Advertisement

Ultra-Wideband Communications Using Pseudo-Chaotic Time Hopping

  • David C. Laney
  • Gian Mario Maggio
Part of the Institute for Nonlinear Science book series (INLS)

Summary

Pseudo-chaotic time hopping (PCTH) is a recently proposed encoding/modulation scheme for UWB (ultra-wide band) impulse radio. PCTH exploits concepts from symbolic dynamics to generate aperiodic spreading sequences, resulting in a noiselike spectrum. In this chapter we present the signal characteristics of single-user PCTH as well as a suitable multiple access technique. In particular, we provide analytical expressions for the BER (bit-error-rate) performance as a function of the number of users and validate it by simulation.

Keywords

Additive White Gaussian Noise Federal Communication Commission Convolutional Code Bernoulli Shift Impulse Radio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Merriam-Webster Collegiate Dictionary. Merriam-Webster, Inc. online, 2002. http://www.m-w.com.Google Scholar
  2. 2.
    P. J. Nahin, The Science of Radio. Woodbury, NY: American Institute of Physics Press, 1996.Google Scholar
  3. 3.
    Nobel Foundation, Nobel e-Museum. online, 2002. http://www.nobel.se/physics/laureates.Google Scholar
  4. 4.
    J. G. Proakis, Digital Communications. New York, NY: Mc Graw Hill, 3rd ed., 1995.Google Scholar
  5. 5.
    D. G. Leeper, A long-term view of short-range wireless, IEEE Computer Magazine, vol. 34, pp. 39–44, 2001.Google Scholar
  6. 6.
    R. J. Fontana, An insight into UWB interference from a shot noise perspective, in Proceedings of Ultra Wideband Systems and Technologies Conference, pp. 309–313, 2002.Google Scholar
  7. 7.
    P. Withington, Impulse radio overview. online, 1998. http://www.timedomain.com.Google Scholar
  8. 8.
    Federal Communications Commission, Revision of Part 15 of the Commission’s rules regarding ultra-wideband transmission systems. First Report and Order FCC 02-48, ET docket 98–153, April 2002.Google Scholar
  9. 9.
    G. M. Maggio, N. Rulkov, and L. Reggiani, Pseudo-chaotic time hopping for UWB impulse radio, IEEE Transactions on Circuits and Systems—I, vol. 48, 2001.Google Scholar
  10. 10.
    M. Z. Win and R. A. Scholtz, Impulse radio: How it works, IEEE Communications Letters, vol. 2, pp. 36–38, 1998.CrossRefGoogle Scholar
  11. 11.
    S. S. Kolenchery, J. K. Townsend, and J. Freebersyer, A novel impulse radio network for tactical military wireless communications, in Proceedings of MILCOM, pp. 59–65, 1998.Google Scholar
  12. 12.
    R. A. Scholtz, Multiple access with time hopping impulse modulation, in Proceedings of MILCOM, pp. 447–450, 1993.Google Scholar
  13. 13.
    F. Ramirez-Mireles and R. A. Scholtz, N-orthogonal time-shift-modulated signals for ultra-wide bandwidth impulse radio modulation, in IEEE Miniconference Proceedings on Commmunication Theory, 1997.Google Scholar
  14. 14.
    F. Ramirez-Mireles and R. A. Scholtz, Multiple-access performance limits with time hopping and pulse position modulation, in Proceedings of MILCOM, pp. 529–533, 1998.Google Scholar
  15. 15.
    M. Z. Win and R. A. Scholtz, Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple access communications, IEEE Transactions on Communications, vol. 48, pp. 679–689, 2000.CrossRefGoogle Scholar
  16. 16.
    R. G. Aiello, G. D. Rogerson, and P. Enge, Preliminary assessment of interference between ultra-wideband transmitters and the global positioning system: A cooperative study, in Proceedings of the National Technical Meeting of the Institute of Navigation, 2000.Google Scholar
