Skip to main content

Exact penalty functions for generalized Nash problems

  • Chapter

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 83))

Summary

We propose the use exact penalty functions for the solution of generalized Nash equilibrium problems (GNEPs). We show that by this approach it is possible to reduce the solution of a GNEP to that of a usual Nash problem. This paves the way to the development of numerical methods for the solution of GNEPs. We also introduce the notion of generalized stationary point of a GNEP and argue that convergence to generalized stationary points is an appropriate aim for solution algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bensoussan. Points de Nash dans le cas de fonctionnelles quadratiques et jeux differentiels lineaires a N personnes. SIAM Journal on Control 12 (1974) 460–499.

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Başar. Relaxation techniques and asynchronous algorithms for on-line computation of non-cooperative equilibria. Journal of Economic Dynamics and Control 11 (1987) 531–549.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Berridge and J.B. Krawczyc. Relaxation algorithms in finding Nash equilibria. Economic working papers archives (1997) URL: http://econwpa.wustl.edu/eprints/comp/papers/9707/9707002.abs

    Google Scholar 

  4. J. Contreras, M.K. Klusch and J.B. Krawczyc. Numerical solution to Nash-Cournot equilibria in coupled constraints electricity markets. IEEE Transactions on Power Systems 19 (2004) 195–206.

    Article  Google Scholar 

  5. V.F. Demyanov, G. Di Pillo, and F. Facchinei. Exact penalization via Dini and Hadamard constrained derivatives. Optimization Methods and Software 9 (1998) 19–36.

    MathSciNet  MATH  Google Scholar 

  6. G. Di Pillo and F. Facchinei. Exact penalty functions for nondifferentiable programming problems. In F.H. Clarke, V.F. Demyanov, and F. Giannessi, editors, Nonsmooth Optimization and Related Topics, 89–107, Plenum Press (New York 1989)

    Google Scholar 

  7. G. Di Pillo and F. Facchinei. Regularity conditions and exact penalty functions in Lipschitz programming problems. In F. Giannessi, editor, Nonsmooth Optimization Methods and Applications, 107–120, Gordon and Breach (New York 1992)

    Google Scholar 

  8. G. Di Pillo and F. Facchinei. Exact barrier functions methods for Lipschitz Programs. Applied Mathematics and Optimization 32 (1995) 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Verlag (New York 2003).

    Google Scholar 

  10. M. Fukushima and J.-S. Pang. Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Computational Management Science, to appear.

    Google Scholar 

  11. P.T. Harker. Generalized Nash games and quasivariational inequalities. European Journal of Operations research 54 (1991) 81–94.

    Article  MATH  Google Scholar 

  12. J.-B. Hiriart-Urruty, and C. Lemaréchal. Convex Analysis and Minimization Algorithms, Springer Verlag (New York 1993).

    Google Scholar 

  13. J.B. Krawczyc and S. Uryasev. Relaxation algorithms to find Nash equilibria with economic applications. Environmental Modelling and Assessment 5 (2000) 63–73.

    Article  Google Scholar 

  14. S. Li and T. Başar. Distributed algorithms for the computation of noncooperative equilibria. Automatica 23 (1987) 523–533.

    Article  MATH  Google Scholar 

  15. H. Nikaido and K. Isoda. Note on noncooperative convex games. Pacific Journal of Mathematics 5 (1955) 807–815.

    MathSciNet  Google Scholar 

  16. G.P. Papavassilopoulos. Iterative techniques for the Nash solution in quadratic games with unknown parameters. SIAM Journal on Control and Optimization 24 (1986) 821–834.

    Article  MATH  MathSciNet  Google Scholar 

  17. S.M. Robinson. Shadow prices for measures of effectiveness. II. Linear Model. Operations Research 41 (1993) 518–535.

    Article  MATH  MathSciNet  Google Scholar 

  18. S.M. Robinson. Shadow prices for measures of effectiveness. II. General Model. Operations Research 41 (1993) 536–548.

    MATH  MathSciNet  Google Scholar 

  19. S. Uryasev and R. Y. Rubinstein. On relaxation algorithms in computation of noncooperative equilibria. IEEE Transactions on Automatic Control 39 (1994) 1263–1267.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Facchinei, F., Pang, JS. (2006). Exact penalty functions for generalized Nash problems. In: Di Pillo, G., Roma, M. (eds) Large-Scale Nonlinear Optimization. Nonconvex Optimization and Its Applications, vol 83. Springer, Boston, MA. https://doi.org/10.1007/0-387-30065-1_8

Download citation

Publish with us

Policies and ethics