Skip to main content

Part of the book series: Institute for Nonlinear Science ((INLS))

Summary

During the last decade a new approach for secure communication, based on chaotic dynamics attracted the attention of the scientific community. In this chapter we give an overview and describe the research that was done at the Institute for Nonlinear Science (INLS) on this topic. We begin this chapter with a brief introduction to chaos-based encryption schemes. We then describe a new method for public key encryption that we have developed which is based on distributed chaotic dynamics. Next, we lay out a quantitative cryptanalysis approach for symmetric key encryption schemes that are based on active/passive decomposition of chaotic dynamics. We end this chapter with a summary and suggestions for future research.

Portions of this chapter were taken from publications [1–4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Tenny, L. S. Tsimring, L. E. Larson, H. D. I. Abarbanel, Using Distributed Nonlinear Dyunamics for Public Key Encryption, Phys. Rev. Lett., vol. 90, 047903, 2003.

    Article  ADS  Google Scholar 

  2. R. Tenny, L. S. Tsimring, H. D. I. Abarbanel, L. E. Larson, Asymmetric Key Encryption using Distributed Chaotic Nonlinear Dynamics, Proc. of the IASTED International Conference on Communications Internet and Information Technology, St. Thomas, US Virgin Islands, pp. 338–345, 2002.

    Google Scholar 

  3. R. Tenny, L. S. Tsimring, H. D. I. Abarbanel, L. E. Larson, Steps towards quantifying cryptanalysis of chaotic active/passive decomposition encryption schemes using average dynamics estimation, Int. J. Bifurcation and Chaos, vol. 14, 3949–3968, 2004.

    Article  MATH  Google Scholar 

  4. R. Tenny, Symmetric and Asymmetric Secure Communication Schemes using Nonlinear Dynamics, Ph.D. Dissertation, University of California, San Diego 2003.

    Google Scholar 

  5. H. Dedieu, M. P. Kennedy, M. Hasler, Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits, IEEE Trans. on Circuits and Systems-II, vol. 40, pp. 634–642, 1993.

    Article  Google Scholar 

  6. M. Itoh, Spread spectrum communication via chaos, Int. J. of Bifurcation and Chaos, vol. 9, pp.155–213, 1999.

    Article  MATH  Google Scholar 

  7. K. M. Cuomo and A. V. Oppenheim, Circuit implementation of synchronized chaos with application to communications, Phys. Rev. Lett., vol. 71, pp. 65–68, 1993.

    Article  ADS  Google Scholar 

  8. U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel, Encoding messages using chaotic synchronization Phys. Rev. E., vol. 53, pp. 4351–4361, 1996.

    Article  ADS  Google Scholar 

  9. L. Kocarev and U. Parlitz, General Approach for chaotic synchronization with applications to communication, Phys. Rev. Lett., vol. 74, pp. 5028–5031, 1995.

    Article  ADS  Google Scholar 

  10. L. Kocarev, Chaos-based cryptography: A brief overview. IEEE Circuits and Systems Mag., vol. 1, No.3, pp. 6–21, 2001.

    Article  Google Scholar 

  11. T. L. Carroll and L. M. Pecora, Cascading synchronized chaotic systems, Physica D, vol. 67, pp. 126–140, 1993.

    Article  MATH  ADS  Google Scholar 

  12. A. R. Volkovskii and N. F. Rulkov, Synchronouns chaotic response of a nonlinear ocsillating system as a principle for the detection of the information component of chaos. Tech. Phys. Lett. vol. 19, pp. 97–99, 1993.

    ADS  Google Scholar 

  13. S. Hayes, C. Grebogi, E. Ott, and M. Spano, Experimental control of chaos for communication, Phys. Rev. Lett., vol. 73, pp. 1781–1784, 1994.

    Article  ADS  Google Scholar 

  14. Y.-C. Lai, E. Bollt, and C. Grebogi, Communicating with chaos using two-dimensional symbolic dynamics. Phys. Lett. A, vol. 255, pp. 75–81, 1999.

    Article  ADS  Google Scholar 

  15. Y. Zhang, M. Dai, Y. Hua, W. Ni, and G. Du, Digital communication by active-passive decomposition synchronization in hyperchaotic systems, Phys. Rev. E, vol. 58, pp. 3022–3027, 1998.

