Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 258))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinberg D. Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 2002;8:1211–17.

    PubMed  CAS  Google Scholar 

  2. Libby P. Inflammation in atherosclerosis. Nature 2002;420:868–74.

    PubMed  CAS  Google Scholar 

  3. Napoli C, D’Armiento FP, Mancini FP et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of Low Density Lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 1997; 100:2680–90.

    PubMed  CAS  Google Scholar 

  4. Napoli C, Glass CK, Witztum JL et al. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet 1999;354:1234–41.

    PubMed  CAS  Google Scholar 

  5. Napoli C, Witztum JL, Calara F et al. Maternal hypercholesterolemia enhances atherogenesis in normocholesterolemic rabbits, which is inhibited by antioxidant or lipid-lowering intervention during pregnancy: an experimental model of atherogenic mechanisms in human fetuses. Circ Res 2000;87:946–52.

    PubMed  CAS  Google Scholar 

  6. Napoli C, de Nigris F, Welch JS et al. Maternal hypercholesterolemia during pregnancy promotes early atherogenesis in LDL receptor-deficient mice and alters aortic gene expression determined by microarray. Circulation 2002; 105:1360–7.

    PubMed  CAS  Google Scholar 

  7. Schuh J, Fairclough GF, Jr., Haschemeyer RH. Oxygen-mediated heterogeneity of apo-low-density lipoprotein. Proc Natl Acad Sci U S A 1978;75:3173–7.

    PubMed  CAS  Google Scholar 

  8. Steinbrecher UP, Parthasarathy S, Leake DS et al. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A 1984;81:3883–7.

    PubMed  CAS  Google Scholar 

  9. Esterbauer H, Jurgens G, Quehenberger O et al. Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res 1987;28:495–509.

    PubMed  CAS  Google Scholar 

  10. Reaven P, Parthasarathy S, Grasse BJ et al. Effects of oleate-rich and linoleate-rich diets on the susceptibility of low density lipoprotein to oxidative modification in mildly hypercholesterolemic subjects. J Clin Invest 1993;91:668–76.

    PubMed  CAS  Google Scholar 

  11. Steinberg D. Oxidized low density lipoprotein—an extreme example of lipoprotein heterogeneity. Isr J Med Sci 1996;32:469–72.

    PubMed  CAS  Google Scholar 

  12. Hörkkö S, Bird DA, Miller E et al. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 1999;103:117–28.

    PubMed  Google Scholar 

  13. Tsimikas S, Witztum JL. Measuring circulating oxidized low-density lipoprotein to evaluate coronary risk. Circulation 2001;103:1930–2.

    PubMed  CAS  Google Scholar 

  14. Tsimikas S, Bergmark C, Beyer RW et al. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J Am Coll Cardiol 2003;41:360–70.

    PubMed  CAS  Google Scholar 

  15. Tsimikas S, Lau HK, Han KR et al. Percutaneous coronary intervention results in acute increases in oxidized phospholipids and Lp(a): Acute and long-term immunological responses to oxidized LDL. Circulation 2004;109:3164–70.

    PubMed  CAS  Google Scholar 

  16. Esterbauer H, Gebicki J, Puhl H et al. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 1992; 13:341–90.

    PubMed  CAS  Google Scholar 

  17. Berliner JA, Territo MC, Sevanian A et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 1990;85:1260–6.

    PubMed  CAS  Google Scholar 

  18. Berliner JA, Subbanagounder G, Leitinger N et al. Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc Med 2001; 11:142–7.

    PubMed  CAS  Google Scholar 

  19. Navab M, Ananthramaiah GM, Reddy ST et al. Thematic review series: The pathogenesis of atherosclerosis: The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res 2004;45:993–1007.

    PubMed  CAS  Google Scholar 

  20. Van Berkel TJ, De Rijke YB, Kruijt JK. Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells. J Biol Chem 1991;266:2282–9.

    PubMed  Google Scholar 

  21. Calara F, Dimayuga P, Niemann A et al. An animal model to study local oxidation of LDL and its biological effects in the arterial wall. Arterioscler Thromb Vasc Biol 1998;18:884–93.

    PubMed  CAS  Google Scholar 

  22. Steinbrecher UP, Witztum JL, Parthasarathy S et al. Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Correlation with changes in receptor-mediated catabolism. Arteriosclerosis 1987;7:135–43.

    PubMed  CAS  Google Scholar 

  23. Liao F, Andalibi A, Qiao JH et al. Genetic evidence for a common pathway mediating oxidative stress, inflammatory gene induction, and aortic fatty streak formation in mice. J Clin Invest 1994;94:877–84.

    PubMed  CAS  Google Scholar 

  24. Sparrow CP, Parthasarathy S, Steinberg D. Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res 1988;29:745–53.

    PubMed  CAS  Google Scholar 

  25. Benz DJ, Mol M, Ezaki M et al. Enhanced levels of lipoperoxides in low density lipoprotein incubated with murine fibroblast expressing high levels of human 15-lipoxygenase. J Biol Chem 1995;270:5191–7.

