Advertisement

Digital Communication Using Self-Synchronizing Chaotic Pulse Position Modulation

  • Nikolai F. Rulkov
  • Alexander R. Volkovskii
  • Michail M. Sushchik
  • Lev S. Tsimring
  • Lucas Illing
Part of the Institute for Nonlinear Science book series (INLS)

Summary

We review a new approach to communication with chaotic signals based upon chaotic signals in the form of pulse trains where intervals between the pulses are determined by chaotic dynamics of a pulse nary information is modulated onto this carrier by the pulse position modulation method, such that each pulse is either left unchanged or delayed by a certain time, depending on whether 0 or 1 is transmitted. By synchronizing the receiver to the chaotic-pulse train we can anticipate the timing of pulses corresponding to 0 and 1 and thus can decode the transmitted information. Based on the results of theoretical and experimental studies we discuss the basic design principles for the chaotic-pulse generator, its synchronization, and the performance of the chaotic-pulse communication scheme in the presence of channel noise and filtering.

Keywords

Chaotic System Pulse Train Chaotic Signal Interpulse Interval Chaotic Synchronization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. M. Cuomo and A. V. Oppenheim, Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Lett., vol. 71(1), pp. 65–68, 1993.CrossRefADSGoogle Scholar
  2. 2.
    L. Kocarev, K. S. Halle, K. Eckert, L. O. Chua and U. Parlitz, Experimental demonstration of secure communications via chaotic synchronization. Int. J. Bifurcation Chaos, vol. 2, pp. 709–713, 1992.zbMATHCrossRefGoogle Scholar
  3. 3.
    T. L. Carroll and L. M. Pecora, Synchronizing nonautonomous chaotic circuits, IEEE Trans. Circuits Syst., vol. 40(10), pp. 646–650, 1993.CrossRefGoogle Scholar
  4. 4.
    C. W. Wu and L. O. Chua, A simple way to synchronize chaotic systems with applications to secure communication systems, Int. J. Bif. Chaos, vol. 3(6), pp. 1619–1627, 1993.zbMATHCrossRefGoogle Scholar
  5. 5.
    P. Colet and R. Roy, Digital communication with synchronized chaotic lasers, Optics Lett., vol. 19(24), pp. 2056–2058, 1994.ADSCrossRefGoogle Scholar
  6. 6.
    P. Celka, Chaotic synchronization and modulation of nonlinear time-delayed feedback optical systems. IEEE Trans. Circuits Syst., vol. 42(8), pp. 455–463, 1995.CrossRefGoogle Scholar
  7. 7.
    P. Celka, Synchronization of chaotic optical dynamical systems through 700 m of single mode fiber. IEEE Trans. Circuits Syst., vol. 43(10), pp. 869–872, 1996.CrossRefGoogle Scholar
  8. 8.
    C. R. Mirasso, P. Colet, and P. Garcia-Fernández, Photonics Technol. Lett 8, 299 (1996)CrossRefADSGoogle Scholar
  9. 9.
    G. D. VanWiggeren and R. Roy, Communication with chaotic lasers, Science, vol. 279(5354), pp. 1198–1200, 1998.CrossRefADSGoogle Scholar
  10. 10.
    G. D. VanWiggeren and R. Roy, Optical communication with chaotic waveforms, Phys. Rev. Lett., vol. 81(16), pp. 3547–3550, 1998.CrossRefADSGoogle Scholar
  11. 11.
    H. D. I. Abarbanel and M. B. Kennel, Synchronizing high-dimensional chaotic optical ring dynamics, Phys. Rev. Lett., vol. 80(14), pp. 3153–3156, 1998.CrossRefADSGoogle Scholar
  12. 12.
    G. Kolumban, G. Kis, and Z. Jákó, M. P. Kennedy. FM-DCSK: a robust modulation scheme for chaotic communications. IEICE Trans. Fundamentals of Electronics, Communication, and Computer Science, vol.E81-A(9), pp. 1798–8002, 1998.Google Scholar
  13. 13.
    L. M. Pecora and T. L. Carroll. Synchronization in chaotic systems. Phys. Rev. Lett., vol.64, pp. 821–824, 1990.zbMATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems, Prog. Theor. Phys., vol. 69(1), pp. 32–47, 1984.MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., vol. 64(8), pp. 821–824, 1990.zbMATHMathSciNetCrossRefADSGoogle Scholar
  16. 16.
    D. R. Frey, Chaotic digital encoding: an approach to secure communication, IEEE Trans. Circuits Syst., vol. 40(10), pp. 660–666, 1993.MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. R. Volkovskii and N. F. Rulkov, Synchronous chaotic response of a nonlinear oscillator system as a principle for the detection of the information component of chaos, Tech. Phys. Lett., vol. 19(2), pp. 97–99, 1993.ADSGoogle Scholar
  18. 18.
    U. Feldmann, M. Hasler, and W. Schwarz, Communication by chaotic signals: the inverse system approach, Int. J. Ciruit Theory Appl., vol. 24(5), 1996, pp. 551–579.zbMATHCrossRefGoogle Scholar
  19. 19.
    L. Kocarev and U. Parlitz, General approach for chaotic synchronization with applications to communication. Phys. Rev. Lett., vol. 74(25), pp. 5028–5031, 1995.CrossRefADSGoogle Scholar
  20. 20.
    M. Hasler. Synchronization of chaotic systems and transmission of information. Int. J. of Bifurcation and Chaos, vol. 8(4), pp. 647–659, 1998.zbMATHCrossRefGoogle Scholar
  21. 21.
    T. L. Carroll and L. M. Pecora, Cascading synchronized chaotic systems. Physica D, vol. 67, pp. 126–140, 1993.zbMATHCrossRefADSGoogle Scholar
  22. 22.
    H. Dedieu, M. P. Kennedy, and M. Hasler, Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Trans. Circuits Syst.-I, vol. 40, pp. 634–642, 1993.CrossRefGoogle Scholar
  23. 23.
    K. Murali and M. Lakshmanan, Transmission of signals by synchronization in a chaotic Van der Pol-Duffing oscillator. Phys. Rev. E, vol. 48, pp. R1624–1626, 1993.CrossRefADSGoogle Scholar
  24. 24.
    Y. H. Yu, K. Kwak, and T. K. Lim, Secure communication using small time continuous feedback. Physics Letters A, vol. 197, pp. 311–316, 1995.ADSGoogle Scholar
  25. 25.
    K. S. Halle, C. W. Wu, M. Itoh, and L. O. Chua, Spread spectrum communication through modulation of chaos. Int. J. Bifurcation Chaos, vol. 3, pp. 469–477, 1993.zbMATHCrossRefGoogle Scholar
  26. 26.
    U. Parlitz and L. Kocarev, General approach for chaotic synchronization with applications to communication. Phys. Rev. Lett., vol. 74, pp. 5028–5031, 1995.CrossRefADSGoogle Scholar
  27. 27.
    U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel, Encoding messages using chaotic synchronization. Phys. Rev. E, vol. 53, pp. 4351–4361, 1996.CrossRefADSGoogle Scholar
  28. 28.
    N. F. Rulkov and L. S. Tsimring. Synchronization methods for communications with chaos over band-limited channel Int. J. Circuit Theory and Applications., vol. 27, pp. 555–567, 1999.zbMATHCrossRefGoogle Scholar
  29. 29.
    G. Kolumban, M. P. Kennedy and L. O. Chua, The role of synchronization in digital communications using chaos. II. Chaotic modulation and chaotic synchronization, IEEE Trans. Circuits Syst.-I, vol. 45(11), pp. 1129–1140, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    C. Williams, Chaotic communication over radio channels, IEEE Trans. Circuits Syst.-I, vol. 48(12), pp. 1394–1404, 2001.CrossRefGoogle Scholar
  31. 31.
    T. L. Carroll, Amplitude-independent chaotic synchronization. Phys. Rev. E, vol. 53(4A), pp. 3117–3122, 1996.CrossRefADSGoogle Scholar
  32. 32.
    T. L. Carroll and G. A. Johnson, Synchronizing broadband chaotic systems to narrow-band signals, Phys. Rev. E, vol. 57(2), pp. 1555–1558, 1998.CrossRefADSGoogle Scholar
  33. 33.
    E. Rosa, S. Hayes, and C. Grebogi, Noise filtering in communication with chaos. Phys. Rev. Lett., vol. 78(7), pp. 1247–1250, 1997.CrossRefADSGoogle Scholar
  34. 34.
    N. F. Rulkov and A. R. Volkovskii, Threshold synchronization of chaotic relaxation oscillations, Physics Letters A, vol. 179(4–5), pp. 332–336, 1993.CrossRefADSGoogle Scholar
  35. 35.
    H. Torikai, T. Saito, and W. Schwartz, Synchronization via multiplex pulse trains, IEEE Trans. Circuits Syst.-I, vol. 46(9), 1072–1085, 1999.CrossRefGoogle Scholar
  36. 36.
    T. L. Carroll, Communicating with use of filtered, synchronized, chaotic signals, IEEE Trans. Circuits Syst.-I, vol. 42(2), pp. 105–110, 1995.CrossRefGoogle Scholar
  37. 37.
    T. L. Carroll, Noise-robust synchronized chaotic communication, IEEE Trans. Circuits Syst.-I, vol. 48(12), pp. 1519–1522, 2001.CrossRefGoogle Scholar
  38. 38.
    N. F. Rulkov and A. R. Volkovskii. Synchronization of pulse-coupled chaotic oscillators. In Proc. of the 2nd Experimental Chaos Conference, pp. 106–115, World Scientific, 1993.Google Scholar
  39. 39.
    M. M. Sushchik et al. Chaotic Pulse Position Modulation: a Robust Method of Communicating with Chaos IEEE Communications Letters, vol.4, pp. 128–130, 2000.CrossRefGoogle Scholar
  40. 40.
    M. Z. Win and R. A. Scholtz. Impulse radio: how it works. IEEE Communications Letters, vol.2(2), pp.36–38, 1998.CrossRefGoogle Scholar
  41. 41.
    T. Yang and L. O. Chua. Chaotic impulse radio: A novel chaotic secure communication system. Int. J. of Bifurcation and Chaos, vol.10, pp. 345–357, 2000.MathSciNetCrossRefGoogle Scholar
  42. 42.
    P. A. Bernhardt Coupling of the relaxation and resonant elements in the autonomous chaotic relaxation oscillator (ACRO) Chaos vol.2, 183–199, 1992.CrossRefADSGoogle Scholar
  43. 43.
    N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and A. R. Volkovskii Digital Communication Using Chaotic-Pulse-Position Modulation. IEEE Trans. Circuits Syst. vol. 48, pp. 1436–1444, 2001.CrossRefGoogle Scholar
  44. 44.
    N. F. Rulkov, M. A. Vorontsov and L. Illing Chaotic Free-Space Laser Communication over Turbulent Channel. Phys. Rev. Lett. vol. 89, 277905, 2002.CrossRefADSGoogle Scholar
  45. 45.
    L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Bellingham, 2001).CrossRefGoogle Scholar
  46. 46.
    T. Stojanovski, Lj. Kocarev, and R. Harris. Applications of symbolic dynamics in chaos synchronization. IEEE Trans. Circuit. Syst. I, vol.44(10), pp. 1014–1017, 1997.CrossRefGoogle Scholar
  47. 47.
    H. Torikai, T. Saito, and W. Schwarz. Multiplex communication scheme based on synchronization via multiplex pulse-trains. In Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, pp. 554–557, New York, 1998.Google Scholar
  48. 48.
    H. Torikai, T. Saito, and W. Schwarz. Synchronization via multiplex pulsetrains. IEEE Trans. Circuit. Syst. I, vol.46(9), pp.1072–1085, 1999.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Nikolai F. Rulkov
    • 1
  • Alexander R. Volkovskii
    • 1
  • Michail M. Sushchik
    • 2
  • Lev S. Tsimring
    • 1
  • Lucas Illing
    • 3
  1. 1.Institute for Nonlinear ScienceUniversity of CaliforniaSan Diego, La Jolla
  2. 2.Therma-Wave Inc.Fremont
  3. 3.Dept. of PhysicsDuke UniversityDurham, NC

Personalised recommendations