Advertisement

Performance of Synchronized Chaotic Optical Communication Systems

  • Shuo Tang
  • How-Foo Chen
  • Jia-Ming Liu
Part of the Institute for Nonlinear Science book series (INLS)

Summary

Chaotic optical communication is a novel communication scheme that utilizes optical chaotic waveform to transmit messages at a high bit rate. Its potential applications include secure communications and spread-spectrum communications. In a chaotic optical communication system, a nonlinear dynamical system is used to generate the optical chaotic waveform for message transmission. Messages are encoded through chaos encryption where the messages are mixed with the chaotic waveform. Message recovery is achieved by comparing the received signal with a reproduced chaotic waveform which synchronizes with the chaotic waveform from the transmitter. Details are discussed in this chapter regarding each of the above basic issues. Furthermore, we also review the experiment of chaotic optical communication at 2.5 Gb/s, which has the highest bit rate in any chaotic communication systems ever reported in the literature. This system uses semiconductor lasers with delayed optoelectronic feedback to generate chaotic pulses. Three major encoding and decoding schemes, namely, chaos masking, chaos shift keying, and chaos modulation, are implemented and compared in this 2.5 Gb/s chaotic optical communication system. The chaos modulation scheme is found to have the best performance. To investigate the potential applications of chaotic optical communications at an even higher bit rate, numerical simulations are carried out on chaotic optical communication systems operating at 10 Gb/s. In this numerical study, three different systems using semiconductor lasers with optical injection, optical feedback, or optoelectronic feedback, respectively are investigated. It is shown that chaotic optical communication at 10 Gb/s is feasible with high-speed semiconductor lasers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Special issue on applications of chaos in modern communication systems, IEEE Trans. Circuits Syst. I, vol. 48, 2001.Google Scholar
  2. 2.
    Feature section on optical chaos and application to cryptography, IEEE J. Quantum Electron., vol. 38, 2002.Google Scholar
  3. 3.
    E. Ott, Chaos in Dynamical Systems (Cambridge University Press, 1993).Google Scholar
  4. 4.
    S. Tang and J. M. Liu, Chaotic pulsing and quasiperiodic route to chaos in a semiconductor laser with delayed optoelectronic feedback, IEEE J. Quantum Electron., vol. 37, pp. 329–336, 2001.CrossRefADSGoogle Scholar
  5. 5.
    F. Dachselt and W. Schwartz, Chaos and cryptography, IEEE Trans. Circuits Syst. I, vol. 48, pp. 1498–1509, 2001.zbMATHCrossRefGoogle Scholar
  6. 6.
    C. C. Chen, K. Yao, K. Umeno, and E. Biglieri, Design of spread-spectrum sequences using chaotic dynamical systems and ergodic theory, IEEE Trans. Circuits Syst. I, vol. 48, pp. 1110–1114, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, New York, 2002).CrossRefGoogle Scholar
  8. 8.
    S. Tang and J. M. Liu, Message encoding-decoding at 2.5 Gbits/s through synchronization of chaotic pulsing semiconductor lasers, Opt. Lett., vol. 26, pp. 1843–1845, 2001.ADSCrossRefGoogle Scholar
  9. 9.
    G. D. VanWiggeren and R. Roy, Optical communication with chaotic waveforms, Phys. Rev. Lett., vol. 81, pp. 3547–3550, 1998.CrossRefADSGoogle Scholar
  10. 10.
    C. W. Wu and L. O. Chua, A simple way to synchronize chaotic systems with applications to secure communication systems, Int. J. Bifurcation & Chaos, vol. 3, pp. 1619–1627, 1993.zbMATHCrossRefGoogle Scholar
  11. 11.
    H. F. Chen and J. M. Liu, Open-loop chaotic synchronization of injectionlocked semiconductor lasers with gigahertz range modulation, IEEE J. Quantum Electron., vol. 36, pp. 27–34, 2000.CrossRefADSGoogle Scholar
  12. 12.
    Y. Liu, H. F. Chen, J. M. Liu, P. Davis, and T. Aida, Communication using synchronization of optical-feedback-induced chaos in semiconductor lasers, IEEE Trans. Circuits Syst. I, vol. 48, pp. 1484–1489, 2001.CrossRefGoogle Scholar
  13. 13.
    S. Sivaprakasam and K. A. Shore, Message encoding and decoding using chaotic external-cavity diode lasers, IEEE J. Quantum Electron., vol. 36, pp. 35–39, 2000.CrossRefADSGoogle Scholar
  14. 14.
    S. Tang and J. M. Liu, Synchronization of high-frequency chaotic optical pulses, Opt. Lett., vol. 26, pp. 596–598, 2001.ADSCrossRefGoogle Scholar
  15. 15.
    S. Tang, H. F. Chen, S. K. Hwang, and J. M. Liu, Message encoding and decoding through chaos modulation in chaotic optical communications, IEEE Trans. Circuits Syst. I, vol. 49, pp. 163–169, 2002.CrossRefGoogle Scholar
  16. 16.
    J. P. Goedgebuer, L. Larger, and H. Porte, Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode, Phys. Rev. Lett., vol. 80, pp. 2249–2252, 1998.CrossRefADSGoogle Scholar
  17. 17.
    G. D. VanWiggeren and R. Roy, Chaotic communication using time-delayed optical systems, Int. J. Bifurcation & Chaos, vol. 9, pp. 2129–2156, 1999.CrossRefGoogle Scholar
  18. 18.
    L. G. Luo, P. L. Chu, and H. F. Liu, 1-GHz optical communication system using chaos in erbium-doped fiber lasers, IEEE Photon. Technol. Lett., vol. 12, pp. 269–271, 2000.CrossRefADSGoogle Scholar
  19. 19.
    G. D. VanWiggeren and R. Roy, Communication with dynamically fluctuating states of light polarization, Phys. Rev. Lett., vol. 88, 097903, 2002.CrossRefADSGoogle Scholar
  20. 20.
    S. Tang and J. M. Liu, Effects of message encoding and decoding on synchronized chaotic optical communications, IEEE J. Quantum Electron., vol. 39, pp. 1468–1475, 2003.CrossRefADSGoogle Scholar
  21. 21.
    S. Haykin, Communication Systems (John Wiley & Sons, New York, 1994).Google Scholar
  22. 22.
    J. M. Liu, H. F. Chen, and S. Tang, Synchronized chaotic optical communications at high bit rates, IEEE J. Quantum Electron., vol. 38, pp. 1184–1196, 2002.CrossRefADSGoogle Scholar
  23. 23.
    J. M. Liu, H. F. Chen, and S. Tang, Optical communication systems based on chaos in semiconductor lasers, IEEE Trans. Circuits Syst. I, vol. 48, pp. 1475–1483, 2001.CrossRefGoogle Scholar
  24. 24.
    L. Kocarev and U. Parlitz, General approach for chaotic synchronization with applications to communication, Phys. Rev. Lett., vol. 74, pp. 5028–5031, 1995.CrossRefADSGoogle Scholar
  25. 25.
    L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., vol. 64, pp. 821–824, 1990.zbMATHMathSciNetCrossRefADSGoogle Scholar
  26. 26.
    L. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz, Experimental demonstration of secure communications via chaotic synchronization, Int. J. of Bifurcation & Chaos, vol. 2, pp. 709–713, 1992.zbMATHCrossRefGoogle Scholar
  27. 27.
    U. Parlitz, L. O. Chua, L. Kocarev, K. S. Halle, and A. Shang, Transmission of digital signals by chaotic synchronization, Int. J. of Bifurcation & Chaos, vol. 2, pp. 973–977, 1992.zbMATHCrossRefGoogle Scholar
  28. 28.
    K. S. Halle, C. W. Wu, M. Itoh, and L. O. Chua, Spread spectrum communication through modulation of chaos, Int. J. of Bifurcation & Chaos, vol. 3, pp. 469–477, 1993.zbMATHCrossRefGoogle Scholar
  29. 29.
    M. Itoh, H. Murakami, and L. O. Chua, Communication systems via chaotic modulations, IEICE Trans. Fundamentals, vol. E77-A, pp. 1000–1006, 1994.Google Scholar
  30. 30.
    U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel, Encoding messages using chaotic synchronization, Phys. Rev. E, vol. 53, pp. 4351–4361, 1996.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Shuo Tang
    • 1
  • How-Foo Chen
    • 1
  • Jia-Ming Liu
    • 2
  1. 1.Electrical Engineering DepartmentUniversity of California, Los AngelesLos Angeles
  2. 2.Department of Electrical EngineeringUniversity of CaliforniaLos AngelesUSA

Personalised recommendations