Skip to main content

General Concepts about Oxidative Stress

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 258))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239–47.

    Article  PubMed  CAS  Google Scholar 

  2. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004;10Suppl:S18–25.

    Article  PubMed  Google Scholar 

  3. Ohara Y, Peterson TE, Harrison DG. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993;91:2546–51.

    PubMed  CAS  Google Scholar 

  4. Laursen JB, Somers M, Kurz S, et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 2001;103:1282–8.

    PubMed  CAS  Google Scholar 

  5. Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 2001;88:E14–22.

    PubMed  CAS  Google Scholar 

  6. Warnholtz A, Nickenig G, Schulz E, et al. Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 1999;99:2027–33.

    PubMed  CAS  Google Scholar 

  7. White CR, Darley-Usmar V, Berrington WR, et al. Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc Natl Acad Sci USA 1996;93:8745–9.

    Article  PubMed  CAS  Google Scholar 

  8. Davi G, Alessandrini P, Mezzetti A, et al. In vivo formation of 8-Epi-prostaglandin F2 alpha is increased in hypercholesterolemia. Arterioscler Thromb Vasc Biol 1997;17:3230–5.

    PubMed  CAS  Google Scholar 

  9. Reilly MP, Pratico D, Delanty N, et al. Increased formation of distinct F2 isoprostanes in hypercholesterolemia. Circulation 1998;98:2822–8.

    PubMed  CAS  Google Scholar 

  10. Minuz P, Patrignani P, Gaino S, et al. Increased oxidative stress and platelet activation in patients with hypertension and renovascular disease. Circulation 2002; 106:2800–5.

    Article  PubMed  CAS  Google Scholar 

  11. Morrow JD, Frei B, Longmire AW, et al. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N Engl J Med 1995;332:1198–203.

    Article  PubMed  CAS  Google Scholar 

  12. Schwedhelm E, Battling A, Lenzen H, et al. Urinary 8-iso-prostaglandin F2alpha as a risk marker in patients with coronary heart disease: a matched case-control study. Circulation 2004;109:843–8.

    Article  PubMed  CAS  Google Scholar 

  13. Sorescu D, Weiss D, Lassegue B, et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 2002;105:1429–35.

    Article  PubMed  CAS  Google Scholar 

  14. Ting HH, Timimi FK, Boles KS, et al. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1996;97:22–8.

    PubMed  CAS  Google Scholar 

  15. Levine GN, Frei B, Koulouris SN, et al. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1996;93:1107–13.

    PubMed  CAS  Google Scholar 

  16. Heitzer T, Just H, Munzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 1996;94:6–9.

    PubMed  CAS  Google Scholar 

  17. Ting HH, Timimi FK, Haley EA, et al. Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia. Circulation 1997;95:2617–22.

    PubMed  CAS  Google Scholar 

  18. Taddei S, Virdis A, Ghiadoni L, et al. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 1998;97:2222–9.

    PubMed  CAS  Google Scholar 

  19. Hornig B, Arakawa N, Kohler C, et al. Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 1998;97:363–8.

    PubMed  CAS  Google Scholar 

  20. Landmesser U, Merten R, Spiekermann S, et al. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation 2000; 101:2264–70.

    PubMed  CAS  Google Scholar 

  21. Higashi Y, Sasaki S, Nakagawa K, et al. Endothelial function and oxidative stress in renovascular hypertension. N Engl J Med 2002;346:1954–62.

    Article  PubMed  CAS  Google Scholar 

  22. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002;360:23–33.

    Google Scholar 

  23. Sherman DL, Keaney JF, Biegelsen ES, et al. Pharmacological concentrations of ascorbic acid are required for the beneficial effect on endothelial vasomotor function in hypertension. Hypertension 2000;35:936–41.

    PubMed  CAS  Google Scholar 

  24. Kinlay S, Behrendt D, Fang JC, et al. Long-term effect of combined vitamins E and C on coronary and peripheral endothelial function. J Am Coll Cardiol 2004;4:629–34.

    Article  CAS  Google Scholar 

  25. Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem 1983;52:223–61.

    Article  PubMed  CAS  Google Scholar 

  26. Steinberg D, Witztum JL. Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 2002;105:2107–11.

    Article  PubMed  Google Scholar 

  27. Witting P, Pettersson K, Ostlund-Lindqvist AM, et al. Dissociation of atherogenesis from aortic accumulation of lipid hydro(pero)xides in Watanabe heritable hyperlipidemic rabbits. J Clin Invest 1999;104:213–20.

    PubMed  CAS  Google Scholar 

  28. Heinecke JW. Is lipid peroxidation relevant to atherogenesis? J Clin Invest 1999;104:135–6.

    PubMed  CAS  Google Scholar 

  29. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 2000;87:840–4.

    PubMed  CAS  Google Scholar 

  30. Landmesser U, Harrison DG. Oxidant stress as a marker for cardiovascular events: Ox marks the spot. Circulation 2001; 104:2638–40.

