Advertisement

Security of Chaos-Based Communication and Encryption

  • Roy Tenny
  • Lev S. Tsimring
  • Henry D. I. Abarbanel
  • Lawrence E. Larson
Part of the Institute for Nonlinear Science book series (INLS)

Summary

During the last decade a new approach for secure communication, based on chaotic dynamics attracted the attention of the scientific community. In this chapter we give an overview and describe the research that was done at the Institute for Nonlinear Science (INLS) on this topic. We begin this chapter with a brief introduction to chaos-based encryption schemes. We then describe a new method for public key encryption that we have developed which is based on distributed chaotic dynamics. Next, we lay out a quantitative cryptanalysis approach for symmetric key encryption schemes that are based on active/passive decomposition of chaotic dynamics. We end this chapter with a summary and suggestions for future research.

Keywords

Chaotic Dynamic Encryption Scheme Receiver Dynamic Chaotic Component Attractor Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Tenny, L. S. Tsimring, L. E. Larson, H. D. I. Abarbanel, Using Distributed Nonlinear Dyunamics for Public Key Encryption, Phys. Rev. Lett., vol. 90, 047903, 2003.CrossRefADSGoogle Scholar
  2. 2.
    R. Tenny, L. S. Tsimring, H. D. I. Abarbanel, L. E. Larson, Asymmetric Key Encryption using Distributed Chaotic Nonlinear Dynamics, Proc. of the IASTED International Conference on Communications Internet and Information Technology, St. Thomas, US Virgin Islands, pp. 338–345, 2002.Google Scholar
  3. 3.
    R. Tenny, L. S. Tsimring, H. D. I. Abarbanel, L. E. Larson, Steps towards quantifying cryptanalysis of chaotic active/passive decomposition encryption schemes using average dynamics estimation, Int. J. Bifurcation and Chaos, vol. 14, 3949–3968, 2004.zbMATHCrossRefGoogle Scholar
  4. 4.
    R. Tenny, Symmetric and Asymmetric Secure Communication Schemes using Nonlinear Dynamics, Ph.D. Dissertation, University of California, San Diego 2003.Google Scholar
  5. 5.
    H. Dedieu, M. P. Kennedy, M. Hasler, Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits, IEEE Trans. on Circuits and Systems-II, vol. 40, pp. 634–642, 1993.CrossRefGoogle Scholar
  6. 6.
    M. Itoh, Spread spectrum communication via chaos, Int. J. of Bifurcation and Chaos, vol. 9, pp.155–213, 1999.zbMATHCrossRefGoogle Scholar
  7. 7.
    K. M. Cuomo and A. V. Oppenheim, Circuit implementation of synchronized chaos with application to communications, Phys. Rev. Lett., vol. 71, pp. 65–68, 1993.CrossRefADSGoogle Scholar
  8. 8.
    U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel, Encoding messages using chaotic synchronization Phys. Rev. E., vol. 53, pp. 4351–4361, 1996.CrossRefADSGoogle Scholar
  9. 9.
    L. Kocarev and U. Parlitz, General Approach for chaotic synchronization with applications to communication, Phys. Rev. Lett., vol. 74, pp. 5028–5031, 1995.CrossRefADSGoogle Scholar
  10. 10.
    L. Kocarev, Chaos-based cryptography: A brief overview. IEEE Circuits and Systems Mag., vol. 1, No.3, pp. 6–21, 2001.CrossRefGoogle Scholar
  11. 11.
    T. L. Carroll and L. M. Pecora, Cascading synchronized chaotic systems, Physica D, vol. 67, pp. 126–140, 1993.zbMATHCrossRefADSGoogle Scholar
  12. 12.
    A. R. Volkovskii and N. F. Rulkov, Synchronouns chaotic response of a nonlinear ocsillating system as a principle for the detection of the information component of chaos. Tech. Phys. Lett. vol. 19, pp. 97–99, 1993.ADSGoogle Scholar
  13. 13.
    S. Hayes, C. Grebogi, E. Ott, and M. Spano, Experimental control of chaos for communication, Phys. Rev. Lett., vol. 73, pp. 1781–1784, 1994.CrossRefADSGoogle Scholar
  14. 14.
    Y.-C. Lai, E. Bollt, and C. Grebogi, Communicating with chaos using two-dimensional symbolic dynamics. Phys. Lett. A, vol. 255, pp. 75–81, 1999.CrossRefADSGoogle Scholar
  15. 15.
    Y. Zhang, M. Dai, Y. Hua, W. Ni, and G. Du, Digital communication by active-passive decomposition synchronization in hyperchaotic systems, Phys. Rev. E, vol. 58, pp. 3022–3027, 1998.CrossRefADSGoogle Scholar
  16. 16.
    K. M. Short and A. T. Parker., Unmasking a hyperchaotic communication scheme, Phys. Rev. E, vol. 58, No.1, pp. 1159–1162, 1998.CrossRefADSGoogle Scholar
  17. 17.
    T. L. Carroll and L. M. Pecora, Using multiple attractor chaotic systems for communication, Chaos, vol. 9, pp. 445–451, 1999.zbMATHCrossRefADSGoogle Scholar
  18. 18.
    T. Kapitaniak, Synchronization of chaos using continuous control, Phys. Rev. E, vol. 50, pp. 1642–1644, 1994.CrossRefADSGoogle Scholar
  19. 19.
    T. Yang and L. O. Chua, Impulsive stabilization for control and syncrhonization of chaotic systems: Theory and application to secure communication, Trans. IEEE, on Circuits and Systems-I, vol. 44, pp. 976–988, 1997.MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. M. Cruz and L. O. Chua, An IC chip of Chua’s circuit, IEEE Trans. on Circuits and Systems-II, vol. 40, pp. 614–625, 1993.CrossRefGoogle Scholar
  21. 21.
    T. Yang, L. B. Yang, and C. M. Yang, Breaking chaotic secure communication using a spectrogram, Phys. Lett. A, vol. 247, pp. 105–111, 1998.CrossRefADSGoogle Scholar
  22. 22.
    T. Yang, L. B. Yang, and C. M. Yang, Cryptanalyzing chaotic secure communications using return maps, Phys. Lett. A, vol. 245, pp. 495–510, 1998.CrossRefADSGoogle Scholar
  23. 23.
    J. B. Geddes, K. M. Short, and K. Black, Extraction of signals from chaotic laser data, Phys. Rev. Lett., vol. 83, pp. 5389–5392, 1999.CrossRefADSGoogle Scholar
  24. 24.
    T. Yang, L. B. Yang, and C. M. Yang, Breaking chaotic switching using generalized synchronization: Examples, IEEE Trans. on Circuits and Systems-I, vol. 45, pp. 1062–1067, 1998.CrossRefGoogle Scholar
  25. 25.
    K. M. Short, Steps toward unmasking secure communications, Int. J. of Bif. and Chaos, vol. 4, pp. 959–977, 1994.zbMATHCrossRefGoogle Scholar
  26. 26.
    K. M. Short, Unmasking a modulated chaotic communications scheme, Int. J. of Bif. and Chaos, vol. 6, pp. 367–375, 1996.zbMATHCrossRefGoogle Scholar
  27. 27.
    R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public key cryptosystems, Comm. ACM, vol. 21, pp.120–126, 1978.zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    V. S. Miller, Use of elliptic curves in Cryptology, Proc. of Crypto 85, pp. 417–426, 1986.Google Scholar
  29. 29.
    T. El-Gamal, A public key cyryptosystem and signature scheme based on discrete logarithms, Advances in Cryptography: Proc. of Crypto 84, Springer-Verlag, Berlin, pp. 10–18, 1985.Google Scholar
  30. 30.
    B. Chor, and R. L. Rivest, A knapsack type public key cryptosystem based on arithmetic in finite fields, Advances in Cryptography: Proc. of Crypto 84, 196, pp. 54–64, 1985.zbMATHMathSciNetGoogle Scholar
  31. 31.
    R. J. McEliece, A public-key cryptosystem based on algebric coding theory. JPL DSN Progress report, vol. 42–44, pp. 114–116, 1978.Google Scholar
  32. 32.
    H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. S. Tsimring, The analysis of observed chaotic data in physical systems. Rev. Mod. Phys., vol. 65 pp. 1331–1393, 1993.MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    DDE overview, images and updates may be found at: http://inls.ucsd.edu/~roy/DDE/MainPage/Google Scholar
  34. 34.
    K. Kaneko, Theory and Applications of Coupled Map Lattices, Nonlinear Science Theory and Applications (Wiley, New York, 1993).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Roy Tenny
    • 1
  • Lev S. Tsimring
    • 2
  • Henry D. I. Abarbanel
    • 3
  • Lawrence E. Larson
    • 1
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego, La Jolla
  2. 2.Institute for Nonlinear ScienceUniversity of CaliforniaSan Diego, La Jolla
  3. 3.Department of Physics and Marine Physical Laboratory (Scripps Institution of Oceanography)University of CaliforniaSan Diego, La Jolla

Personalised recommendations