Skip to main content

Oxidative Stress in Hypertension

  • Chapter
Antioxidants and Cardiovascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 258))

  • 966 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griendling KK, Sorescu D, Lassegue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol 2000;20:2175–83.

    PubMed  CAS  Google Scholar 

  2. Lassegue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003;285:R277–97.

    PubMed  CAS  Google Scholar 

  3. Touyz RM, Schiffrin EL. Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 1999;34:976–82.

    PubMed  CAS  Google Scholar 

  4. Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 1992;70:593–9.

    PubMed  CAS  Google Scholar 

  5. Zafari AM, Ushio-Fukai M, Akers M, Griendling K. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension 1998;32:488–95.

    PubMed  CAS  Google Scholar 

  6. Cosentino F, Sill JC, Katusic ZS. Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension 1994;23:229–35.

    PubMed  CAS  Google Scholar 

  7. Harrison DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997;108:2153–7.

    Google Scholar 

  8. Kerr S, Brosnan J, Mclntyre M, Reid JL, Dominiczak AF, Hamilton CA. Superoxide anion production is increased in a model of genetic hypertension. Role of endothelium. Hypertension 1999;33:1353–8.

    PubMed  CAS  Google Scholar 

  9. Zalba G, San Jose G, Moreno MU, et al. Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension 2001;38:1395–9.

    CAS  Google Scholar 

  10. Landmesser U, Harrison DG. Oxidative stress and vascular damage in hypertension. Coron Artery Dis 2001;12:455–61.

    PubMed  CAS  Google Scholar 

  11. Schnackenberg CG, Welch W, Wilcox CS. Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic. Role of nitric oxide. Hypertension 1999;32:59–64.

    Google Scholar 

  12. Chen X, Touyz RM, Park JB, Schiffrin EL. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NAD(P)H oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 2001;38, 606–11.

    PubMed  CAS  Google Scholar 

  13. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 2002;105:293–6.

    PubMed  CAS  Google Scholar 

  14. Li JM, Shah AM. Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. J Biol Chem 2003;278:12094–100.

    PubMed  CAS  Google Scholar 

  15. Sharma RC, Hodis HN, Mack WJ. Probucol suppresses oxidant stress in hypertensive arteries. Immunohistochemical evidence. Am JHypertens 1996;9:577–90.

    CAS  Google Scholar 

  16. Duffy SJ, Gokce N, Holbrook M, et al. Treatment of hypertension with ascorbic acid. Lancet 1999;354:2048–9.

    PubMed  CAS  Google Scholar 

  17. Fotheby MD, Williams JC, Forster LA, Craner P, Fems GA. Effect of vitamin C on ambulatory blood pressure and plasma lipids in older patients. J Hypertens 2000;18:411–5.

    Google Scholar 

  18. Mullan B, Young IS, Fee H, McCance DR. Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. Hypertension 2002;40:804–9.

    PubMed  CAS  Google Scholar 

  19. Touyz RM, Schiffrin EL. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J Hypertens 2001;19:1245–54.

    PubMed  CAS  Google Scholar 

  20. Fridovich I. Superoxide anion radical, superoxide dismutases, and related matters. J Biol Chem 1997;272:18515–7.

    PubMed  CAS  Google Scholar 

  21. Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 1999;31:261–72.

    PubMed  CAS  Google Scholar 

  22. Yamawaki H, Haendeler J, Berk BC. Thioredoxin: a key regulator of cardiovascular homeostasis. Circ Res 2003;93:1029–33.

    PubMed  CAS  Google Scholar 

  23. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathionedisulfide/glutathione couple. Free Radic Biol Med 2001;30:1191–212.

    PubMed  CAS  Google Scholar 

  24. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 2000;86:494–501.

    PubMed  CAS  Google Scholar 

  25. Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys. 2002;397:342–4.

    PubMed  CAS  Google Scholar 

  26. Touyz RM, Yao G, Schiffrin EL. c-Src Induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2003;23:981–7.

    PubMed  CAS  Google Scholar 

  27. Lopes LR, Dagher MC, Gutierrez A, et al. Phosphorylated p40phox as a negative regulator of NADPH oxidase. Biochemistry 2004;43:3723–30.

    PubMed  CAS  Google Scholar 

  28. Berry C, Hamilton CA, Brosnan MJ, et al. Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. Circulation 2000;101:2206–12.

    PubMed  CAS  Google Scholar 

  29. Touyz RM, Chen X, He G, Quinn MT, Schiffrin EL. Expression of a gp91phox-containing leukocyte-type NADPH oxidase in human vascular smooth muscle cells — modulation by Ang II. Circ Res. 2002;90:1205–13.

    PubMed  CAS  Google Scholar 

  30. Muzaffar S, Jeremy JY, Angelini GD, Stuart-Smith K, Shukla N. Role of the endothelium and nitric oxide synthases in modulating superoxide formation induced by endotoxin and cytokines in porcine pulmonary arteries. Thorax 2003;58:598–604.

    PubMed  CAS  Google Scholar 

  31. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994;74:1141–8.

    PubMed  CAS  Google Scholar 

  32. Rey FE, Pagano PJ. The reactive adventitia: fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol 2002;22:1962–71.

    PubMed  CAS  Google Scholar 

  33. Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity. Upstream mediators. Circ Res 2002;91:406–13.

    PubMed  CAS  Google Scholar 

  34. De Leo FR, Ulman KV, Davis AR, Jutila KL, Quinn MT. Assembly of the human neutrophil NADPH oxidase involves binding of p67phox and flavocytochrome b to a common functional domain in p47phox. J Biol Chem 1996;271:17013–20.

    PubMed  Google Scholar 

  35. Li JM, Shah AM. Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem 2002;277:19952–60

    PubMed  CAS  Google Scholar 

  36. Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK. Distinct subcellular localizations of Noxl and Nox4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2004;24:1–8.

    Google Scholar 

  37. Ago T, Kitazono T, Ooboshi H, et al. Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 2004;109:227–33.

    PubMed  CAS  Google Scholar 

  38. Banfi B, Clark RA, Steger K, Krause K-H. Two novel proteins activate superoxide generation by the NADPH oxidase Noxl. J Biol Chem 2003;278:3510–3.

    PubMed  CAS  Google Scholar 

  39. Lassegue B, Sorescu D, Szocs K, et al. Novel gp91(phox) homologues in vascular smooth muscle cells: noxl mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 2001;88:888–94.

    PubMed  CAS  Google Scholar 

  40. Grote K, Flach I, Luchtefeld M, et al. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 2003;92:80–6.

    Google Scholar 

  41. Privratsky JR, Wold LE, Sowers JR, Quinn MT, Ren J. AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. Hypertension 2003;42:206–12.

    PubMed  CAS  Google Scholar 

  42. Nickenig G, Strehlow K, Baumer AT, et al. Negative feedback regulation of reactive oxygen species on AT1 receptor gene expression. Br J Pharmacol 2000;131:795–803.

    PubMed  CAS  Google Scholar 

  43. Rajagopalan S, Kurz S, Munzel T. Angiotensin II mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Invest 1996;97:1916–23.

    PubMed  CAS  Google Scholar 

  44. Marumo T, Schini-Kerth VB, Fisslthaler B, Busse R. Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 1997;96:2361–7.

    PubMed  CAS  Google Scholar 

  45. De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK. Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. Biochem J 1998;329:653–7.

    PubMed  Google Scholar 

  46. Gorlach A, Diebold I, Schini-Kerth VB, et al. Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: Role of the p22(phox)-containing NADPH oxidase. Circ Res 2001;89:47–54.

    PubMed  CAS  Google Scholar 

  47. Duerrschmidt N, Wippich N, Goettsch W, Broemme HJ, Morawietz H. Endothelin-1 induces NAD(P)H oxidase in human endothelial cells. Biochem Biophys Res Commun 2000;269:713–7.

    PubMed  CAS  Google Scholar 

  48. Diep QN, Amiri F, Touyz RM, et al. PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 2002;40:866–71.

    PubMed  CAS  Google Scholar 

  49. Wassmann S, Laufs U, Muller K, et al. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol 2002;22:300–5.

    PubMed  CAS  Google Scholar 

  50. Dandona P, Karne R, Ghanim H, Hamouda W, Aljada A, Magsino CH. Carvedilol inhibits reactive oxygen species generation by leukocytes and oxidative damage to amino acids. Circulation 2000; 101:122–4.

    PubMed  CAS  Google Scholar 

  51. Ohtahara A, Hisatome I, Yamamoto Y, Furuse M, Sonoyama K, Furuse Y. The release of the substrate for xanthine oxidase in hypertensive patients was suppressed by angiotensin converting enzyme inhibitors and αl-blockers. J Hypertens 2001;19:575–82.

    PubMed  CAS  Google Scholar 

  52. Taddei S, Virdis A, Ghiadoni L, et al. Effect of calcium antagonist or beta blockade treatment on nitric oxide-dependent vasodilation and oxidative stress in essential hypertensive patients. J Hypertens 2001;19:1379–86.

    PubMed  CAS  Google Scholar 

  53. Cosentino F, Barker JE, Brand MP, et al. Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice. Arterioscler Thromb Vasc Biol 2001;21:496–502.

    PubMed  CAS  Google Scholar 

  54. Vasquez-Vivar J, Duquaine D, Whitsett J, Kalyanaraman B, Rajagopalan S. Altered tetrahydrobiopterin metabolism in atherosclerosis: implications for use of oxidized tetrahydrobiopterin analogues and thiol antioxidants. Arterioscler Thromb Vasc Biol 2002;22:1655–61.

    PubMed  CAS  Google Scholar 

  55. Bagi Z, Koller A. Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type I diabetes is restored by sepiapterin. J Vasc Res 2003;40:47–57

    PubMed  CAS  Google Scholar 

  56. Virdis A, Iglarz M, Neves MF, et al. Effect of hyperhomocystinemia and hypertension on endothelial function in methylenetetrahydrofolate reductase-deficient mice. Arterioscler Thromb Vasc Biol 2003;23:1352–7.

    PubMed  CAS  Google Scholar 

  57. Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003;111:1201–9.

    PubMed  CAS  Google Scholar 

  58. Zheng JS, Yang XQ, Lookingland KJ et al. Gene transfer of human guanosine 5′-triphosphate cyclohydrolase I restores vascular tetrahydrobiopterin level and endothelial function in low renin hypertension. Circulation 2003;108:1238–45.

    PubMed  CAS  Google Scholar 

  59. Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation 2002;105:1656–62.

    PubMed  CAS  Google Scholar 

  60. Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003;42:1075–81.

    PubMed  CAS  Google Scholar 

  61. Spiekermann S, Landmesser U, Dikalov S et al. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: Relation to endothelium-dependent vasodilation. Circulation 2003;107:1383–9.

    PubMed  CAS  Google Scholar 

  62. Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 2000;52: 639–72.

    PubMed  CAS  Google Scholar 

  63. Lee SR, Kwon KS, Kim SR, Rhee SG. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 1998;273:15366–72.

    PubMed  CAS  Google Scholar 

  64. Turpaev KT. Reactive oxygen species and regulation of gene expression. Biochemistry 2002;67:281–92.

    PubMed  CAS  Google Scholar 

  65. Touyz RM, Wu XH, He G, Salomon S, Schiffrin EL. Increased angiotensin II-mediated Src signaling via epidermal growth factor receptor transactivation is associated with decreased C-terminal Src kinase activity in vascular smooth muscle cells from spontaneously hypertensive rats. Hypertension 2002;39:479–85.

    PubMed  CAS  Google Scholar 

  66. Brigelius-Flohe R, Banning A, Kny M, Bol GF. Redox events in interleukin-1 signaling. Arch Biochem Biophys 2004;423:66–73.

    PubMed  CAS  Google Scholar 

  67. Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL. Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertension 2004;22:535–42.

    CAS  Google Scholar 

  68. Haddad JJ. Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cell Signal 2002; 14:879–97.

    PubMed  CAS  Google Scholar 

  69. Touyz RM, Yao G, Viel E, Amiri F, Schiffrin EL. Angiotensin II and endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J Hypertens 2004;22:1141–9.

    PubMed  CAS  Google Scholar 

  70. Viedt C, Soto U, Krieger-Brauer HI, et al. Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler Thromb Vasc Biol 2000;20:940–8.

    PubMed  CAS  Google Scholar 

  71. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J Biol Chem 1998;273:15022–9.

    PubMed  CAS  Google Scholar 

  72. Touyz RM, Cruzado M, Tabet F, Yao G, Salomon S, Schiffrin EL. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells — role of receptor tyrosine kinase transactivation. Can J Physiol Pharmacol 2003;81:159–67.

    PubMed  CAS  Google Scholar 

  73. Droge, W. Free radicals in the physiological control of cell function. Physiol Rev 2001;82:47–95.

    Google Scholar 

  74. Lounsbury KM, Hu Q, Ziegelstein RC. Calcium signaling and oxidant stress in the vasculature. Free Radic Biol Med 2000;28: 1362–9.

    PubMed  CAS  Google Scholar 

  75. Gao YJ, Lee RM. Hydrogen peroxide induces a greater contraction in mesenteric arteries of spontaneously hypertensive rats through thromboxane A(2) production. Br J Pharmacol 2001;134: 1639–46.

    PubMed  CAS  Google Scholar 

  76. Deshpande NN, Sorescu D, Seshiah P, et al. Mechanism of hydrogen peroxide-induced cell cycle arrest in vascular smooth muscle. Antioxid Redox Signal 2002;4:845–54.

    PubMed  CAS  Google Scholar 

  77. Li AE, Ito H, Rovira II, et al. A role for reactive oxygen species in endothelial cell anoikis. Circ Res 1999;85:304–10.

    PubMed  CAS  Google Scholar 

  78. Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. J Clin Invest 1996;98:2572–9.

    PubMed  CAS  Google Scholar 

  79. Muller DN, Dechend R, Mervaala EMA, et al. NFκB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension 2000;35:193–201.

    PubMed  CAS  Google Scholar 

  80. Luft FC. Mechanisms and cardiovascular damage in hypertension. Hypertension 2001;37:594–8.

    PubMed  CAS  Google Scholar 

  81. Alexander RW. Hypertension and the pathogenesis of atherosclerosis. Oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension 1995;25:155–61.

    PubMed  CAS  Google Scholar 

  82. Yada T, Shimokawa H, Hiramatsu O, et al. Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 2003; 107:1040–5.

    PubMed  CAS  Google Scholar 

  83. Torrecillas G, Boyano-Adanez MC, Medina J, et al. The role of hydrogen peroxide in the contractile response to angiotensin II. Mol Pharmacol 2001;59:104–12.

    PubMed  CAS  Google Scholar 

  84. Schuijt MP, Tom B, De Vries R, et al. Superoxide does not mediate the acute vasoconstrictor effects of angiotensin II: a study in human and porcine arteries. J Hypertens 2003;21:2335–44.

    PubMed  CAS  Google Scholar 

  85. Zalba G, Beaumont FJ, San Jose G, et al. Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension 2000;35:1055–61.

    PubMed  CAS  Google Scholar 

  86. Tanito M, Nakamura H, Kwon YW, et al. Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats. Antioxid Redox Signal 2004;6:89–97.

    PubMed  CAS  Google Scholar 

  87. Zalba G, San Jose G, Beaumont FJ, Fortuno MA, Fortuno A, Diez J. Polymorphisms and promoter overactivity of the p22(phox) gene in vascular smooth muscle cells from spontaneously hypertensive rats. Circ Res 2001;88:217–22.

    PubMed  CAS  Google Scholar 

  88. Chabrashvili T, Tojo A, Onozato ML, et al. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension 2002;39:269–74.

    PubMed  CAS  Google Scholar 

  89. Landmesser U, Cai H, Dikalov S, et al. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 2002;40:511–5.

    PubMed  CAS  Google Scholar 

  90. Hong HJ, Hsiao G, Cheng TH, Yen MH. Supplemention with tetrahydrobiopterin suppresses the development of hypertension in spontaneously hypertensive rats. Hypertension 2001;38:1044–8.

    PubMed  CAS  Google Scholar 

  91. Zhan CD, Sindhu RK, Vaziri ND. Up-regulation of kidney NAD(P)H oxidase and calcineurin in SHR: reversal by lifelong antioxidant supplementation. Kidney Int 2004;65:219–27.

    PubMed  CAS  Google Scholar 

  92. Laursen JB, Rajagopalan S, Galis Z, Tarpey M, Freeman BA, Harrison DG. Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 1997;95:588–93.

    PubMed  CAS  Google Scholar 

  93. Tojo A, Onozato ML, Kobayashi N, Goto A, Matsuoka H, Fujita T. Angiotensin II and oxidative stress in Dahl Salt-sensitive rat with heart failure. Hypertension 2002;40: 834–9.

    PubMed  CAS  Google Scholar 

  94. Dobrian AD, Davies MJ, Schriver SD, Lauterio TJ, Prewitt RL. Oxidative stress in a rat model of obesity-induced hypertension. Hypertension 2001;37:554–60.

    PubMed  CAS  Google Scholar 

  95. Li L, Fink GD, Watts SW, et al. Endothelin-1 increases vascular superoxide via endothelin(A)-NADPH oxidase pathway in low-renin hypertension. Circulation 2003;107:1053–8.

    PubMed  CAS  Google Scholar 

  96. Virdis A, Fritsch Neves M, Amiri F, et al. Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 2002;40:504–10.

    PubMed  CAS  Google Scholar 

  97. Welch WJ, Mendonca M, Aslam S, Wilcox CS. Roles of oxidative stress and AT, receptors in renal hemodynamics and oxygenation in the postclipped 2K, 1C kidney. Hypertension 2003;41:692–6.

    PubMed  CAS  Google Scholar 

  98. Fortepiani LA, Zhang H, Racusen L, Roberts LJ 2nd, Reckelhoff JF. Characterization of an animal model of postmenopausal hypertension in spontaneously hypertensive rats. Hypertension 2003;41:640–5.

    PubMed  CAS  Google Scholar 

  99. Park JB, Touyz RM, Chen X, Schiffrin EL. Chronic treatment with a superoxide dismutase mimetic prevents vascular remodeling and progression of hypertension in salt-loaded stroke-prone spontaneously hypertensive rats. Am J Hypertens 2002;15:78–84.

    PubMed  CAS  Google Scholar 

  100. Minuz P, Patrignani P, Gaino S, Degan M, Menapace L, Tommasoli R. Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease. Circulation 2002; 106:2800–5.

    PubMed  CAS  Google Scholar 

  101. Lacy F, Kailasam MT, O’Connor DT, Schmid-Schonbein GW, Parmer RJ. Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension 2000;36:878–84.

    PubMed  CAS  Google Scholar 

  102. Russo C, Olivieri O, Girelli D, et al. Anti-oxidant status and lipid peroxidation in patients with essential hypertension. J Hypertens 1998; 16:1267–71.

    PubMed  CAS  Google Scholar 

  103. Cracowski JL, Baguet JP, Ormezzano O, et al. Lipid peroxidation is not increased in patients with untreated mild-to-moderate hypertension. Hypertension 2003;41:286–8.

    PubMed  CAS  Google Scholar 

  104. Higashi Y, Sasaki S, Nakagawa K et al. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 2002;346:1954–62.

    PubMed  CAS  Google Scholar 

  105. Lip GY, Edmunds E, Nuttall SL, Landray MJ, Blann AD, Beevers DG. Oxidative stress in malignant and non-malignant phase hypertension. J Hum Hypertens 2002; 16: 333–6.

    PubMed  CAS  Google Scholar 

  106. Lee VM, Quinn PA, Jennings SC, Ng LL. Neutrophil activation and production of reactive oxygen species in pre-eclampsia. J Hypertens 2003;21:395–402.

    PubMed  CAS  Google Scholar 

  107. Schiffrin EL, Touyz RM. Inflammation and vascular hypertrophy induced by angiotensin II: role of NADPH oxidase-derived reactive oxygen species independently of blood pressure elevation? Arterioscler Thromb Vasc Biol 2003;23: 707–9.

    PubMed  CAS  Google Scholar 

  108. Schiffrin EL, Touyz RM. Multiple actions of angiotensin II in hypertension: Benefits of AT, receptor blockade. J Am Coll Cardiol 2003;42:911–3.

    Google Scholar 

  109. Wyche KE, Wang SS, Griendling KK, et al. C242T CYBA polymorphism of the NADPH oxidase is associated with reduced respiratory burst in human neutrophils. Hypertension 2004;43:1246–51.

    PubMed  CAS  Google Scholar 

  110. Mullan B, Young IS, Fee H, McCance DR. Ascorbic acid reduces blood pressure and arterial stiffness in type 2 diabetes. Hypertension 2002;40:804–9.

    PubMed  CAS  Google Scholar 

  111. Galley HF, Thornton J, Howdle PD, Walker BE, Webster NR. Combination oral antioxidant supplementation reduces blood pressure. Clin Sci 1997;92: 361–5.

    PubMed  CAS  Google Scholar 

  112. Kim MY, Sasaki S, Sasazuki S, Okubo S, Hayashi M, Tsugane S. Lack of long-term effect of vitamin C supplementation on blood pressure. Hypertension 2002;40:797–803.

    PubMed  CAS  Google Scholar 

  113. Chen J, He J, Hamm L, Batuman V, Whelton PK. Serum antioxidant vitamins and blood pressure in the United States population. Hypertension 2002;40:810–6.

    PubMed  CAS  Google Scholar 

  114. Hamilton CA, Miller WH, Al-Benna S, et al. Strategies to reduce oxidative stress in cardiovascular disease. Clin Sci 2004;106:219–34.

    PubMed  CAS  Google Scholar 

  115. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ. Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 2003;361:2017–23.

    PubMed  CAS  Google Scholar 

  116. Schiffrin EL, Park J-B, Intengan HD, Touyz RM. Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation 2000; 101:1653–9.

    PubMed  CAS  Google Scholar 

  117. Rey FE, Cifuentes ME, Kiarash A, et al. Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular 02-and systolic blood pressure in mice. Circ Res 2001;89:408–14.

    PubMed  CAS  Google Scholar 

  118. Ghiadoni L, Magagna A, Versari D, et al. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension 2003;41:1281–6.

    PubMed  CAS  Google Scholar 

  119. Tribble DL. Antioxidant consumption and risk of coronary heart disease: emphasis on vitamin C, vitamin E and P-carotene. A statement for the healthcare professionals from the American Heart Association. Circulation 1999;99:591–5.

    PubMed  CAS  Google Scholar 

  120. Touyz RM, Campbell N, Logan A, Gledhill N, Petrella R, Padwal R, Canadian Hypertension Education Program. The 2004 Canadian recommendations for the management of hypertension: Part Ill-Lifestyle modifications to prevent and control hypertension. Can J Cardiol 2004;20:55–83.

    PubMed  CAS  Google Scholar 

  121. John JH, Ziebland S, Yudkin P, Roe LS, Neil HAW. Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: a randomized controlled trial. Lancet 2002;359:1969–73.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Schiffrin, E.L., Touyz, R.M. (2006). Oxidative Stress in Hypertension. In: Bourassa, M.G., Tardif, JC. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 258. Springer, Boston, MA. https://doi.org/10.1007/0-387-29553-4_15

Download citation

  • DOI: https://doi.org/10.1007/0-387-29553-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29552-7

  • Online ISBN: 978-0-387-29553-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics