Skip to main content

Part of the book series: Institute for Nonlinear Science ((INLS))

  • 723 Accesses

Summary

The turbo decoding algorithm is a high-dimensional dynamical system parameterized by a large number of parameters (for a practical realization the turbo decoding algorithm has more than 103 variables and is parameterized by more than 103 parameters). In this chapter we treat the turbo decoding algorithm as a dynamical system parameterized by a single parameter that closely approximates the signal-to-noise ratio (SNR). A whole range of phenomena known to occur in nonlinear systems, such as the existence of multiple fixed points, oscillatory behavior, bifurcations, chaos, and transient chaos are found in the turbo decoding algorithm. We develop a simple technique to control transient chaos in the turbo decoding algorithm and improve the performance of the standard turbo codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berrou, C., Glavieux, A., Thitimajshima, P. Near Shannon limit errorcorrecting coding and decoding: Turbo-Codes. Proc. IEEE International Communications Conference, pp. 1064–1070, 1993.

    Google Scholar 

  2. MacKay D. J. C., Neal, R. M. Near Shannon limit performance of Low Density Parity Check Codes. Electronics Letters, vol. 32, pp. 1645–1646, 1996.

    Article  Google Scholar 

  3. MacKay, D. J. C. Good error correcting codes based on very sparse matrices. IEEE Trans. Information Theory, vol. 45, pp. 399–431, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  4. Richardson, T., Urbanke, R. The capacity of low-density parity check codes under message-passing decoding. IEEE Trans. Information Theory, vol. 47(2), pp. 599–618, 1999.

    Article  MathSciNet  Google Scholar 

  5. Shannon, C. E. A mathematical theory of communication. Bell Systems Technical Journal, vol. 27, pp. 379–423; pp. 623–56, 1948.

    Google Scholar 

  6. Wiggins S., F. John, F. Introduction to Applied Nonlinear Dynamical Systems and Chaos, 3rd ed. (Springer-Verlag, New York, 1990).

    MATH  Google Scholar 

  7. Gallager, R. G. Low density parity check codes. IRE Trans. Inf. Theory, vol. 8, pp. 21–28, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  8. Wiberg, N. Codes and decoding on general graphs. Dissertation thesis no. 440, Dept. of Electrical Engineering, Linkoping University, Sweden, 1996

    Google Scholar 

  9. Benedetto, S., Montorsi, G. Unveiling turbo codes: some results on parallel concatenated coding schemes. IEEE Trans. Information Theory, vol. 42, pp. 409–428, 1996; Benedetto, S., Divsalar, D., Montorsi G., Pollara, F. Serial concatenation of interleaved codes: performance analysis, design and iterative decoding. IEEE Trans. Inform. Theory, vol. 44, pp. 909–926, 1998.

    Article  MATH  Google Scholar 

  10. Perez, L., Seghers, J., Costello, D. A distance spectrum intrepretation of turbo codes. IEEE Trans. Inform. Theory, vol. 42, pp. 1690–1709, 1996.

    MathSciNet  Google Scholar 

  11. Richardson, T. The geometry of turbo-decoding dynamics. IEEE Trans. Information Theory, vol. 46, pp. 9–23, 2000.

    Article  MATH  Google Scholar 

  12. Agrawal, D., Vardy, A. The turbo decoding algorithm and its phase trajectories. IEEE Trans. Inform. Theory, vol. 47, pp. 699–722, 2000.

    Article  MathSciNet  Google Scholar 

  13. Kuznetsov, Y. A. Elements of Applied Bifurcation Theory (Springer-Verlag, New York, 1995).

    MATH  Google Scholar 

  14. Ott, E. Chaos in Dynamical Systems (Cambridge University Press, New York, 1993).

    MATH  Google Scholar 

  15. Sinai, Y.G. Gibbs measures in ergodic theory. Russ. Math. Surv., vol. 166, pp. 21–69, 1972.

    Article  MathSciNet  Google Scholar 

  16. Bowen, R., Ruelle, D. The ergodic theory of axiom A flows. Inventiones Math., vol. 29, pp. 181–202, 1975

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Bahl, L. R., Cocke, J., Jelinek, F., Raviv, J. Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inform. Theory, vol. 20, pp. 284–287, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  18. Kocarev, L., Tasev, Z., Vardy, A. Improving turbo codes by control of transient chaos in turbo-decoding algorithms. Electronics Letters, vol. 38(20), pp. 1184–1186, 2002.

    Article  Google Scholar 

  19. Kocarev, L., Lehmann, F., Maggio, G.M., Scanavino, B., Tasev, Z., Vardy, A. Nonlinear dynamics of iterative decoding systems and applications. to appear in IEEE Trans. Inform. Theory, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kocarev, L. (2006). Nonlinear Phenomena in Turbo Decoding Algorithms. In: Larson, L.E., Tsimring, L.S., Liu, JM. (eds) Digital Communications Using Chaos and Nonlinear Dynamics. Institute for Nonlinear Science. Springer, New York, NY . https://doi.org/10.1007/0-387-29788-X_6

Download citation

Publish with us

Policies and ethics