    PubMed  CAS  Google Scholar 

  26. Parthasarathy S, Wieland E, Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci U S A 1989;86:1046–50.

    PubMed  CAS  Google Scholar 

  27. Cathcart MK, McNally AK, Chisolm GM. Lipoxygenase-mediated transformation of human low density lipoprotein to an oxidized and cytotoxic complex. J Lipid Res 1991;32:63–70.

    PubMed  CAS  Google Scholar 

  28. Rankin SM, Parthasarathy S, Steinberg D. Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res 1991;32:449–56.

    PubMed  CAS  Google Scholar 

  29. Savenkova ML, Mueller DM, Heinecke JW. Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid peroxidation in low density lipoprotein. J Biol Chem 1994;269:20394–400.

    PubMed  CAS  Google Scholar 

  30. McNally AK, Chisolm GM, III, Morel DW et al. Activated human monocytes oxidize low-density lipoprotein by a lipoxygenase-dependent pathway. J Immunol 1990;145:254–9.

    PubMed  CAS  Google Scholar 

  31. Wieland E, Parthasarathy S, Steinberg D. Peroxidase-dependent metal-independent oxidation of low density lipoprotein in vitro: a model for in vivo oxidation? Proc Natl Acad Sci U S A 1993;90:5929–33.

    PubMed  CAS  Google Scholar 

  32. Babior BM. Phagocytes and oxidative stress. Am J Med 2000; 109:33–44.

    PubMed  CAS  Google Scholar 

  33. Cyrus T, Witztum JL, Rader DJ et al. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 1999; 103:1597–604.

    PubMed  CAS  Google Scholar 

  34. Cyrus T, Praticó D, Zhao L et al. Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein E-deficient mice. Circulation 2001;103:2277–82.

    PubMed  CAS  Google Scholar 

  35. Steinberg D. At last, direct evidence that lipoxygenases play a role in atherogenesis. J Clin Invest 1999;103:1487–8.

    PubMed  CAS  Google Scholar 

  36. Parthasarathy S, Santanam N, Ramachandran S et al. Oxidants and antioxidants in atherogenesis. An appraisal [In Process Citation]. J Lipid Res 1999;40:2143–57.

    PubMed  CAS  Google Scholar 

  37. Ylä-Herttuala S, Rosenfeld M, Sigal E et al. Gene expression in macrophage-rich human atherosclerotic lesions. 15-lipoxygenase and acteyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest 1991;87:1146–52.

    PubMed  Google Scholar 

  38. Folcik VA, Nivar-Aristy RA, Krajewski LP et al. Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques. J Clin Invest 1995;96:504–10.

    PubMed  CAS  Google Scholar 

  39. Kuhn H, Belkner J, Zaiss S et al. Involvement of 15-lipoxygenase in early stages of atherogenesis. J Exp Med 1994; 179:1903–11.

    PubMed  CAS  Google Scholar 

  40. Ezaki M, Witztum JL, Steinberg D. Lipoperoxides in LDL incubated with fibroblasts that overexpress 15-lipoxygenase. J Lipid Res 1995;36:1996–2004.

    PubMed  CAS  Google Scholar 

  41. Sendobry SM, Cornicelli JA, Welch K et al. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Br J Pharmacol 1997; 120:1199–206.

    PubMed  CAS  Google Scholar 

  42. Bocan TM, Rosebury WS, Mueller SB et al. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis 1998; 136:203–16.

    PubMed  CAS  Google Scholar 

  43. George J, Afek A, Shaish A et al. 12/15-Lipoxygenase gene disruption attenuates atherogenesis in LDL receptor-deficient mice. Circulation 2001; 104:1646–50.

    PubMed  CAS  Google Scholar 

  44. Harats D, Shaish A, George J et al. Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 2000;20:2100–5.

    PubMed  CAS  Google Scholar 

  45. Reilly KB, Srinivasan S, Hatley ME et al. 12/15-Lipoxygenase activity mediates inflammatory monocyte/endothelial interactions and atherosclerosis in vivo. J Biol Chem 2004;279:9440–50.

    PubMed  CAS  Google Scholar 

  46. Shih DM, Xia YR, Wang XP et al. Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J Biol Chem 2000;275:17527–35.

    PubMed  CAS  Google Scholar 

  47. Shen J, Herderick E, Cornhill JF et al. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J Clin Invest 1996;98:2201–8.

    PubMed  CAS  Google Scholar 

  48. Funk CD, Cyrus T. 12/15-Lipoxygenase, oxidative modification of LDL and atherogenesis. Trends in Cardiovascular Medicine 2001;11:116–24.

    PubMed  CAS  Google Scholar 

  49. Detmers PA, Hernandez M, Mudgett J et al. Deficiency in inducible nitric oxide synthase results in reduced atherosclerosis in apolipoprotein E-deficient mice. J Immunol 2000;165:3430–5.

    PubMed  CAS  Google Scholar 

  50. Ihrig M, Dangler CA, Fox JG. Mice lacking inducible nitric oxide synthase develop spontaneous hypercholesterolaemia and aortic atheromas. Atherosclerosis 2001;156:103–7.

