Advertisement

Dynamics and Synchronization of Semiconductor Lasers for Chaotic Optical Communications

  • Jia-Ming Liu
  • How-Foo Chen
  • Shuo Tang
Part of the Institute for Nonlinear Science book series (INLS)

Summary

The objective of this chapter is to provide a complete picture of the nonlinear dynamics and chaos synchronization of single-mode semiconductor lasers for chaotic optical communications. Basic concepts and theoretical framework are reviewed. Experimental results are presented to demonstrate the fundamental concepts. Numerical computations are employed for mapping the dynamical states and for illustrating certain detailed characteristics of the chaotic states. Three different semiconductor laser systems, namely, the optical injection system, the optical feedback system, and the optoelectronic feedback system, that are of most interest for high-bit-rate chaotic optical communications are considered. The optical injection system is a nonautonomous system that follows a period-doubling route to chaos. The optical feedback system is a phase-sensitive delayed-feedback autonomous system for which all three known routes, namely, period-doubling, quasiperiodicity, and intermittency, to chaos can be found. The optical feedback system is a phase-insensitive delayed-feedback autonomous system that follows a quasiperiodicity route to chaotic pulsing. Identical synchronization in unidirectionally coupled configurations is the focus of discussions for chaotic communications. For optical injection and optical feedback systems, the frequency, phase, and amplitude of the optical fields of both transmitter and receiver lasers are all locked in synchronism when complete synchronization is accomplished. For the optoelectronic feedback system, chaos synchronization involves neither the locking of the optical frequency nor the synchronization of the optical phase. For both optical feedback and optoelectronic feedback systems, where the transmitter is configured with a delayed feedback loop, anticipated and retarded synchronization can be observed as the difference between the feedback delay time and the propagation time from the transmitter laser to the receiver laser is varied. For a synchronized chaotic communication system, the message encoding process can have a significant impact on the quality of synchronization and thus on the message recoverability at the receiver end. It is shown that high-quality synchronization can be maintained when a proper encoding scheme that maintains the symmetry between the transmitter and the receiver is employed.

Keywords

Chaotic System Semiconductor Laser Optical Feedback Chaos Synchronization Transmitter Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Special issue on applications of chaos in modern communication systems, IEEE Trans. Circuits Syst. I, vol. 48, 2001.Google Scholar
  2. 2.
    Feature section on optical chaos and application to cryptography, IEEE J. Quantum Electron., vol. 38, 2002.Google Scholar
  3. 3.
    G. D. VanWiggeren and R. Roy, Optical communication with chaotic wave-forms, Phys. Rev. Lett., vol. 81, pp. 3547–3550, 1998.CrossRefADSGoogle Scholar
  4. 4.
    H. D. I. Abarbanel and M. B. Kennel, Synchronizing high-dimensional chaotic optical ring dynamics, Phys. Rev. Lett., vol. 80, pp. 3153–3156, 1998.CrossRefADSGoogle Scholar
  5. 5.
    G. D. VanWiggeren and R. Roy, Chaotic communication using time-delayed optical systems, Int. J. Bifurcation & Chaos, vol. 9, pp. 2129–2156, 1999.CrossRefGoogle Scholar
  6. 6.
    L. G. Luo, P. L. Chu, and H. F. Liu, 1-GHz optical communication system using chaos in erbium-doped fiber lasers, IEEE Photon. Technol. Lett., vol. 12, pp. 269–271, 2000.CrossRefADSGoogle Scholar
  7. 7.
    H. F. Chen and J. M. Liu, Open-loop chaotic synchronization of injectionlocked semiconductor lasers with gigahertz range modulation, IEEE J. Quantum Electron., vol. 36, pp. 27–34, 2000.CrossRefADSGoogle Scholar
  8. 8.
    J. M. Liu, H. F. Chen, and S. Tang, Optical communication systems based on chaos in semiconductor lasers,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 1475–1483, 2001.CrossRefGoogle Scholar
  9. 9.
    Y. Liu, H.F. Chen, J.M. Liu, P. Davis, and T. Aida, Communication using synchronization of optical-feedback-induced chaos in semiconductor lasers, IEEE Trans. Circuits Syst. I, vol. 48, pp. 1484–1489, 2001.CrossRefGoogle Scholar
  10. 10.
    Y. Liu, H. F. Chen, J. M. Liu, P. Davis, and T. Aida, Synchronization of optical-feedback-induced chaos in semiconductor lasers by optical injection, Phys. Rev. A, vol. 63, 031802, 2001.CrossRefADSGoogle Scholar
  11. 11.
    A. Sanchez-Diaz, C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, Encoded Gbit/s digital communications with synchronized chaotic semiconductor lasers, IEEE J. Quantum Electron., vol. 35, pp. 292–297, 1999.CrossRefADSGoogle Scholar
  12. 12.
    S. Sivaprakasam and K. A. Shore, Message encoding and decoding using chaotic external-cavity diode lasers, IEEE J. Quantum Electron., vol. 36, pp. 35–39, 2000.CrossRefADSGoogle Scholar
  13. 13.
    S. Tang and J. M. Liu, Synchronization of high-frequency chaotic optical pulses, Opt. Lett., vol. 26, pp. 596–598, 2001.ADSCrossRefGoogle Scholar
  14. 14.
    S. Tang and J. M. Liu, Message encoding-decoding at 2.5 Gbits/s through synchronization of chaotic pulsing semiconductor lasers, Opt. Lett., vol. 26, pp. 1843–1845, 2001.ADSCrossRefGoogle Scholar
  15. 15.
    J. M. Liu, H. F. Chen, and S. Tang, Synchronized chaotic optical communications at high bit rates, IEEE J. Quantum Electron., vol. 38, pp. 1184–1196, 2002.CrossRefADSGoogle Scholar
  16. 16.
    F. T. Arecchi, G. L. Lippi, G. P. Puccioni and J. R. Tredicce, Deterministic chaos in laser with injected signal, Opt. Commun., vol. 51, pp. 308–314, 1984.CrossRefADSGoogle Scholar
  17. 17.
    J. R. Tredicce, F. T. Arecchi, G. L. Lippi, and G. P. Puccioni, Instabilities in lasers with an injected signal, J. Opt. Soc. Am. B, vol. 2, pp. 173–183, 1985.ADSCrossRefGoogle Scholar
  18. 18.
    S. K. Hwang and J. M. Liu, Dynamical characteristics of an optically injected semiconductor laser, Opt. Commun., vol. 183, pp. 195–205, 2000.CrossRefADSGoogle Scholar
  19. 19.
    T. B. Simpson and J. M. Liu, Spontaneous emission, nonlinear optical coupling, and noise in laser diodes, Opt. Commun., vol. 112, pp. 43–47, 1994.CrossRefADSGoogle Scholar
  20. 20.
    J. M. Liu and T. B. Simpson, Four-wave mixing and optical modulation in a semiconductor laser, IEEE J. Quantum Electron., vol. 30, pp. 957–965, 1994.CrossRefADSGoogle Scholar
  21. 21.
    J. M. Liu, C. Chang, and T. B. Simpson, Amplitude noise enhancement caused by nonlinear interaction of spontaneous emission field in laser diodes, Opt. Commun., vol. 120, pp. 282–286, 1995.CrossRefADSGoogle Scholar
  22. 22.
    T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, Perioddoubling route to chaos in semiconductor lasers subject to optical injection, Appl. Phys. Lett., vol. 64, pp. 3539–3541, 1994.CrossRefADSGoogle Scholar
  23. 23.
    R. Lang and K. Kobayashi, External optical feedback effects on semiconductor injection laser properties, IEEE J. Quantum Electron., vol. 16, pp. 347–355, 1980.CrossRefADSGoogle Scholar
  24. 24.
    J. Mork, B. Tromborg, and P. L. Christiansen, Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis, IEEE J. Quantum Electron., vol. 24, pp. 123–133, 1998.CrossRefADSGoogle Scholar
  25. 25.
    I. Fischer, G. H. M. Van Tartwijk, A. M. Levine, W. Elsasser, E. Gobel, and D. Lenstra, Fast pulsing and chaotic itinerancy with a drift in the coherence collapse of semiconductor lasers, Phys. Rev. Lett., vol. 76, pp. 220–223, 1996.CrossRefADSGoogle Scholar
  26. 26.
    Y. H. Kao, N. M. Wang, and H. M. Chen, Mode description of routes to chaos in external-cavity coupled semiconductor lasers, IEEE J. Quantum Electron., vol. 30, pp. 1732–1739, 1994.CrossRefADSGoogle Scholar
  27. 27.
    M. W. Pan, B. P. Shi, and G. R. Gray, Semiconductor laser dynamics subject to strong optical feedback, Opt. Lett., vol. 22, pp. 166–168, 1997.ADSCrossRefGoogle Scholar
  28. 28.
    T. Sano, Antimode dynamics and chaotic itinerancy in the coherent collapse of semiconductor-lasers with optical feedback, Phys. Rev. A, vol. 50, pp. 2719–2726, 1994.CrossRefADSGoogle Scholar
  29. 29.
    Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J. M. Liu, Experimental observation of complete chaos synchronization in semiconductor Lasers, Appl. Phys. Lett., vol. 80, pp. 4306–4308, 2002.CrossRefADSGoogle Scholar
  30. 30.
    S. Tang and J. M. Liu, Chaotic pulsing and quasiperiodic route to chaos in a semiconductor laser with delayed optoelectronic feedback, IEEE J. Quantum Electron., vol. 37, no. 3, pp. 329–336, 2001.CrossRefADSGoogle Scholar
  31. 31.
    F. Y. Lin and J. M. Liu, Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback, IEEE J. Quantum Electron., vol. 39, pp. 562–568, 2003.MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., vol. 64, no. 8, pp. 821–824, 1990.zbMATHMathSciNetCrossRefADSGoogle Scholar
  33. 33.
    L. Kocarev and U. Parlitz, General Approach for Chaotic Synchronization with Applications to Communication, Phys. Rev. Lett., vol. 74, pp. 5028–5031, 1995.CrossRefADSGoogle Scholar
  34. 34.
    L. M. Pecora, T. L. Carrol, G. A. Johnson, D. J. Mar, and J. F. Heagy, Fundamentals of synchronization in chaotic systems, concepts, and applications, Chaos, vol. 7, pp. 520–543, 1997.zbMATHMathSciNetCrossRefADSGoogle Scholar
  35. 35.
    S. Tang, H. F. Chen, S. K. Hwang, and J. M. Liu, Message encoding and decoding through chaos modulation in chaotic optical communications, IEEE Trans. Circuits Syst. I, vol. 49, pp. 163–169, 2002.CrossRefGoogle Scholar
  36. 36.
    S. Tang and J. M. Liu, Experimental verification of anticipated and retarded synchronization in chaotic semiconductor lasers, Phys. Rev. Lett., vol. 90, pp. 194101, 2003.CrossRefADSGoogle Scholar
  37. 37.
    Y. Liu, P. Davis, Y. Takiguchi, T. Aida, S. Saito, and J.M. Liu, Injection locking and synchronization of periodic and chaotic signals in semiconductor lasers, IEEE J. Quantum Electron., vol. 39, pp. 269–278, 2003.CrossRefADSGoogle Scholar
  38. 38.
    J. Ohtsubo, Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback, IEEE J. Quantum Electron., vol. 38, pp. 1141–1154, 2002.CrossRefADSGoogle Scholar
  39. 39.
    S. Tang and J. M. Liu, Chaos synchronization in semiconductor lasers with optoelectronic feedback, IEEE J. Quantum Electron., vol. 39, pp. 708–715, 2003.CrossRefADSGoogle Scholar
  40. 40.
    H. F. Chen and J. M. Liu, Complete phase and amplitude synchronization of broadband chaotic optical fields generated by semiconductor lasers subject to optical injection, Phys. Rev. E, vol. 71, pp. 046216-1–7, 2005.ADSGoogle Scholar
  41. 41.
    V. Ahlers, U. Parlitz, and W. Lauterborn, Hyperchaotic dynamics and synchronization of external-cavity semiconductor lasers, Phys. Rev. E, vol. 58, pp. 7208–7213, 1998.CrossRefADSGoogle Scholar
  42. 42.
    H. U. Voss, Anticipating chaotic synchronization, Phys. Rev. E, vol. 61, pp. 5115–5119, 2000.CrossRefADSGoogle Scholar
  43. 43.
    C. Masoller, Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback, Phys. Rev. Lett., vol. 86, pp. 2782–2785, 2001.CrossRefADSGoogle Scholar
  44. 44.
    H. U. Voss, Dynamic long-term anticipation of chaotic states, Phys. Rev. Lett., vol. 87, pp. 014102, 2001.CrossRefADSGoogle Scholar
  45. 45.
    A. Murakami and J. Ohtsubo, Synchronization of feedback-induced chaos in semiconductor lasers by optical injection, Phys. Rev. A, vol. 65, p. 033826, 2002.CrossRefADSGoogle Scholar
  46. 46.
    I. Fischer, Y. Liu, and P. Davis, Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication, Phys. Rev. A, vol. 62, 011801(R), 2000.CrossRefADSGoogle Scholar
  47. 47.
    U. Parlitz, L. O. Chua, L. Kocarev, K. S. Halle, and A. Shang, Transmission of digital signals by chaotic synchronization, Int. J. Bifurcation & Chaos, vol. 2, pp. 973–977, 1992.zbMATHCrossRefGoogle Scholar
  48. 48.
    J.-B. Cuenot, L. Larger, J.-P. Goedgebuer, and W. T. Rhodes, Chaos shift keying with an optoelectronic encryption system using chaos in wavelength, IEEE J. Quantum Electron., vol. 37, pp. 849–855, 2001.CrossRefADSGoogle Scholar
  49. 49.
    L. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U. Parlitz, Experimental demonstration of secure communications via chaotic synchronization, Int. J. Bifurcation & Chaos, vol. 2, pp. 709–713, 1992.zbMATHCrossRefGoogle Scholar
  50. 50.
    C. W. Wu and L. O. Chua, A simple way to synchronize chaotic systems with applications to secure communication systems, Int. J. Bifurcation & Chaos, vol. 3, pp. 1619–1627, 1993.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Jia-Ming Liu
    • 1
  • How-Foo Chen
    • 1
  • Shuo Tang
    • 1
  1. 1.Electrical Engineering DepartmentUniversity of California, Los AngelesLos Angeles

Personalised recommendations