Skip to main content

Fast Linear Algebra for Multiarc Trajectory Optimization

  • Chapter
Large-Scale Nonlinear Optimization

Summary

This paper presents some methods for solving in a fast and reliable way the linear systems arising when solving an optimal control problem by a Runge-Kutta discretization scheme, combined with an interior-point algorithm. Our analysis holds for a multiarc problem, i.e., when several arcs, each of them associated with a dynamics and integral cost, are linked by junction points, called nodes; with the latter are associated junction conditions and a cost function.

Our main result is that a sparse QR band factorization combined with a specific elimination procedure for arcs and nodes allows to factorize the Jacobian of the discrete optimality system in a small number of operations. Combined with an “optimal” refinement procedure, this gives an efficient method that we illustrate on Goddard’s problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bérend, N., Bonnans, F., Haddou, M., Laurent-Varin, J., Talbot, C: An Interior-Point Approach to Trajectory Optimization. INRIA Research Report RR-5613, www.inria.fr/rrrt/rr-5613.html (2005)

    Google Scholar 

  2. Bérend, N., Bonnans, F., Haddou, M., Laurent-Varin, J., Talbot, C.: A Preliminary Interior Point Algorithm For Solving Optimal Control Problems, 5th International Conference on Launcher Technology. Madrid, Spain (2003)

    Google Scholar 

  3. Bérend, N., Bonnans, F., Haddou, M., Laurent-Varin, J., Talbot, C. On the refinement of discretization for optimal control problems. 16th IFAC SYMPOSIUM Automatic Control in Aerospace. St. Petersburg, Russia (2004)

    Google Scholar 

  4. Betts, J.T.: Survey of Numerical Methods for Trajectory Optimization. AIAA J. of Guidance, Control and Dynamics, 21, 193–207 (1998)

    Google Scholar 

  5. Betts, J.T.: Practical methods for optimal control using nonlinear programming. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2001)

    MATH  Google Scholar 

  6. Betts, J.T., Huffman, W.P.: Mesh refinement in direct transcription methods for optimal control. Optimal Control Applications & Methods, 19, 1–21 (1998)

    Article  MathSciNet  Google Scholar 

  7. Bonnans, J.F., Launay, G.: Large Scale Direct Optimal Control Applied to a Re-Entry Problem. AIAA J. of Guidance, Control and Dynamics, 21, 996–1000 (1998)

    Article  Google Scholar 

  8. Bonnans, J.F., Laurent-Varin, J.: Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control. INRIA Research report RR-5398, www.inria.fr/rrrt/rr-5398.html (2004)

    Google Scholar 

  9. Bonnans, J.F., Gilbert, J.Ch., Lemaréchal, C., Sagastizábal, C: Numerical Optimization: theoretical and numerical aspects. Springer-Verlag, Berlin (2003)

    MATH  Google Scholar 

  10. Bryson, A. E., Ho., Y.-C: Applied optimal control. Hemisphere Publishing, New-York (1975)

    Google Scholar 

  11. Bulirsch, R., Nerz, E., Pesch, H. J., von Stryk, O.: Combining direct and indirect methods in optimal control: range maximization of a hang glider. In “Optimal control”, Birkhäuser, Basel, 273–288 (1993)

    Google Scholar 

  12. Dontchev, A. L., Hager, W. W.: The Euler approximation in state constrained optimal control, Mathematics of Computation, 70, 173–203 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dontchev, A. L., Hager, W. W., Veliov, V. M.: Second-order Runge-Kutta approximations in control constrained optimal control. SIAM Journal on Numerical Analysis, 38, 202–226 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hager, W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numerische Mathematik, 87, 247–282 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Springer-Verlag, Berlin (2002)

    MATH  Google Scholar 

  16. Hairer, E., Nørsett, S. P., Wanner, G.: Solving ordinary differential equations I. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  17. Hairer, E., Wanner, G.: Solving ordinary differential equations II. Springer-Verlag, Berlin (1996)

    MATH  Google Scholar 

  18. Pesch, H. J.: A practical guide to the solution of real-life optimal control problems. Control and Cybernetics, 23, 7–60 (1994)

    MATH  MathSciNet  Google Scholar 

  19. von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Annals of Operations Research, 37, 357–373 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tsiotras, P., Kelley, H.J.: Drag-law effects in the Goddard problem. Automatica, 27, 481–490 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bérend, N., Bonnans, J.F., Laurent-Varin, J., Haddou, M., Talbot, C. (2006). Fast Linear Algebra for Multiarc Trajectory Optimization. In: Di Pillo, G., Roma, M. (eds) Large-Scale Nonlinear Optimization. Nonconvex Optimization and Its Applications, vol 83. Springer, Boston, MA. https://doi.org/10.1007/0-387-30065-1_1

Download citation

Publish with us

Policies and ethics