    PubMed  CAS  Google Scholar 

  51. Niu XL, Yang X, Hoshiai K et al. Inducible nitric oxide synthase deficiency does not affect the susceptibility of mice to atherosclerosis but increases collagen content in lesions. Circulation 2001;103:1115–20.

    PubMed  CAS  Google Scholar 

  52. Shi W, Wang X, Shih DM et al. Paradoxical reduction of fatty streak formation in mice lacking endothelial nitric oxide synthase. Circulation 2002; 105:2078–82.

    PubMed  CAS  Google Scholar 

  53. Heinecke JW. Is lipid peroxidation relevant to atherogenesis? J Clin Invest 1999;104:135–6.

    PubMed  CAS  Google Scholar 

  54. Gaut JP, Byun J, Tran HD et al. Myeloperoxidase produces nitrating oxidants in vivo. J Clin Invest 2002;109:1311–9.

    PubMed  CAS  Google Scholar 

  55. Daugherty A, Dunn JL, Rateri DL et al. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 1994;94:437–44.

    PubMed  CAS  Google Scholar 

  56. Brennan ML, Penn MS, Van Lente F et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 2003;349:1595–604.

    PubMed  CAS  Google Scholar 

  57. Brennan ML, Anderson MM, Shih DM et al. Increased atherosclerosis in myeloperoxidase-deficient mice. J Clin Invest 2001;107:419–30.

    PubMed  CAS  Google Scholar 

  58. Mehrabian M, Allayee H, Wong J et al. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ Res 2002;91:120–6.

    PubMed  CAS  Google Scholar 

  59. Mehrabian M, Allayee H. 5-lipoxygenase and atherosclerosis. Curr Opin Lipidol 2003;14:447–57.

    PubMed  CAS  Google Scholar 

  60. Goldstein JL, Kita T, Brown MS. Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia. N Engl J Med 1983;309:288–96.

    PubMed  CAS  Google Scholar 

  61. Goldstein JL, Hobbs HH, Brown MS. The metabolic and molecular bases of inherited disease. New York, NY: Mc-Graw Hill, 1995.

    Google Scholar 

  62. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science 1986;232:34–47.

    PubMed  CAS  Google Scholar 

  63. Simons LA, Reichl D, Myant NB et al. The metabolism of the apoprotein of plasma low density lipoprotein in familial hyperbetalipoproteinaemia in the homozygous form. Atherosclerosis 1975;21:283–98.

    PubMed  CAS  Google Scholar 

  64. Goldstein JL, Ho YK, Basu SK et al. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 1979;76:333–7.

    PubMed  CAS  Google Scholar 

  65. Kodama T, Freeman M, Rohrer L et al. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 1990;343:531–5.

    PubMed  CAS  Google Scholar 

  66. Fogelman AM, Shechter I, Seager J et al. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci U S A 1980;77:2214–8.

    PubMed  CAS  Google Scholar 

  67. Mahley RW, Innerarity TL, Weisgraber KB et al. Altered metabolism (in vivo and in vitro) of plasma lipoproteins after selective chemical modification of lysine residues of the apoproteins. J Clin Invest 1979;64:743–50.

    PubMed  CAS  Google Scholar 

  68. Palinski W, Ylä-Herttuala S, Rosenfeld ME et al. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 1990;10:325–35.

    PubMed  CAS  Google Scholar 

  69. Rosenfeld ME, Palinski W, Ylä-Herttuala S et al. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis 1990;10:336–49.

    PubMed  CAS  Google Scholar 

  70. Tsimikas S, Shortal BP, Witztum JL et al. In vivo uptake of radiolabeled MDA2, an oxidation-specific monoclonal antibody, provides an accurate measure of atherosclerotic lesions rich in oxidized LDL and is highly sensitive to their regression. Arterioscler Thromb Vasc Biol 2000;20:689–97.

    PubMed  CAS  Google Scholar 

  71. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A 1981;78:6499–503.

    PubMed  CAS  Google Scholar 

  72. Henriksen T, Mahoney EM, Steinberg D. Interactions of plasma lipoproteins with endothelial cells. Ann N Y Acad Sci 1982;401:102–16.

    PubMed  CAS  Google Scholar 

  73. Cathcart MK, Morel DW, Chisolm GM, III. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J Leukoc Biol 1985;38:341–50.

    PubMed  CAS  Google Scholar 

  74. Parthasarathy S, Printz DJ, Boyd D et al. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis 1986;6:505–10.

    PubMed  CAS  Google Scholar 

  75. Morel DW, Hessler JR, Chisolm GM. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 1983;24:1070–6.

    PubMed  CAS  Google Scholar 

  76. Pitas RE, Innerarity TL, Mahley RW. Cell surface receptor binding of phospholipid protein complexes containing different ratios of receptor-active and-inactive E apoprotein. J Biol Chem 1980;255:5454–60.

    PubMed  CAS  Google Scholar 

  77. Goldstein JL, Ho YK, Brown MS et al. Cholesteryl ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hypercholesterolemic canine beta-very low density lipoproteins. J Biol Chem 1980;255:1839–48.

    PubMed  CAS  Google Scholar 

  78. Chappell DA, Inoue I, Fry GL et al. The carboxy-terminal domain of lipoprotein lipase induces cellular catabolism of normal very low density lipoproteins via the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. Ann N Y Acad Sci 1994;737:434–8.

    PubMed  CAS  Google Scholar 

  79. Khoo JC, Miller E, McLoughlin P et al. Enhanced macrophage uptake of low density lipoprotein after self-aggregation. Arteriosclerosis 1988;8:348–58.

    PubMed  CAS  Google Scholar 

  80. Nievelstein PF, Fogelman AM, Mottino G et al. Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low density lipoprotein. A deep-etch and immunolocalization study of ultrarapidly frozen tissue. Arterioscler Thromb 1991;11:1795–805.

    PubMed  CAS  Google Scholar 

  81. Khoo JC, Miller E, Pio F et al. Monoclonal antibodies against LDL further enhance macrophage uptake of LDL aggregates. Arterioscler Thromb 1992; 12:1258–66.

    PubMed  CAS  Google Scholar 

  82. Lopes-Virella MF, Griffith RL, Shunk KA et al. Enhanced uptake and impaired intracellular metabolism of low density lipoprotein complexed with anti-low density lipoprotein antibodies. Arterioscler Thromb 1991;11:1356–67.

    PubMed  CAS  Google Scholar 

  83. Tsimikas S, Witztum JL, Miller ER et al. Circulating oxidized LDL markers reflect the clinical benefit noted with atorvastatin in the myocardial ischemia reduction with aggressive lipid lowering therapy (MIRACL) Trial. Circulation 2003;108:IV–479.

    Google Scholar 

  84. Camejo G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in atherogenesis. Adv Lipid Res 1982; 19:1–53.

    PubMed  CAS  Google Scholar 

  85. Kaplan M, Aviram M. Retention of oxidized LDL by extracellular matrix proteoglycans leads to its uptake by macrophages: an alternative approach to study lipoproteins cellular uptake. Arterioscler Thromb Vasc Biol 2001;21:386–93.

    PubMed  CAS  Google Scholar 

  86. Hurt E, Camejo G. Effect of arterial proteoglycans on the interaction of LDL with human monocyte-derived macrophages. Atherosclerosis 1987;67:115–26.

    PubMed  CAS  Google Scholar 

  87. Marathe S, Choi Y, Leventhal AR et al. Sphingomyelinase converts lipoproteins from apolipoprotein E knockout mice into potent inducers of macrophage foam cell formation. Arterioscler Thromb Vasc Biol 2000;20:2607–13.

    PubMed  CAS  Google Scholar 

  88. Torzewski M, Klouche M, Hock J et al. Immunohistochemical demonstration of enzymatically modified human LDL and its colocalization with the terminal complement complex in the early atherosclerotic lesion. Arterioscler Thromb Vasc Biol 1998;18:369–78.

    PubMed  CAS  Google Scholar 

  89. Kapinsky M, Torzewski M, Buchler C et al. Enzymatically degraded LDL preferentially binds to CD14high CD16+ monocytes and induces foam cell formation mediated only in part by the class B scavenger-receptor CD36. Arterioscler Thromb Vasc Biol 2001;21:1004–10.

    PubMed  CAS  Google Scholar 

  90. Han SR, Momeni A, Strach K et al. Enzymatically modified LDL induces cathepsin H in human monocytes: potential relevance in early atherogenesis. Arterioscler Thromb Vasc Biol 2003;23:661–7.

    PubMed  CAS  Google Scholar 

  91. Bhakdi S, Torzewski M, Paprotka K et al. Possible protective role for C-reactive protein in atherogenesis: complement activation by modified lipoproteins halts before detrimental terminal sequence. Circulation 2004; 109:1870–6.

    PubMed  CAS  Google Scholar 

  92. Boullier A, Gillotte KL, Hörkkö S et al. The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein [In Process Citation]. J Biol Chem 2000;275:9163–9.

    PubMed  CAS  Google Scholar 

  93. Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 2001;108:785–91.

    PubMed  CAS  Google Scholar 

  94. Linton MF, Fazio S. Class A Scavenger receptors, macrophages, and atherosclerosis. Curr Opin Lipidol 2001;12:489–95.

    PubMed  CAS  Google Scholar 

  95. Krieger M, Acton S, Ashkenas J et al. Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors. J Biol Chem 1993;268:4569–72.

    PubMed  CAS  Google Scholar 

  96. Binder CJ, Chang MK, Shaw PX et al. Innate and acquired immunity in atherogenesis. Nat Med 2002;8:1218–26.

    PubMed  CAS  Google Scholar 

  97. Binder CJ, Horkko S, Dewan A et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 2003;9:736–43.

    PubMed  CAS  Google Scholar 

  98. Fadok VA, Savill JS, Haslett C et al. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol 1992;149:4029–35.

    PubMed  CAS  Google Scholar 

  99. Fadok VA, Voelker DR, Campbell PA et al. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 1992;148:2207–16.

    PubMed  CAS  Google Scholar 

  100. Savill J, Fadok V, Henson P et al. Phagocyte recognition of cells undergoing apoptosis. Immunol Today 1993; 14:131–6.

    PubMed  CAS  Google Scholar 

  101. Chang MK, Bergmark C, Laurila A et al. Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proc Natl Acad Sci U S A 1999;96:6353–8.

    PubMed  CAS  Google Scholar 

  102. Suzuki H, Kurihara Y, Takeya M et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 1997;386:292–6.

    PubMed  CAS  Google Scholar 

  103. Krieger M, Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 1994;63:601–37.

    PubMed  CAS  Google Scholar 

  104. Acton S, Rigotti A, Landschulz KT et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996;271:518–20.

    PubMed  CAS  Google Scholar 

  105. Ji Y, Wang N, Ramakrishnan R et al. Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile. J Biol Chem 1999;274:33398–402.

    PubMed  CAS  Google Scholar 

  106. Kozarsky KF, Donahee MH, Rigotti A et al. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 1997;387:414–7.

    PubMed  CAS  Google Scholar 

  107. Nozaki S, Kashiwagi H, Yamashita S et al. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J Clin Invest 1995;96:1859–65.

    PubMed  CAS  Google Scholar 

  108. Febbraio M, Podrez EA, Smith JD et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000;105:1049–56.

    PubMed  CAS  Google Scholar 

  109. Sakaguchi H, Takeya M, Suzuki H et al. Role of macrophage scavenger receptors in diet-induced atherosclerosis in mice. Lab Invest 1998;78:423–34.

    PubMed  CAS  Google Scholar 

  110. Braun A, Trigatti BL, Post MJ et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res 2002;90:270–6.

    PubMed  CAS  Google Scholar 

  111. Huszar D, Varban ML, Rinninger F et al. Increased LDL cholesterol and atherosclerosis in LDL receptor-deficient mice with attenuated expression of scavenger receptor B1. Arterioscler Thromb Vasc Biol 2000;20:1068–73.

    PubMed  CAS  Google Scholar 

  112. Chen W, Silver DL, Smith JD et al. Scavenger receptor-BI inhibits ATP-binding cassette transporter 1-mediated cholesterol efflux in macrophages. J Biol Chem 2000;275:30794–800.

    PubMed  CAS  Google Scholar 

  113. Kunjathoor VV, Febbraio M, Podrez EA et al. Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 2002;277:49982–8.

    PubMed  CAS  Google Scholar 

  114. Tall AR, Wang N. Tangier disease as a test of the reverse cholesterol transport hypothesis. J Clin Invest 2000;106:1205–7.

    PubMed  CAS  Google Scholar 

  115. Brewer HB, Jr. The lipid-laden foam cell: an elusive target for therapeutic intervention. J Clin Invest 2000;105:703–5.

    PubMed  CAS  Google Scholar 

  116. Accad M, Smith SJ, Newland DL et al. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J Clin Invest 2000;105:711–9.

    PubMed  CAS  Google Scholar 

  117. Bodzioch M, Orso E, Klucken J et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999;22:347–51.

    PubMed  CAS  Google Scholar 

  118. Brooks-Wilson A, Marcil M, Clee SM et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999;22:336–45.

    PubMed  CAS  Google Scholar 

  119. Lawn RM, Wade DP, Garvin MR et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest 1999;104:R25–R31.

    PubMed  CAS  Google Scholar 

  120. Rust S, Rosier M, Funke H. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Genet 1999;22:352–5.

    PubMed  CAS  Google Scholar 

  121. Willson TM, Brown PJ, Sternbach DD et al. The PPARs: from orphan receptors to drug discovery. J Med Chem 2000;43:527–50.

    PubMed  CAS  Google Scholar 

  122. Chawla A, Lee CH, Barak Y et al. PPAR delta is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci U S A 2003;100:1268–73.

    PubMed  CAS  Google Scholar 

  123. Ziouzenkova O, Perrey S, Asatryan L et al. Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase. Proc Natl Acad Sci U S A 2003;100:2730–5.

    PubMed  CAS  Google Scholar 

  124. Forman BM, Tontonoz P, Chen J et al. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 1995;83:803–12.

    PubMed  CAS  Google Scholar 

  125. Kliewer SA, Lenhard JM, Willson TM et al. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 1995;83:813–9.

    PubMed  CAS  Google Scholar 

  126. Huang JT, Welch JS, Ricote M et al. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 1999;400:378–82.

    PubMed  CAS  Google Scholar 

  127. Nagy L, Tontonoz P, Alvarez JG et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR gamma. Cell 1998;93:229–40.

    PubMed  CAS  Google Scholar 

  128. Barak Y, Nelson MC, Ong ES et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 1999;4:585–95.

    PubMed  CAS  Google Scholar 

  129. Rosen ED, Sarraf P, Troy AE et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999;4:611–7.

    PubMed  CAS  Google Scholar 

  130. Barbier O, Torra IP, Duguay Y et al. Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler Thromb Vasc Biol 2002;22:717–26.

    PubMed  CAS  Google Scholar 

  131. Lehmann JM, Moore LB, Smith-Oliver TA et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995;270:12953–6.

    PubMed  CAS  Google Scholar 

  132. Ricote M, Huang J, Fajas L et al. Expression of the peroxisome proliferator-activated receptor gamma (PPAR gamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998;95:7614–9.

    PubMed  CAS  Google Scholar 

  133. Ricote M, Li AC, Willson TM et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998;391:79–82.

    PubMed  CAS  Google Scholar 

  134. Tontonoz P, Nagy L, Alvarez JG et al. PPAR gamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998;93:241–52.

    PubMed  CAS  Google Scholar 

  135. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998;391:82–6.

    PubMed  CAS  Google Scholar 

  136. Marx N, Schonbeck U, Lazar MA et al. Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998;83:1097–103.

    PubMed  CAS  Google Scholar 

  137. Chawla A, Boisvert WA, Lee CH et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001;7:161–71.

    PubMed  CAS  Google Scholar 

  138. Chinetti G, Lestavel S, Bocher V et al. PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001;7:53–8.

    PubMed  CAS  Google Scholar 

  139. Chawla A, Repa JJ, Evans RM et al. Nuclear receptors and lipid physiology: opening the X-files. Science 2001;294:1866–70.

    PubMed  CAS  Google Scholar 

  140. Laffitte BA, Repa JJ, Joseph SB et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci USA2001;98:507–12.

    PubMed  CAS  Google Scholar 

  141. Repa JJ, Liang G, Ou J et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 2000;14:2819–30.

    PubMed  CAS  Google Scholar 

  142. Claudel T, Leibowitz MD, Fievet C et al. Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proc Natl Acad Sci USA 2001;98:2610–5.

    PubMed  CAS  Google Scholar 

  143. Joseph SB, McKilligin E, Pei L et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A 2002;99:7604–9.

    PubMed  CAS  Google Scholar 

  144. Chen Z, Ishibashi S, Perrey S et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001;21:372–7.

    PubMed  CAS  Google Scholar 

  145. Collins AR, Meehan WP, Kintscher U et al. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2001;21:365–71.

    PubMed  CAS  Google Scholar 

  146. Li AC, Brown KK, Silvestre MJ et al. Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106:523–31.

    PubMed  CAS  Google Scholar 

  147. Quinn MT, Parthasarathy S, Fong LG et al. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A 1987;84:2995–8.

    PubMed  CAS  Google Scholar 

  148. McMurray HF, Parthasarathy S, Steinberg D. Oxidatively modified low density lipoprotein is a chemoattractant for human T lymphocytes. J Clin Invest 1993;92:1004–8.

    PubMed  CAS  Google Scholar 

  149. Jonasson L, Holm J, Skalli O et al. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986;6:131–8.

    PubMed  CAS  Google Scholar 

  150. Quinn MT, Parthasarathy S, Steinberg D. Endothelial cell-derived chemotactic activity for mouse peritoneal macrophages and the effects of modified forms of low density lipoprotein. Proc Natl Acad Sci U S A 1985;82:5949–53.

    PubMed  CAS  Google Scholar 

  151. Watson AD, Navab M, Hama SY et al. Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. J Clin Invest 1995;95:774–82.

    PubMed  CAS  Google Scholar 

  152. Subbanagounder G, Leitinger N, Schwenke DC et al. Determinants of bioactivity of oxidized phospholipids: Specific oxidized fatty acyl groups at the sn-2 position. Arterioscler Thromb Vasc Biol 2000;20:2248–54.

    PubMed  CAS  Google Scholar 

  153. Kume N, Cybulsky MI, Gimbrone MA, Jr. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 1992;90:1138–44.

    PubMed  CAS  Google Scholar 

  154. Hessler JR., Morel DW, Lewis LJ et al. Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis 1983;3:215–22.

    PubMed  CAS  Google Scholar 

  155. Henriksen T, Evensen SA, Carlander B. Injury to human endothelial cells in culture induced by low density lipoproteins. Scand J Clin Lab Invest 1979;39:361–8.

    PubMed  CAS  Google Scholar 

  156. Morel DW, DiCorleto PE, Chisolm GM. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis 1984;4:357–64.

    PubMed  CAS  Google Scholar 

  157. Kugiyama K, Kerns SA, Morrisett JD et al. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature 1990;344:160–2.

    PubMed  CAS  Google Scholar 

  158. Anderson TJ, Meredith IT, Yeung AC et al. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 1995;332:488–93.

    PubMed  CAS  Google Scholar 

  159. Treasure CB, Klein JL, Weintraub WS et al. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. N Engl J Med 1995;332:481–7.

    PubMed  CAS  Google Scholar 

  160. Penny WF, Ben Yehuda O, Kuroe K et al. Improvement of coronary artery endothelial dysfunction with lipid-lowering therapy: heterogeneity of segmental response and correlation with plasma-oxidized low density lipoprotein. J Am Coll Cardiol 2001;37:766–74.

    PubMed  CAS  Google Scholar 

  161. Tamai O, Matsuoka H, Itabe H et al. Single LDL apheresis improves endothelium-dependent vasodilatation in hypercholesterolemic humans. Circulation 1997;95:76–82.

    PubMed  CAS  Google Scholar 

  162. Anderson TJ, Meredith IT, Charbonneau F et al. Endothelium-dependent coronary vasomotion relates to the susceptibility of LDL to oxidation in humans. Circulation 1996;93:1647–50.

    PubMed  CAS  Google Scholar 

  163. Fang JC, Kinlay S, Behrendt D et al. Circulating autoantibodies to oxidized LDL correlate with impaired coronary endothelial function after cardiac transplantation. Arterioscler Thromb Vasc Biol 2002;22:2044–8.

    PubMed  CAS  Google Scholar 

  164. Holvoet P, Stassen JM, Van Cleemput J et al. Oxidized low density lipoproteins in patients with transplant-associated coronary artery disease. Arterioscler Thromb Vasc Biol 1998;18:100–7.

    PubMed  CAS  Google Scholar 

  165. Dabbagh AJ, Frei B. Human suction blister interstitial fluid prevents metal ion-dependent oxidation of low density lipoprotein by macrophages and in cell-free systems. J Clin Invest 1995;96:1958–66.

    PubMed  CAS  Google Scholar 

  166. Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: Does it hold for humans? Trends Cardiovasc Med 2001;11:93–102.

    PubMed  CAS  Google Scholar 

  167. Witztum JL, Steinbrecher UP, Kesaniemi YA et al. Autoantibodies to glucosylated proteins in the plasma of patients with diabetes mellitus. Proc Natl Acad Sci U S A 1984;81:3204–8.

    PubMed  CAS  Google Scholar 

  168. Palinski W, Rosenfeld ME, Ylä-Herttuala S et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A 1989;86:1372–6.

    PubMed  CAS  Google Scholar 

  169. Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 1988;241:215–8.

    PubMed  CAS  Google Scholar 

  170. Boyd HC, Gown AM, Wolfbauer G et al. Direct evidence for a protein recognized by a monoclonal antibody against oxidatively modified LDL in atherosclerotic lesions from a Watanabe heritable hyperlipidemic rabbit. Am J Pathol 1989;135:815–25.

    PubMed  CAS  Google Scholar 

  171. Ylä-Herttuala S, Palinski W, Rosenfeld ME et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989;84:1086–95.

    PubMed  Google Scholar 

  172. Hulten LM, Lindmark H, Diczfalusy U et al. Oxysterols present in atherosclerotic tissue decrease the expression of lipoprotein lipase messenger RNA in human monocyte-derived macrophages. J Clin Invest 1996;97:461–8.

    PubMed  CAS  Google Scholar 

  173. Carpenter KL, Taylor SE, van der Veen C et al. Lipids and oxidised lipids in human atherosclerotic lesions at different stages of development. Biochim Biophys Acta 1995;1256:141–50.

    PubMed  Google Scholar 

  174. Piotrowski JJ, Shah S, Alexander JJ. Mature human atherosclerotic plaque contains peroxidized phosphatidylcholine as a major lipid peroxide. Life Sci 1996;58:735–40.

    PubMed  CAS  Google Scholar 

  175. Hodis HN, Kramsch DM, Avogaro P et al. Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-). J Lipid Res 1994;35:669–77.

    PubMed  CAS  Google Scholar 

  176. Sevanian A, Hwang J, Hodis H et al. Contribution of an in vivo oxidized LDL to LDL oxidation and its association with dense LDL subpopulations. Arterioscler Thromb Vasc Biol 1996;16:784–93.

    PubMed  CAS  Google Scholar 

  177. Itabe H, Yamamoto H, Suzuki M et al. Oxidized phosphatidylcholines that modify proteins. Analysis by monoclonal antibody against oxidized low density lipoprotein. J Biol Chem 1996;271:33208–17.

    PubMed  CAS  Google Scholar 

  178. Palinski W, Hörkkö S, Miller E et al. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J Clin Invest 1996;98:800–14.

    PubMed  CAS  Google Scholar 

  179. Ehara S, Ueda M, Naruko T et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 2001;103:1955–60.

    PubMed  CAS  Google Scholar 

  180. Nishi K, Itabe H, Uno M et al. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 2002;22:1649–54.

    PubMed  CAS  Google Scholar 

  181. Palinski W, Tangirala RK, Miller E et al. Increased autoantibody titers against epitopes of oxidized LDL in LDL receptor-deficient mice with increased atherosclerosis. Arterioscler Thromb Vasc Biol 1995;15:1569–76.

    PubMed  CAS  Google Scholar 

  182. Tsimikas S, Palinski W, Witztum JL. Circulating autoantibodies to oxidized LDL correlate with arterial accumulation and depletion of oxidized LDL in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 2001;21:95–100.

    PubMed  CAS  Google Scholar 

  183. Aikawa M, Sugiyama S, Hill CC et al. Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation 2002; 106:1390–6.

    PubMed  CAS  Google Scholar 

  184. Ylä-Herttuala S, Palinski W, Butler SW et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb 1994;14:32–40.

    PubMed  Google Scholar 

  185. Shaw PX, Hörkkö S, Chang MK et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 2000;105:1731–40.

    PubMed  CAS  Google Scholar 

  186. Salonen JT, Ylä-Herttuala S, Yamamoto R et al. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 1992;339:883–7.

    PubMed  CAS  Google Scholar 

  187. Hulthe J, Bokemark L, Fagerberg B. Antibodies to oxidized LDL in relation to intima-media thickness in carotid and femoral arteries in 58-year-old subjectively clinically healthy men. Arterioscler Thromb Vasc Biol 2001;21:101–7.

    PubMed  CAS  Google Scholar 

  188. Palinski W, Witztum JL. Immune responses to oxidative neoepitopes on LDL and phospholipids modulate the development of atherosclerosis. J Intern Med 2000;247:371–80.

    PubMed  CAS  Google Scholar 

  189. Palinski W, Napoli C. The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. FASEBJ 2002;16:1348–60.

    CAS  Google Scholar 

  190. Tsimikas S, Palinski W, Halpern SE et al. Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol 1999;6:41–53.

    PubMed  CAS  Google Scholar 

  191. Shaw PX, Hörkkö S, Tsimikas S et al. Human-derived anti-oxidized LDL autoantibody blocks uptake of oxidized LDL by macrophages and localizes to atherosclerotic lesions in vivo. Arterioscler Thromb Vasc Biol 2001;21:1333–9.

    PubMed  CAS  Google Scholar 

  192. Tsimikas S. Noninvasive imaging of oxidized Low-Density Lipoprotein in atherosclerotic plaques with tagged oxidation-specific antibodies. Am J Cardiol 2002;90:L22–7.

    Google Scholar 

  193. Crisby M, Nordin-Fredriksson G, Shah PK et al. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: Implications for plaque stabilization. Circulation 2001;103:926–33.

    PubMed  CAS  Google Scholar 

  194. Holvoet P, Vanhaecke J, Janssens S et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation 1998;98:1487–94.

    PubMed  CAS  Google Scholar 

  195. Itabe H, Yamamoto H, Imanaka T et al. Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. J Lipid Res 1996;37:45–53.

    PubMed  CAS  Google Scholar 

  196. Toshima S, Hasegawa A, Kurabayashi M et al. Circulating oxidized low density lipoprotein levels: A biochemical risk marker for coronary heart disease. Arterioscler Thromb Vasc Biol 2000;20:2243–7.

    PubMed  CAS  Google Scholar 

  197. Holvoet P, Mertens A, Verhamme P et al. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2001;21:844–8.

    PubMed  CAS  Google Scholar 

  198. Hulthe J, Fagerberg B. Circulating oxidized LDL is associated with subclinical atherosclerosis development and inflammatory cytokines (AIR Study). Arterioscler Thromb Vasc Biol 2002;22:1162–7.

    PubMed  CAS  Google Scholar 

  199. Holvoet P, Collen D, van de Werf F. Malondialdehyde-modified LDL as a marker of acute coronary syndromes. JAMA 1999;281:1718–21.

    PubMed  CAS  Google Scholar 

  200. Uno M, Kitazato KT, Nishi K et al. Raised plasma oxidised LDL in acute cerebral infarction. J Neurol Neurosurg Psychiatry 2003;74:312–6.

    PubMed  CAS  Google Scholar 

  201. Dei R, Takeda A, Niwa H et al. Lipid peroxidation and advanced glycation end products in the brain in normal aging and in Alzheimer’s disease. Acta Neuropathol (Berl) 2002; 104:113–22.

    PubMed  CAS  Google Scholar 

  202. Chang MK, Binder CJ, Torzewski M et al. C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids. Proc Natl Acad Sci U S A 2002;99:13043–8.

    PubMed  CAS  Google Scholar 

  203. Iuliano L, Mauriello A, Sbarigia E et al. Radiolabeled native low-density lipoprotein injected into patients with carotid stenosis accumulates in macrophages of atherosclerotic plaque: effect of vitamin E supplementation. Circulation 2000; 101:1249–54.

    PubMed  CAS  Google Scholar 

  204. Edelstein C, Pfaffinger D, Hinman J et al. Lysine-phosphatidylcholine adducts in Kringle V impart unique immunological and potential pro-inflammatory properties to human apolipoprotein(a). J Biol Chem 2003;278:52841–7.

    PubMed  CAS  Google Scholar 

  205. Silaste ML, Rantala M, Alfthan G et al. Changes in dietary fat intake alter plasma levels of oxidized low-density lipoprotein and lipoprotein(a). Arterioscler Thromb Vasc Biol 2004;24:498–503.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Tsimikas, S. (2006). Lipoproteins and Oxidation. In: Bourassa, M.G., Tardif, JC. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 258. Springer, Boston, MA. https://doi.org/10.1007/0-387-29553-4_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-29553-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29552-7

  • Online ISBN: 978-0-387-29553-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics