Skip to main content

Diabetes-Induced Decrease in Renal Oxygen Tension: Effects of an Altered Metabolism

  • Conference paper
Book cover Oxygen Transport to Tissue XXVII

4. Summary

During conditions with experimental diabetes mellitus, it is evident that several alterations in renal oxygen metabolism occur, including increased mitochondrial respiration and increased lactate accumulation in the renal tissue. Consequently, these alterations will contribute to decrease the interstitial pO2, preferentially in the renal medulla of animals with sustained long-term hyperglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. J. J. Cohen, and D. E. Kamm, Renal metabolism: Relation to renal function., in: The Kidney, edited by M. B. Brenner, and F. C. Rector (W.B. Saunders, Philadelphia, 1981), pp. 144–248.

    Google Scholar 

  2. S. Klahr, and M. Hammarman, Renal metabolism, in: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin, and G. Giebisch (Raven Press, New York, 1985), pp. 699–718.

    Google Scholar 

  3. K. Aukland, and J. Krog, Renal oxygen tension, Nature 188, 671 (1960).

    Article  ADS  Google Scholar 

  4. M. N. Levy, and E. S. Imperial, Oxygen shunting in renal cortical and medullary capillaries, Am J Physiol 200, 159–162 (1961).

    Google Scholar 

  5. K. Aukland, Studies on Intrarenal Circulation with Special Reference to Gas Exchange, J Oslo City Hosp 14, 115–46 (1964).

    Google Scholar 

  6. The Diabetes Control and Complications Trail Research Group, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus., N Engl J Med 329, 977–86. (1993).

    Google Scholar 

  7. M. Brezis, S. Rosen, P. Silva, and F. H. Epstein, Renal ischemia: a new perspective, Kidney Int 26, 375–383 (1984).

    Article  Google Scholar 

  8. M. Brezis, and S. Rosen, Hypoxia of the renal medulla-its implication for disease, New Engl J Med 332, 647–655 (1995).

    Article  Google Scholar 

  9. G. Pugliese, R. G. Tilton, and J. R. Williamson, Glucose-induced metabolic imbalances in the pathogenesis of diabetic vascular disease, Diabetes Metab Rev 7, 35–59. (1991).

    Article  Google Scholar 

  10. P. J. Dyck, A. Windebank, H. Yasuda, F. J. Service, R. Rizza, and B. Zimmerman, Diabetic neuropathy, Adv Exp Med Biol 189, 305–320 (1985).

    Google Scholar 

  11. M. J. Stevens, J. Dananberg, E. L. Feldman, S. A. Lattimer, M. Kamijo, T. P. Thomas, H. Shindo, A. A. Sima, and D. A. Greene, The linked roles of nitric oxide, aldose reductase and, (Na+, K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat, J Clin Invest 94, 853–859 (1994).

    Article  Google Scholar 

  12. M. K. Van den Enden, J. R. Nyengaard, E. Ostrow, J. H. Burgan, and J. R. Williamson, Elevated glucose levels increase retinal glycolysis and sorbitol pathway metabolism. Implications for diabetic retinopathy, Invest Ophthalmol Vis Sci 36, 1675–85 (1995).

    Google Scholar 

  13. F. Palm, P. Hansell, G. Ronquist, A. Waldenstrom, P. Liss, and P. O. Carlsson, Polyol-pathway-dependent disturbances in renal medullary metabolism in experimental insulin-deficient diabetes mellitus in rats, Diabetologia 47, 1223–31 (2004).

    Article  Google Scholar 

  14. R. G. Tilton, L. D. Baier, J. E. Harlow, S. R. Smith, E. Ostrow, and J. R. Williamson, Diabetes-induced glomerular dysfunction: links to a more reduced cytosolic ratio of NADH/NAD+, Kidney Int 41, 778–788 (1992).

    Article  Google Scholar 

  15. J. R. Williamson, K. Chang, M. Frangos, K. S. Hasan, Y. Ido, T. Kawamura, J. R. Nyengaard, M. van den Enden, C. Kilo, and R. G. Tilton, Hyperglycemic pseudohypoxia and diabetic complications, Diabetes 42, 801–813 (1993).

    Article  Google Scholar 

  16. R. I. Dorin, V. O. Shah, D. L. Kaplan, B. S. Vela, and P. G. Zager, Regulation of aldose reductase gene expression in renal cortex and medulla of rats, Diabetologia 38, 46–54 (1995).

    Article  Google Scholar 

  17. T. Nishikawa, D. Edelstein, X. L. Du, S. Yamagishi, T. Matsumura, Y. Kaneda, M. A. Yorek, D. Beebe, P. J. Oates, H. P. Hammes, I. Giardino, and M. Brownlee, Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage, Nature 404, 787–790 (2000).

    Article  ADS  Google Scholar 

  18. F. Palm, J. Cederberg, P. Hansell, P. Liss, and P. O. Carlsson, Reactive oxygen species cause diabetesinduced decrease in renal oxygen tension, Diabetologia 46, 1153–1160 (2003).

    Article  Google Scholar 

  19. A. Koivisto, A. Matthias, G. Bronnikov, and J. Nedergaard, Kinetics of the inhibition of mitochondrial respiration by NO, FEBS Letters 417, 75–80 (1997).

    Article  Google Scholar 

  20. A. Koivisto, J. Pittner, M. Froelich, and A. E. Persson, Oxygen-dependent inhibition of respiration in isolated renal tubules by nitric oxide, Kidney Int 55, 2368–2375 (1999).

    Article  Google Scholar 

  21. C. G. Schnackenberg, Physiological and pathophysiological roles of oxygen radicals in the renal microvasculature, Am J Physiol Regul Integr Comp Physiol 282, R335–R342 (2002).

    Google Scholar 

  22. C. E. Mogensen, Glomerular filtration rate and renal plasma flow in normal and diabetic man during elevation of blood sugar levels, Scand J Clin Lab Invest 28, 177–82 (1971).

    Article  Google Scholar 

  23. F. Palm, P. Liss, A. Fasching, P. Hansell, and P. O. Carlsson, Transient glomerular hyperfiltration in the streptozotocin-diabetic Wistar Furth rat, Ups J Med Sci 106, 175–182 (2001).

    Article  Google Scholar 

  24. M. P. O’Donnell, B. L. Kasiske, and W. F. Keane, Glomerular hemodynamic and structural alterations in experimental diabetes mellitus, Faseb J 2, 2339–2347 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Palm, F., Carlsson, PO., Fasching, A., Hansell, P., Liss, P. (2006). Diabetes-Induced Decrease in Renal Oxygen Tension: Effects of an Altered Metabolism. In: Cicco, G., Bruley, D.F., Ferrari, M., Harrison, D.K. (eds) Oxygen Transport to Tissue XXVII. Advances in Experimental Medicine and Biology, vol 578. Springer, Boston, MA . https://doi.org/10.1007/0-387-29540-2_26

Download citation

Publish with us

Policies and ethics