    Article  ADS  Google Scholar 

  16. K. M. Short and A. T. Parker., Unmasking a hyperchaotic communication scheme, Phys. Rev. E, vol. 58, No.1, pp. 1159–1162, 1998.

    Article  ADS  Google Scholar 

  17. T. L. Carroll and L. M. Pecora, Using multiple attractor chaotic systems for communication, Chaos, vol. 9, pp. 445–451, 1999.

    Article  MATH  ADS  Google Scholar 

  18. T. Kapitaniak, Synchronization of chaos using continuous control, Phys. Rev. E, vol. 50, pp. 1642–1644, 1994.

    Article  ADS  Google Scholar 

  19. T. Yang and L. O. Chua, Impulsive stabilization for control and syncrhonization of chaotic systems: Theory and application to secure communication, Trans. IEEE, on Circuits and Systems-I, vol. 44, pp. 976–988, 1997.

    Article  MathSciNet  Google Scholar 

  20. J. M. Cruz and L. O. Chua, An IC chip of Chua’s circuit, IEEE Trans. on Circuits and Systems-II, vol. 40, pp. 614–625, 1993.

    Article  Google Scholar 

  21. T. Yang, L. B. Yang, and C. M. Yang, Breaking chaotic secure communication using a spectrogram, Phys. Lett. A, vol. 247, pp. 105–111, 1998.

    Article  ADS  Google Scholar 

  22. T. Yang, L. B. Yang, and C. M. Yang, Cryptanalyzing chaotic secure communications using return maps, Phys. Lett. A, vol. 245, pp. 495–510, 1998.

    Article  ADS  Google Scholar 

  23. J. B. Geddes, K. M. Short, and K. Black, Extraction of signals from chaotic laser data, Phys. Rev. Lett., vol. 83, pp. 5389–5392, 1999.

    Article  ADS  Google Scholar 

  24. T. Yang, L. B. Yang, and C. M. Yang, Breaking chaotic switching using generalized synchronization: Examples, IEEE Trans. on Circuits and Systems-I, vol. 45, pp. 1062–1067, 1998.

    Article  Google Scholar 

  25. K. M. Short, Steps toward unmasking secure communications, Int. J. of Bif. and Chaos, vol. 4, pp. 959–977, 1994.

    Article  MATH  Google Scholar 

  26. K. M. Short, Unmasking a modulated chaotic communications scheme, Int. J. of Bif. and Chaos, vol. 6, pp. 367–375, 1996.

    Article  MATH  Google Scholar 

  27. R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public key cryptosystems, Comm. ACM, vol. 21, pp.120–126, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  28. V. S. Miller, Use of elliptic curves in Cryptology, Proc. of Crypto 85, pp. 417–426, 1986.

    Google Scholar 

  29. T. El-Gamal, A public key cyryptosystem and signature scheme based on discrete logarithms, Advances in Cryptography: Proc. of Crypto 84, Springer-Verlag, Berlin, pp. 10–18, 1985.

    Google Scholar 

  30. B. Chor, and R. L. Rivest, A knapsack type public key cryptosystem based on arithmetic in finite fields, Advances in Cryptography: Proc. of Crypto 84, 196, pp. 54–64, 1985.

    MATH  MathSciNet  Google Scholar 

  31. R. J. McEliece, A public-key cryptosystem based on algebric coding theory. JPL DSN Progress report, vol. 42–44, pp. 114–116, 1978.

    Google Scholar 

  32. H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, The analysis of observed chaotic data in physical systems. Rev. Mod. Phys., vol. 65 pp. 1331–1393, 1993.

    Article  MathSciNet  ADS  Google Scholar 

  33. DDE overview, images and updates may be found at: http://inls.ucsd.edu/~roy/DDE/MainPage/

    Google Scholar 

  34. K. Kaneko, Theory and Applications of Coupled Map Lattices, Nonlinear Science Theory and Applications (Wiley, New York, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tenny, R., Tsimring, L.S., Abarbanel, H.D.I., Larson, L.E. (2006). Security of Chaos-Based Communication and Encryption. In: Larson, L.E., Tsimring, L.S., Liu, JM. (eds) Digital Communications Using Chaos and Nonlinear Dynamics. Institute for Nonlinear Science. Springer, New York, NY . https://doi.org/10.1007/0-387-29788-X_7

Download citation

Publish with us

Policies and ethics