  17. 17.
    P. A. Bernhardt, Chaotic frequency modulation, in Proc. SPIE, vol. 2038, pp. 162–81, 1993.ADSGoogle Scholar
  18. 18.
    N. F. Rulkov and A. R. Volkovskii, Threshold synchronization of chaotic relaxation oscillations, Phys. Lett. A, vol. 179, pp. 332–336, 1993.CrossRefADSGoogle Scholar
  19. 19.
    H. Torikai, T. Saito, and W. Schwarz, Synchronization via multiplex pulse trains, IEEE Trans. Circuits and Systems—I, vol. 46, pp. 1072–1085, 1999.CrossRefGoogle Scholar
  20. 20.
    M. Sushchick, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, Chaotic pulse position modulation: A robust method of communicating with chaos, IEEE Communications Letters, vol. 4, pp. 128–130, 2000.CrossRefGoogle Scholar
  21. 21.
    T. Yang and L. Chua, Chaotic impulse radio: A novel chaotic secure communication system, Int. J. Bif. and Chaos, vol. 10, pp. 345–357, 2000.MathSciNetCrossRefGoogle Scholar
  22. 22.
    G. M. Maggio, N. Rulkov, M. Sushchik, L. Tsimring, A. Volkovskii, H. Abarbanel, L. Larson, and K. Yao, Chaotic pulse-position modulation for ultrawideband communication systems, in Proc. of UWB Conference, Washington D.C., 1999.Google Scholar
  23. 23.
    D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding (Cambridge University Press, 1995).Google Scholar
  24. 24.
    E. Ott, Chaos in Dynamical Systems (Cambridge University Press, 1993).Google Scholar
  25. 25.
    D. C. Laney, G. M. Maggio, F. Lehmann, and L. E. Larson, BER and spectral properties of interleaved convolutional time hopping for UWB impulse radio, in Proc. of Globecom 2003, San Francisco, CA, December 1–5, 2003.Google Scholar
  26. 26.
    C. Caire, G. Taricco, and E. Biglieri, Bit-interleaved coded modulation, IEEE Trans. on Inf. Theory, vol. 44, pp. 932–946, 1998.MathSciNetCrossRefGoogle Scholar
  27. 27.
    D. C. Laney, G. M. Maggio, F. Lehmann, and L. E. Larson, Multiple access for UWB impulse radio with pseudo-chaotic time hopping, IEEE J. on Selected Areas in Comm., vol. 20, pp. 1692–1700, 2002.CrossRefGoogle Scholar
  28. 28.
    S. Lin and D. J. Costello, Error Control Coding (Prentice-Hall, 1983).Google Scholar
  29. 29.
    S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory (Prentice Hall, 1998).Google Scholar
  30. 30.
    J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering (Waveland Press, 1965).Google Scholar
  31. 31.
    E. Zehavi, 8-psk trellis code for a rayleigh channel, IEEE Trans. Comm., vol. 40, pp. 873–884, 1992.zbMATHCrossRefADSGoogle Scholar
  32. 32.
    A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding (McGraw-Hill, N.Y., 1979).zbMATHGoogle Scholar
  33. 33.
    R. D. Gitlin, J. F. Hayes, and S. B. Weinstein, Data Communication Principles (Plenum,, N.Y., 1992).Google Scholar
  34. 34.
    L. W. Couch, Digital and Analog Communication Systems, 5th ed.. (Prentice-Hall, 1997).Google Scholar
  35. 35.
    G. M. Maggio, D. Laney, F. Lehmann, and L. Larson, A multi-access scheme for UWB radio using pseudo-chaotic time hopping, in Proceedings of Ultra Wideband Systems and Technologies Conference, pp. 225–229, 2002.Google Scholar
  36. 36.
    G. Maggio, D. Laney, and L. Larson, BER for synchronous multi-access UWB radio using pseudo-chaotic time hopping, in Proceedings of IEEE Global Telecommunications Conference (Globecom), pp. 1324–1328, 2002.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • David C. Laney
    • 1
  • Gian Mario Maggio
    • 1
  1. 1.Center for Wireless CommunicationsUniversity of CaliforniaSan Diego, La Jolla

Personalised recommendations