapeutics. Mini Rev Med Chem 3:257–270.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science Business Media, Inc.

About this chapter

Cite this chapter

Gudkov, A.V. (2005). Therapeutic Strategies Based on Pharmacological Modulation of p53 Pathway. In: Zambetti, G.P. (eds) The p53 Tumor Suppressor Pathway and Cancer. Protein Reviews, vol 2. Springer, Boston, MA. https://doi.org/10.1007/0-387-30127-5_10

Download citation

Publish with us

Policies and ethics