    PubMed  CAS  Google Scholar 

  31. Landmesser U, Dikalov S, Price SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003;111:1201–9.

    Article  PubMed  CAS  Google Scholar 

  32. Cooke JP, Dzau VJ. Derangements of the nitric oxide synthase pathway, L-arginine, and cardiovascular diseases. Circulation 1997;96:379–82.

    PubMed  CAS  Google Scholar 

  33. Kuhlencordt PJ, Gyurko R, Han F, et al. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 2001;104:448–54.

    PubMed  CAS  Google Scholar 

  34. Landmesser U, Hornig B, Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation 2004;109(Suppl 1):II27–33.

    PubMed  Google Scholar 

  35. Suwaidi JA, Hamasaki S, Higano ST, et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 2000; 101:948–54.

    PubMed  CAS  Google Scholar 

  36. Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 2000; 101:1899–906.

    PubMed  CAS  Google Scholar 

  37. Halcox JPJ, Schenke WH, Zalos G, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 2002; 106:653–8.

    Article  PubMed  Google Scholar 

  38. Perticone F, Ceravolo R, Pujia A, et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation 2001;104:191–6.

    PubMed  CAS  Google Scholar 

  39. Gokce N, Keaney JF, Hunter LM, et al. Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol 2003;41:1769–75.

    Article  PubMed  Google Scholar 

  40. Fichtlscherer S, Breuer S, Zeiher AM. Prognostic value of systemic endothelial dysfunction in patients with acute coronary syndromes. Further evidence for the existence of the “vulnerable” patient. Circulation 2004; 110:1926–32.

    Article  PubMed  Google Scholar 

  41. Heitzer T, Schlinzig T, Krohn K, et al. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 2001;104:2673–8.

    PubMed  CAS  Google Scholar 

  42. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999;340:115–26.

    Article  PubMed  CAS  Google Scholar 

  43. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002;105:1135–43.

    Article  PubMed  CAS  Google Scholar 

  44. Boring L, Gosling J, Cleary M, et al. Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998;394:894–7.

    Article  PubMed  CAS  Google Scholar 

  45. Cybulsky MI, Iiyama K, Li H, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 2001; 107:1255–62.

    PubMed  CAS  Google Scholar 

  46. Rosenfeld ME. Leukocyte recruitment into developing atherosclerotic lesions: the complex interaction between multiple molecules keeps getting more complex. Arterioscler Thromb Vasc Biol 2002;22:361–3.

    Article  PubMed  CAS  Google Scholar 

  47. Kunsch C, Medford RM. Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 1999;85:753–66.

    PubMed  CAS  Google Scholar 

  48. Marui N, Offermann MK, Swerlick R, et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest 1993;92:1866–74.

    PubMed  CAS  Google Scholar 

  49. Chen XL, Zhang Q, Zhao R, et al. Racl and superoxide are required for the expression of cell adhesion molecules induced by tumor necrosis factor-alpha in endothelial cells. J Pharmacol Exp Ther 2003;305:573–80.

    Article  PubMed  CAS  Google Scholar 

  50. Chen XL, Tummala PE, Olbrych MT, et al. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ Res 1998;83:952–9.

    PubMed  CAS  Google Scholar 

  51. Chen XL, Zhang Q, Zhao R, et al. Superoxide, H2O2, and iron are required for TNF-alpha-induced MCP-1 gene expression in endothelial cells: role of Racl and NADPH oxidase. Am J Physiol Heart Circ Physiol 2004;286:H1001–7.

    Article  PubMed  CAS  Google Scholar 

  52. Collins T, Cybulsky MI. NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 2001;107:255–64.

    PubMed  CAS  Google Scholar 

  53. Zeiher AM, Fisslthaler B, Schray-Utz B, et al. Nitric oxide modulates the expression of monocyte chemoattractant protein 1 in cultured human endothelial cells. Circ Res 1995;76:980–6.

    PubMed  CAS  Google Scholar 

  54. Tomita H, Egashira K, Kubo-Inoue M, et al. Inhibition of NO synthesis induces inflammatory changes and monocyte chemoattractant protein-1 expression in rat hearts and vessels. Arterioscler Thromb Vasc Biol 1998;18:1456–64.

    PubMed  CAS  Google Scholar 

  55. Qian H, Neplioueva V, Shetty GA, et al. Nitric oxide synthase gene therapy rapidly reduces adhesion molecule expression and inflammatory cell infiltration in carotid arteries of cholesterol-fed rabbits. Circulation 1999;99:2979–82.

    PubMed  CAS  Google Scholar 

  56. Go YM, Gipp JJ, Mulcahy RT, et al. H2O2-dependent activation of GCLC-ARE4 reporter occurs by mitogen-activated protein kinase pathways without oxidation of cellular glutathione or thioredoxin-1. J Biol Chem 2004;279:5837–45.

    Article  PubMed  CAS  Google Scholar 

  57. Pleiner J, Mittermayer F, Schaller G, et al. High doses of vitamin C reverse Escherichia coli endotoxin-induced hyporeactivity to acetylcholine in the human forearm. Circulation 2002;106:1460–4.

    Article  PubMed  CAS  Google Scholar 

  58. Fichtlscherer S, Breuer S, Schachinger V, et al. C-reactive protein levels determine systemic nitric oxide bioavailability in patients with coronary artery disease. Eur Heart J 2004;25:1412–8.

    Article  PubMed  CAS  Google Scholar 

  59. Gorlach A, Brandes RP, Bassus S, et al. Oxidative stress and expression of p22phox are involved in the up-regulation of tissue factor in vascular smooth muscle cells in response to activated platelets. Faseb J 2000;14:1518–28.

    Article  PubMed  CAS  Google Scholar 

  60. Herkert O, Diebold I, Brandes RP, et al. NADPH oxidase mediates tissue factor-dependent surface procoagulant activity by thrombin in human vascular smooth muscle cells. Circulation 2002;105:2030–6.

    Article  PubMed  CAS  Google Scholar 

  61. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–71.

    PubMed  CAS  Google Scholar 

  62. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2004; 108:1664–72.

    Article  Google Scholar 

  63. Galis ZS, Sukhova GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994;94:2493–503.

    PubMed  CAS  Google Scholar 

  64. Rajagopalan S, Meng XP, Ramasamy S, et al. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. J Clin Invest 1996;98:2572–9.

    Article  PubMed  CAS  Google Scholar 

  65. Grote K, Flach I, Luchtefeld M, et al. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 2003;92:e80–6.

    Article  PubMed  CAS  Google Scholar 

  66. Ceriello A, Motz E. Is Oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 2004;24:816–23.

    Article  PubMed  CAS  Google Scholar 

  67. Blendea MC, Jacobs D, Stump CS, et al. Abrogation of oxidative stress improves insulin sensitivity in the ren2 rat model of tissue angiotensin II overexpression. Am J Physiol Endocrinol Metab 2004;Oct 19;[Epub ahead of print].

    Google Scholar 

  68. Cyrus T, Witztum JL, Rader DJ, et al. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest 1999; 103:1597–604.

    PubMed  CAS  Google Scholar 

  69. Cyrus T, Pratico D, Zhao L, et al. Absence of 12/15-lipoxygenase expression decreases lipid peroxidation and atherogenesis in apolipoprotein e-deficient mice. Circulation 2001;103:2277–82.

    PubMed  CAS  Google Scholar 

  70. Podrez EA, Schmitt D, Hoff HF, et al. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest 1999; 103:1547–60.

    PubMed  CAS  Google Scholar 

  71. Zhang R, Brennan ML, Shen Z, et al. Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J Biol Chem 2002;277:46116–22.

    Article  PubMed  CAS  Google Scholar 

  72. Brennan ML, Penn MS, Van Lente F, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 2003;349:1595–604.

    Article  PubMed  CAS  Google Scholar 

  73. Baldus S, Heeschen C, Meinertz T, et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 2003;108:1440–5.

    Article  PubMed  CAS  Google Scholar 

  74. Mueller CF, Laude K, McNally JS, et al. Redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 2004;[Epub ahead of print].

    Google Scholar 

  75. Azumi H, Inoue N, Takeshita S, et al. Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation 1999; 100:1494–8.

    PubMed  CAS  Google Scholar 

  76. Spiekermann S, Landmesser U, Dikalov S, et al. Xanthine-and NAD(P)H oxidase-activity in patients with coronary artery disease-relation to endothelium-dependent vasodilation. Circulation 2003;107:1383–9.

    Article  PubMed  CAS  Google Scholar 

  77. Barry-Lane PA, Patterson C, van der Merwe M, et al. p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest 2001;108:1513–22.

    Article  PubMed  CAS  Google Scholar 

  78. Ballinger SW, Patterson C, Knight-Lozano CA, et al. Mitochondrial integrity and function in atherogenesis. Circulation 2002; 106:544–9.

    Article  PubMed  CAS  Google Scholar 

  79. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 2000;404:787–90.

    Article  PubMed  CAS  Google Scholar 

  80. Lapenna D, de Gioia S, Ciofani G, et al. Glutathione-related antioxidant defenses in human atherosclerotic plaques. Circulation 1998;97:1930–4.

    PubMed  CAS  Google Scholar 

  81. McNally JS, Davis ME, Giddens DP, et al. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol 2003;285:H2290–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Landmesser, U., Drexler, H. (2006). General Concepts about Oxidative Stress. In: Bourassa, M.G., Tardif, JC. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 258. Springer, Boston, MA. https://doi.org/10.1007/0-387-29553-4_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-29553-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29552-7

  • Online ISBN: 978-0-387-29553-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics