Advertisement

An Overview of Digital Communications Techniques Using Chaos and Nonlinear Dynamics

  • Lawrence E. Larson
  • Lev S. Tsimring
  • Henry D. I. Abarbanel
  • Jia-Ming Liu
  • Kung Yao
  • Alexander R. Volkovskii
  • Nikolai F. Rulkov
  • Mikhail M. Sushchik
Part of the Institute for Nonlinear Science book series (INLS)

Summary

This chapter provides a brief overview of some of the digital communications techniques that have been proposed recently employing nonlinear dynamics, along with a comparison to traditional approaches. Both wireless modulation techniques as well as optical communications approaches are be presented.

Keywords

Chaotic System Encryption Scheme Channel Noise Chaotic Sequence Optical Communication System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Liu, H. F. Chen, and S. Tang, Synchronized Chaotic Optical Communications at High Bit Rates, IEEE J. Quantum Electron., vol. 38, pp. 1184–1196, 2002.CrossRefADSGoogle Scholar
  2. 2.
    M. Sushchik, L. S. Tsimring, and A. R. Volkovskii, Performance analysis of correlation-based communications systems using chaos, IEEE Trans. Circuits Sys.— I, vol. 47, no. 12, pp. 1684–1691, 2000.CrossRefGoogle Scholar
  3. 3.
    M. Sushchik, N. Rulkov, L. Larson, L. Tsimring, H. Abarbanel, K. Yao, and A. Volkovskii, Chaotic pulse position modulation: a robust method of communicating with chaos IEEE Comm. Lett., vol.4, pp. 128–130, 2000.CrossRefGoogle Scholar
  4. 4.
    B. Sklar Digital Communications, Prentice-Hall Englewood Cliffs, NJ, 1988.zbMATHGoogle Scholar
  5. 5.
    G. Mazzini, G. Setti, and R. Rovatti, Chaotic complex spreading sequences for asynchronous DS-CDMA-part I: System modeling and results (vol 44, p. 937, 1997), IEEE Trans. Circuit. Syst. I, vol. 45, no. 4, pp. 515–516, 1998.MathSciNetCrossRefGoogle Scholar
  6. 6.
    C.W. Wu and L.O. Chua, A simple way to synchronize chaotic systems with applications to secure communication systems, Int. J. Bifur. Chaos, vol. 3, no. 6, pp. 1619–1627, 1993.zbMATHCrossRefGoogle Scholar
  7. 7.
    M. Hasler, Synchronization of chaotic systems and transmission of information, Int. J. Bifur. Chaos, vol. 8, no. 4, pp. 647–659, 1998.zbMATHCrossRefGoogle Scholar
  8. 8.
    R. Rovatti, G. Setti, and G. Mazzini, Chaotic complex spreading sequences for asynchronous DS-CDMA-part II: Some theoretical performance bounds, IEEE Trans. Circuit. Syst. I, vol. 45, no. 4, pp. 496–506, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Kolumbán, M.P. Kennedy, and L.O. Chua, The role of synchronization in digital communications using chaos. ii. chaotic modulation and chaotic synchronization, IEEE Trans. Circuits Sys.— I, vol. 45, no. 11, pp. 1129–1140, 1998.zbMATHCrossRefGoogle Scholar
  10. 10.
    T. L. Carroll and L. M. Pecora, Synchronizing hyperchaotic volume-preserving maps and circuits, IEEE Trans. Circuit. Syst. I, vol. 45, no. 6, pp. 656–659, 1998.CrossRefGoogle Scholar
  11. 11.
    T. Yang and L. O. Chua, Chaotic digital code-division multiple access (CDMA) communication systems., Int. J. Bifur. Chaos, vol. 7, no. 12, pp. 2789–2805, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    H. Dedieu, M. P. Kennedy, and M. Hasler, Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits, IEEE Trans. Circ. and Systems-II, vol. 40, no. 10, pp. 634–642, 1993.CrossRefGoogle Scholar
  13. 13.
    U. Parlitz and S. Ergezinger, Robust communication based on chaotic spreading sequences, Phys. Lett. A, vol. 188, pp. 146–150, 1994.CrossRefADSGoogle Scholar
  14. 14.
    G. Kolumbán, B. Vizvári, W. Schwarz, and A. Abel, Differential chaos shift keying: a robust coding for chaos communication, in Proceedings of the NDES, Seville, pp. 87–92, 1996.Google Scholar
  15. 15.
    N. I. Chernov, Limit theorems and Markov approximations for chaotic dynamical systems, Prob. Theory and Related Fields, v.101, no.3, pp. 321–362, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. R. Volkovskii and N. F. Rulkov, Synchronous chaotic response of a nonlinear oscillator system as a principle for the detection of the information component of chaos, Sov. Tech. Phys. Lett., vol. 19, pp. 97–99, 1993.Google Scholar
  17. 17.
    M. Z. Win and R. A. Scholtz, Impulse radio: how it works. IEEE Communications Letters, vol.2(2), pp.36–38, 1998.CrossRefGoogle Scholar
  18. 18.
    M. Hasler, Synchronization of chaotic systems and transmission of information. Int. J. Bifur. Chaos, 8(4), pp.647–659, 1998.zbMATHCrossRefGoogle Scholar
  19. 19.
    T. Stojanovski, L. Kocarev, and R. Harris, Applications of symbolic dynamics in chaos synchronization. IEEE Trans. Circuits Syst. I, vol. 44(10), pp. 1014–1017, 1997.CrossRefGoogle Scholar
  20. 20.
    H. Torikai, T. Saito, and W. Schwarz, Synchronization via multiplex pulse-train. IEEE Trans. Circuits Syst. I, vol.46, pp. 1072–1085, 1999.CrossRefGoogle Scholar
  21. 21.
    Special issue on applications of chaos in modern communication systems, IEEE Trans. Circuits Syst. I, vol. 48, 2001.Google Scholar
  22. 22.
    J. M. Liu, H. F. Chen, and S. Tang, Optical communication systems based on chaos in semiconductor lasers, IEEE Trans. Circuits Syst. I, vol. 48, pp. 1475–1483, 2001.CrossRefGoogle Scholar
  23. 23.
    H. F. Chen and J.M. Liu, Open-loop chaotic synchronization of injection-locked semiconductor lasers with gigahertz range modulation, IEEE J. Quantum Electron., vol. 36, pp. 27–34 2000.CrossRefADSGoogle Scholar
  24. 24.
    Y. Liu, H. F. Chen, J. M. Liu, P. Davis, and T. Aida, Communication using synchronization of optical-feedback-induced chaos in semiconductor lasers, IEEE Trans. Circuits Syst. I, vol. 48, pp. 1484–1489, 2001.CrossRefGoogle Scholar
  25. 25.
    A. Sanchez-Diaz, C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, Encoded Gbit/s digital communications with synchronized chaotic semiconductor lasers, IEEE J. Quantum Electron., vol. 35, pp. 292–297, 1999.CrossRefADSGoogle Scholar
  26. 26.
    J. Paul, S. Sivaprakasam, P. S. Spencer, R. Rees, and K. A. Shore, GHz bandwidth message transmission using chaotic diode lasers, Electron. Lett., vol. 38, pp. 28–29, 2002.CrossRefGoogle Scholar
  27. 27.
    S. Sivaprakasam, E. M. Shahverdiev, and K. A. Shore, Experimental verification of synchronization condition for chaotic external cavity diode laser, Phys. Rev. E, vol. 62, pp. 7505–7507, 2000.CrossRefADSGoogle Scholar
  28. 28.
    F. Rogister, A. Locquet, D. Pieroux, M. Sciamanna, O. Deparis, P. Megret, and M. Blondel, Secure communication scheme using chaotic laser diodes subject to incoherent optical feedback and incoherent optical injection, Opt. Lett., vol. 26, pp. 1486–1488, 2001.ADSCrossRefGoogle Scholar
