Skip to main content

Placing the Hyperbolic Geometry of Bolyai and Lobachevsky Centrally in Special Relativity Theory: An Idea Whose Time has Returned

  • Chapter

Part of the book series: Mathematics and Its Applications ((MAIA,volume 581))

Abstract

We show that Einstein addition of relativistically admissible velocities is regulated by the hyperbolic geometry of Bolyai and Lobachevski just as Newtonian velocity addition is regulated by Euclidean geometry. Hence, the time to study special relativity in terms of its underlying hyperbolic geometry has returned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. G. A. Jn. Baker. Einstein numbers. Amer. Math. Monthly, 61(1):39–41, 1954.

    Article  MathSciNet  Google Scholar 

  2. J. F. Barrett. Special relativity and hyperbolic geometry. Univ. Sunderland, Sunderland, UK, 1998. Physical Interpretations of Relativity Theory. Proceedings, London, UK, 11–14 Sept. 1998.

    Google Scholar 

  3. N. A. Černikov. Connection between the theory of relativity and Lobačevskii geometry. In Gravitation and Theory of Relativity, No. 2 (Russian), pages 9–22. Izdat. Kazan. Univ., Kazan, 1965.

    Google Scholar 

  4. Albert Einstein. Zur Elektrodynamik Bewegter Körper [on the electrodynamics of moving bodies]. Ann. Physik (Leipzzg), 17:891–921, 1905.

    MATH  Google Scholar 

  5. Tomás Feder. Strong near subgroups and left gyrogroups. J. Algebra, 259(1):177–190, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Fock. The theory of space, time and gravitation. The Macmillan Co., New York, 1964. Second revised edition. Translated from the Russian by N. Kemmer. A Pergamon Press Book.

    Google Scholar 

  7. Tuval Foguel and Abraham A. Ungar. Involutory decomposition of groups into twisted subgroups and subgroups. J. Group Theory, 3(1):27–46, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  8. Garry Helzer. Special relativity with acceleration. Amer. Math. Monthly, 107(3):219–237, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  9. Azniv K. Kasparian and Abraham A. Ungar. Lie gyrovector spaces. J. Geom. Symm. Phys. preprint.

    Google Scholar 

  10. Elemér Kiss. Mathematical gems from the Bolyai chests. Akadémiai Kiadó, Budapest, 1999. János Bolyai’s discoveries in number theory and algebra as recently deciphered from his manuscripts, Translated by Anikó Csirmaz and Gábor Oláh.

    MATH  Google Scholar 

  11. L. Marder. On uniform acceleration in special and general relativity. Proc. Cambridge Philos. Soc., 53:194–198, 1957.

    Article  MATH  MathSciNet  Google Scholar 

  12. Arthur I. Miller. Albert Einstein’s special theory of relativity. Springer-Verlag, New York, 1998. Emergence (1905) and early interpretation (1905–11), Includes a translation by the author of Einstein’s “On the electrodynamics of moving bodies”, Reprint of the 1981 edition.

    Google Scholar 

  13. B. A. Rosenfeld. A history of non-Euclidean geometry. Springer-Verlag, New York, 1988. Evolution of the concept of a geometric space, Translated from the Russian by Abe Shenitzer.

    MATH  Google Scholar 

  14. Roman U. Sexl and Helmuth K. Urbantke. Relativity, groups, particles. Springer-Verlag, Vienna, 2001. Special relativity and relativistic symmetry in field and particle physics, Revised and translated from the third German (1992) edition by Urbantke.

    MATH  Google Scholar 

  15. L. Silberstein. The Theory of Relativity. MacMillan, London, 1914.

    MATH  Google Scholar 

  16. A. Sommerfeld. Über die Zusammensetzung der Geschwindigkeiten in der Relativtheorie. Physikalische Zeitschrift, 10:826–829, 1909.

    MATH  Google Scholar 

  17. A. Sommerfeld. Zur Relativität (i): Vierdimensioale Vektoralgebra. Annelen der Physik, 32:749–776, 1910.

    MATH  Google Scholar 

  18. J. L. Synge. Relativity: the special theory. North-Holland Publishing Co., Amsterdam, 1956.

    MATH  Google Scholar 

  19. Abraham Ungar. The relativistic centre of momentum. In Ivailo M. Mladenov and Gregory L. Naber (eds.): Geometry, integrability and quantization (Varna, 2002), pages 316–325. Coral Press Sci. Publ., Sofia, 2003.

    Google Scholar 

  20. Abraham A. Ungar. Thomas rotation and the parametrization of the Lorentz transformation group. Found. Phys. Lett., 1(1):57–89, 1988.

    Article  MathSciNet  Google Scholar 

  21. Abraham A. Ungar. Axiomatic approach to the nonassociative group of relativistic velocities. Found. Phys. Lett., 2(2):199–203, 1989.

    Article  MathSciNet  Google Scholar 

  22. Abraham A. Ungar. The relativistic noncommutative nonassociative group of velocities and the Thomas rotation. Resultate Math., 16(1–2):168–179, 1989. The term “K-loop” is coined here.

    MATH  MathSciNet  Google Scholar 

  23. Abraham A. Ungar. Weakly associative groups. Resultate Math., 17(1–2):149–168, 1990.

    MATH  MathSciNet  Google Scholar 

  24. Abraham A. Ungar. Thomas precession and its associated grouplike structure. Amer. J. Phys., 59(9):824–834, 1991.

    Article  MathSciNet  Google Scholar 

  25. Abraham A. Ungar. Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics. Found. Phys., 27(6):881–951, 1997.

    MathSciNet  Google Scholar 

  26. Abraham A. Ungar. The hyperbolic Pythagorean theorem in the Poincaré disc model of hyperbolic geometry. Amer. Math. Monthly, 106(8):759–763, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  27. Abraham A. Ungar. The bifurcation approach to hyperbolic geometry. Found. Phys., 30(8):1253–1281, 2000.

    Article  MathSciNet  Google Scholar 

  28. Abraham A. Ungar. Hyperbolic trigonometry in the Einstein relativistic velocity model of hyperbolic geometry. Comput. Math. Appl., 40(2–3):313–332, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  29. Abraham A. Ungar. Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession: The Theory of Gyrogroups and Gyrovector Spaces. Kluwer Acad. Publ., Dordrecht, Boston, London, 2001.

    MATH  Google Scholar 

  30. Abraham A. Ungar. On the unification of hyperbolic and Euclidean geometry. 2001. preprint.

    Google Scholar 

  31. Abraham A. Ungar. On the appeal to a pre-established harmony between pure mathematics and relativity physics. Found. Phys. Lett., 16(1):1–23, 2003.

    Article  MathSciNet  Google Scholar 

  32. A. A. Ungar, “The Einstein velocity addition, the relativistic mass, and the hyperbolic geometry of Bolyai and Lobachevski,” 2003. preprint.

    Google Scholar 

  33. Helmuth K. Urbantke. Physical holonomy, Thomas precession, and Clifford algebra. Amer. J. Phys., 58(8):747–750, 1990.

    Article  MathSciNet  Google Scholar 

  34. Vladimir Varičak. Beiträge zur nichteuklidischen geometrie [contributions to non-euclidean geometry]. Jber. dtsch. Mat. Ver., 17:70–83, 1908.

    MATH  Google Scholar 

  35. Vladimir Varičak. Anwendung der Lobatschefskjschen Geometrie in der Relativtheorie. Physikalische Zeitschrift, 11:93–96, 1910.

    Google Scholar 

  36. Scott Walter. Minkowski, mathematicians, and the mathematical theory of relativity. In The expanding worlds of general relativity (Berlin, 1995), pages 45–86. Birkhäuser Boston, Boston, MA, 1999.

    Google Scholar 

  37. Scott Walter. The non-Euclidean style of Minkowskian relativity. In The symbolic universe (Editor — Jeremy J. Gray), pages 91–127. Oxford Univ. Press, New York, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Ungar, A.A. (2006). Placing the Hyperbolic Geometry of Bolyai and Lobachevsky Centrally in Special Relativity Theory: An Idea Whose Time has Returned. In: Prékopa, A., Molnár, E. (eds) Non-Euclidean Geometries. Mathematics and Its Applications, vol 581. Springer, Boston, MA. https://doi.org/10.1007/0-387-29555-0_24

Download citation

Publish with us

Policies and ethics