  29. 29.
    S. Tang and J.M. Liu, Message encoding-decoding at 2.5 Gbits/s through synchronization of chaotic pulsing semiconductor lasers, Opt. Lett., vol. 26, pp. 1843–1845, 2001.ADSCrossRefGoogle Scholar
  30. 30.
    S. Tang, H.F. Chen, S.K. Hwang, and J.M. Liu, Message encoding and decoding through chaos modulation in chaotic optical communications, IEEE Trans. Circuits Syst. I, vol. 49, pp. 163–169, 2002.CrossRefGoogle Scholar
  31. 31.
    H. D. I. Abarbanel, M. B. Kennel, L. Illing, S. Tang, H. F. Chen, and J. M. Liu, Synchronization and communication using semiconductor lasers with optoelectronic feedback, IEEE J. Quantum Electron., vol. 37, pp. 1301–1311, 2001.CrossRefADSGoogle Scholar
  32. 32.
    L. Larger, J.P. Goedgebuer, and F. Delorme, Optical encryption system using hyperchaos generated by an optoelectronic wavelength oscillator, Phys. Rev. E, vol. 57, pp. 6618–6624, 1998.CrossRefADSGoogle Scholar
  33. 33.
    J.B. Cuenot, L. Larger, J.P. Goedgebuer, and W.T. Rhodes, Chaos shift keying with an optoelectronic encryption system using chaos in wavelength, IEEE J. Quantum Electron., vol. 37, pp. 849–855, 2001.CrossRefADSGoogle Scholar
  34. 34.
    Y. Liu, P. Davis, and T. Aida, Synchronized chaotic mode hopping in DBR lasers with delayed optoelectric feedback, IEEE J. Quantum Electron., vol. 37, pp. 337–352, 2001.CrossRefADSGoogle Scholar
  35. 35.
    G. D. Van Wiggeren and R. Roy, Chaotic communication using time delayed optical systems, Int. J. Bifur. Chaos, vol. 9, pp. 2129–2156, 1999.CrossRefGoogle Scholar
  36. 36.
    C. T. Lewis, H.D.I. Abarbanel, M.B. Kennel, M. Buhl, and L. Illing, Synchronization of chaotic oscillations in doped fiber ring lasers, Phys. Rev. E, vol. 63, pp. 1–15, 2000.CrossRefGoogle Scholar
  37. 37.
    L. G. Luo, P.L. Chu, and H.F. Liu, 1-GHz optical communication system using chaos in erbium-doped fiber lasers, IEEE Photon. Technol. Lett., vol. 12, pp. 269–271, 2000.CrossRefADSGoogle Scholar
  38. 38.
    U. Parlitz, L.O. Chua, L. Kocarev, K.S. Halle, and A. Shang, Transmission of digital signals by chaotic synchronization, Int. J. Bifur. Chaos, vol. 2, pp. 973–977, 1992.zbMATHCrossRefGoogle Scholar
  39. 39.
    L. Kocarev, K.S. Halle, K. Eckert, L.O. Chua, and U. Parlitz, Experimental demonstration of secure communications via chaotic synchronization, Int. J. Bifur. Chaos, vol. 2, pp. 709–713, 1992.zbMATHCrossRefGoogle Scholar
  40. 40.
    K. S. Halle, C.W. Wu, M. Itoh, and L.O. Chua, Spread spectrum communication through modulation of chaos, Int. J. Bifur. Chaos, vol. 3, pp. 469–477, 1993.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Lawrence E. Larson
    • 1
  • Lev S. Tsimring
    • 2
  • Henry D. I. Abarbanel
    • 3
  • Jia-Ming Liu
    • 4
  • Kung Yao
    • 4
  • Alexander R. Volkovskii
    • 2
  • Nikolai F. Rulkov
    • 2
  • Mikhail M. Sushchik
    • 5
  1. 1.Dept. of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego, La Jolla
  2. 2.Institute for Nonlinear ScienceUniversity of CaliforniaSan Diego, La Jolla
  3. 3.Department of Physics and Marine Physical Laboratory (Scripps Institution of Oceanography)University of CaliforniaSan Diego, La Jolla
  4. 4.Electrical Engineering DepartmentUniversity of California, Los AngelesLos Angeles
  5. 5.Therma-Wave Inc.Fremont

Personalised recommendations