Advertisement

Class II. Betaproteobacteria class. nov.

  • George M. Garrity
  • Julia A. Bell
  • Timothy Lilburn

Abstract

Be.ta.pro.te.o.bac.te′ri.a. Gr. n. beta name of second letter of Greek alphabet; Gr. n. Proteus ocean god able to change shape; Gr. n. bakterion a small rod; M.L. fem. pl. n. Betaproteobacteria class of bacteria having 16S rRNA gene sequences related to those of the members of the order Spirillales.

Further Reading

  1. Coenye, T., S. Laevens, A. Willems, M. Ohlen, W. Hannant, J.R.W. Govan, M. Gillis, E. Falsen and P. Vandamme. 2001. Burkholderia fungorum sp. nov., and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int. J. Syst. Evol. Microbiol. 51: 1099–1107.PubMedCrossRefGoogle Scholar
  2. Coenye, T., J.J. LiPuma, D. Henry, B. Hoste, K. Vandemeulebroecke, M. Gillis, D.P. Speert and P. Vandamme. 2001. Burkholderia cepacia genomovar VI, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. Int. J. Syst. Evol. Microbiol. 51: 271–279.PubMedCrossRefGoogle Scholar
  3. Coenye, T., E. Mahenthiralingam, D. Henry, J.J. LiPuma, S. Laevens, M. Gillis, D.P. Speert and P. Vandamme. 2001. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int. J. Syst. Evol. Microbiol. 51: 1481–1490.PubMedCrossRefGoogle Scholar
  4. Zhang, H., S. Hanada, T. Shigematsu, K. Shibuya, Y. Kamagata, T. Kanagawa and R. Kurane. 2000. Burkholderia kururiensis sp. nov, a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int. J. Syst. Evol. Microbiol. 50: 743–749.PubMedCrossRefGoogle Scholar

Further Reading

  1. Heckmann, K. 1983. Endosymbionts of Euplotes. Int. Rev. Cytol. Suppl. 14: 111–114.Google Scholar

Further Reading

  1. Brannan, D.K. and D.E. Caldwell. 1980. Thermothrix thiopara: growth and metabolism of a newly isolated thermophile capable of oxidizing sulfur and sulfur compounds. Appl. Environ. Microbiol. 40: 211–216.PubMedGoogle Scholar
  2. Odintsova, E.V., H.W. Jannasch, J.A. Mamone and T.A. Langworthy. 1996. Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium. Int. J. Syst. Bacteriol. 46: 422–428.PubMedCrossRefGoogle Scholar

Further Reading

  1. Baldani, V.L.D., J.I. Baldani, F. Olivares and J. Döbereiner. 1992. Identification and ecology of H. seropedicae and the closely related Pseudomonas rubrisubalbicans. Symbiosis 13: 65–73.Google Scholar
  2. Döbereiner, J. 1991. The genera Azospirillum and Herbaspirillum.In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 3, Springer-Verlag, New York. pp. 2236–2253.Google Scholar
  3. Döbereiner, J 1992. History and new perspective of diazotrophs in association with non-leguminous plants. Symbiosis 13: 1–13.Google Scholar

Further Reading

  1. Busse, H.J. and G. Auling. 1992. The genera Alcaligenes and “Achromobacter”. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications., 2nd Ed., Vol. 3, Springer-Verlag, New York. pp. 2544–2555.Google Scholar
  2. De Ley, J. 1992. Introduction to the Prokaryotes. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Application, 2nd Ed., Springer-Verlag, New York. pp. 2111–2140.Google Scholar
  3. Weiss, A.A. 1992. The genus Bordetella. In Balows, Truper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications., 2nd ed., Vol. 3, Springer-Verlag, Berlin, Germany. pp. 2530–2543.Google Scholar

Further Reading

  1. De Ley, J., P. Segers, K. Kersters, W. Mannheim and A. Lievens. 1986. Intrageneric and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int. J. Syst. Bacteriol. 36: 405–414.CrossRefGoogle Scholar

Further Reading

  1. De Ley, J., P. Segers, K. Kersters, W. Mannheim and A. Lievens. 1986. Intrageneric and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int. J. Syst. Bacteriol. 36: 405–414.CrossRefGoogle Scholar

Further Reading

  1. Hoppe, J.E. 1999. Bordetella. In Murray, Baron, Phaller, Tenover and Yolken (Editors), Manual of Clinical Microbiology, American Society for Microbiology, Washington DC. pp. 614–624.Google Scholar
  2. Parton, R. 1996. New perspectives on Bordetella pathogenicity. J. Med. Microbiol. 44: 233–235.PubMedCrossRefGoogle Scholar
  3. Weiss, A.A. 1992. The genus Bordetella. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: a Handbook on the Biology of Bacteria: Exophysiology, Isolation, Identification, Applications., 2nd Ed., Vol. 3, Springer-Verlag, Berlin, Germany. pp. 2530–2543.Google Scholar

Further Reading

  1. Becking, J.H. 1992. The Genus Derxia. In Balows, Trüper, Dworkin and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Springer-Verlag, New York. pp. 2605–2611.Google Scholar

Further Reading

  1. Rossau, R., K. Kersters, E. Falsen, E. Jantzen, P. Segers, A. Union, L. Nehls and J. De Ley. 1987. Oligella, a new genus including Oligella urethralis comb. nov. (formerly Moraxella urethralis) and Oligella ureolytica sp. nov. (formerly CDC group IVe): relationship to Taylorella equigenitalis and related taxa. Int. J. Syst. Bacteriol. 37: 198–210.CrossRefGoogle Scholar
  2. Schreckenberger, P.C. and A. von Graevenitz. 1999. Acinetobacter, Achromobacter, Alcaligenes, Moraxella, Methylobacterium, and other nonfermentative Gram-negative rods. In Murray, Baron, Pfaller, Tenover and Yolken (Editors), Manual of Clinical Microbiology, 7th Ed., ASM Press, Washington D.C. pp. 539–560.Google Scholar

Further Reading

  1. Sugimoto, C., Y. Isayama, R. Sakazaki and S. Kuramochi. 1983. Transfer of Haemophilus equigenitalis Taylor et al., 1978 to the genus Taylorella, gen. nov. as Taylorella equigenitalis, comb. nov. Curr. Microbiol. 9: 155–162.CrossRefGoogle Scholar
  2. Vandamme, P., P. Segers, M. Ryll, J. Hommez, M. Vancanneyt, R. Coopman, R. de Baere, Y. van de Peer, K. Kersters, R. De Wachter and K.H. Hinz. 1998. Pelistega europaea gen. nov., sp. nov., a bacterium associated with respiratory disease in pigeons: taxonomic structure and phylogenetic allocation. Int. J. Syst. Bacteriol. 48: 431–440.PubMedCrossRefGoogle Scholar

Further Reading

  1. Aragno, M. and H.G. Schlegel. 1992. The mesophilic hydrogen-oxidizing (Knallgas) bacteria. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications., 2nd Ed., Vol. 1, Springer-Verlag, New York. pp. 344–384.Google Scholar

Further Reading

  1. Starr, M.P. 1981. The Genus Lampropedia In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes: a Handbook of Habitats, Isolation and Identification of Bacteria, Springer-Verlag, Berlin. pp. 1530–1536.Google Scholar

Further Reading

  1. la Rivière, J.W.M. and K. Schmidt. 1981. Morphologically conspicuous sulfur-oxidizing bacteria. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes: a Handbook on Habits, Isolation and Identification of Bacteria, Springer-Verlag, Berlin. pp. 1037–1048.Google Scholar

Further Reading

  1. Aragno, M. and H.G. Schlegel. 1992. The mesophilic hydrogen-oxidizing (Knallgas) bacteria. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications., 2nd Ed., Vol. 1, Springer-Verlag, New York. pp. 344–384.Google Scholar

Further Reading

  1. Spring, S., P. Kämpfer, W. Ludwig and K.-H. Schleifer. 1996. Polyphasic characterization of the genus Leptothrix: new descriptions of Leptothrix mobilis sp. nov. and Leptothrix discophora sp. nov. nom. rev. and emended description of Leptothrix cholodnii emend. Syst. Appl. Microbiol. 19: 634–643.CrossRefGoogle Scholar
  2. van Veen, W.L., E.G. Mulder and M.H. Deinema. 1978. The Sphaerotilus-Leptothrix group of bacteria. Microbiol. Rev. 42: 329–356.PubMedGoogle Scholar

Further Reading

  1. Dondero, N.C. 1975. The Sphaerotilus-Leptothrix group. Annu. Rev. Microbiol. 29: 407–428.PubMedCrossRefGoogle Scholar
  2. Kampfer, P. 1998. Some chemotaxonomic and physiological properties of the genus Sphaerotilus. Syst. Appl. Microbiol. 21: 156–162.CrossRefGoogle Scholar
  3. Pellegrin, Y, S. Juretschko,, M. Wagner, and G. Cottenceau,. 1999. Morphological and biochemical properties of Sphaerotilus sp. isolated from paper mill slimes. Appl. Environ. Microbiol. 65: 156–162.PubMedGoogle Scholar
  4. van Veen, W.L., E.G. Mulder and M.H. Deinema. 1978. The Sphaerotilus-Leptothrix group of bacteria. Microbiol. Rev. 42: 329–356.PubMedGoogle Scholar

Further Reading

  1. Ridé, M. 1996. La nécrose bactérienne de la vigne: données biologiques et epidémiologiques, base d’une stratégie de lutte. Comptes rendus de l’Académie d’Agriculture de France. 82: 31–50.Google Scholar

Further Reading

  1. Bøvre, K. 1980. Progress in classification and identification of Neisseriaceae based on genetic affinity. In Goodfellow and Board (Editors), Microbiological Classification and Identification, Academic Press Inc. (London), Ltd., London. pp. 55–72.Google Scholar
  2. Bøvre, K. and N. Hagen. 1981. The family Neisseriaceae: rod-shaped species of the genera Moraxella, Acinetobacter, Kingella, and Neisseria, and the Branhamella group of cocci. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria, Vol. 2, Springer-Verlag, Berlin. pp. 1506–1529.Google Scholar
  3. Grimes, D.J., C.R. Woese, M.T. MacDonell and R.R. Colwell. 1997. Systematic study of the genus Vogesella gen. nov. and its type species, Vogesella indigofera comb. nov. Int. J. Syst. Bacteriol. 47: 19–27.PubMedCrossRefGoogle Scholar
  4. Tønjum, T., K. Bøvre and E. Juni. 1995. Fastidious Gram-negative bacteria: Meeting the diagnostic challenge with nucleic acid analysis. APMIS 103: 609–627.PubMedCrossRefGoogle Scholar

Further Reading

  1. Bøvre, K. 1980. Progress in classification and identification of Neisseriaceae based on genetic affinity. In Goodfellow and Board (Editors), Microbiological Classification and Identification, Academic Press Inc. (London), Ltd., London. pp. 55–72.Google Scholar
  2. Morse, S.A. and J.S. Knapp. 1989. The genus Neisseria. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria, Vol.2, SpringerVerlag, Berlin. pp. 2495–2529.Google Scholar
  3. Andersen, B.M., A.G. Steigerwalt, S.P. O’Connor, D.G. Hollis, R.S. Weyant, R.E. Weaver and D.J. Brenner. 1995. Neisseria weaveri sp. nov., formerly CDC group M-5, a Gram-negative bacterium associated with dog bite wounds. J. Clin. Microbiol. 31: 2456–2466.Google Scholar
  4. Spratt, B.G., L.D. Bowler, Q.Y. Zhang, J. Zhou and J.M. Smith. 1992. Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J. Mol. Evol. 34: 115–125.PubMedCrossRefGoogle Scholar

Further Reading

  1. Krieg, N.R. 1976. Biology of the chemoheterotrophic spirilla. Bacteriol. Rev. 40: 55–115.PubMedGoogle Scholar
  2. Krieg, N.R. and P.B. Hylemon. 1976. The taxonomy of the chemoheterotrophic spirilla. Annu. Rev. Microbiol. 30: 303–325.PubMedCrossRefGoogle Scholar
  3. Pot, B., M. Gillis and J. De Ley. 1992. The genus Aquaspirillum. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 4, Springer-Verlag, New York. pp. 2569–2582.Google Scholar

Further Reading

  1. Bottone, E.J.,J. Kittick and S.S. Schneierson. 1973. Isolation of Bacillus HB-1 from human clinical sources. Am. J. Clin. Pathol. 59: 560–566.PubMedGoogle Scholar
  2. Coykendall, A.L. and K.S. Kaczmarek. 1980. DNA homologies among Eikenella corrodens strains. J. Periodontal Res. 15: 615–620.PubMedCrossRefGoogle Scholar
  3. Dorff, G.F, L.J.Jackson and M.W. Rytel. 1974. Infections with Eikenella corrodens, a newly recognized human pathogen. Ann. Intern. Med. 80: 305–309.PubMedGoogle Scholar
  4. Ebisu, S., H. Nakae and H. Okada. 1988. Coaggregation of Eikenella corrodens with oral bacteria mediated by bacterial lectin-like substance. Adv. Dent. Res. 2: 323–327.PubMedGoogle Scholar
  5. Eiken, M. 1958. Studies on an anaerobic rod-shaped Gram-negative microorganism: “Bacteroides corrodens” N. sp. Acta Pathol. Microbiol. Scand. 43: 404–416.PubMedGoogle Scholar
  6. Goldstein, E.J.C., E.O. Agyare and R. Silletti. 1981. Comparative growth of Eikenella corrodens on fifteen media in three atmospheres of incubation. J. Clin. Microbiol. 13: 951–953.PubMedGoogle Scholar
  7. Jackson, F.L. and Y.E. Goodman. 1972. Transfer of the facultatively anaerobic organism “Bacteroides corrodens” Eiken to a new genus, Eikenella Int. J. Syst. Bacteriol. 22: 73–77.CrossRefGoogle Scholar
  8. Jackson, F.L., Y.E. Goodman, FR. Bel, P.C. Wong and R.L.S. Whitehouse. 1971. Taxonomic status of facultative and strictly anaerobic “corroding bacilli” that have been classified as “Bacteroides corrodens”. J. Med. Microbiol. 4: 171–184.PubMedCrossRefGoogle Scholar
  9. Levine, M. and FC. Miller. 1996. An Eikenella corrodens toxin detected by plaque toxin-neutralizing monoclonal antibodies. Infect. Immun. 64: 1672–1678.PubMedGoogle Scholar
  10. Maliszewski, C.R., C.W. Shuster and S.J. Badger. 1970. A type-specific antigen of Eikenella corrodens is the major outer membrane protein. Infect. Immun. 42: 208–;213.Google Scholar
  11. Progulske, A., R. Mishell, C. Trummel and S.C. Holt. 1970. Biological activities of Eikenella corrodens outer membrane and lipopolysaccharide. Infect. Immun. 43: 178–182.Google Scholar
  12. Young, K.A., R.P. Allaker, J.M. Hardie and R.A. Whiley. 1996. Interactions between Eikenella corrodens and “Streptococcus milleri group” organisms: possible mechanisms of pathogenicity in mixed infections. Antonie Leeuwenhoek 69: 371–373.PubMedCrossRefGoogle Scholar
  13. Yumoto, H., H. Azakami, H. Nakae, T. Matsuo and S. Ebisu. 1996. Cloning, sequencing and expression of an Eikenella corrodens gene encoding a component protein of the lectin-like adhesin complex. Gene 183: 115–121.PubMedCrossRefGoogle Scholar

Further Reading

  1. Dewhirst, F.E., C.K.C. Chen, B.J. Paster and J.J. Zambon. 1993. Phylogeny of species in the family Neisseriaceae isolated from human dental plaque and description of Kingella orale, sp. nov. Int. J. Syst. Bacteriol. 43: 490–499.PubMedCrossRefGoogle Scholar
  2. Henriksen, S.D. and K. Bøvre. 1976. Transfer of Moraxella kingae Henriksen and Bøvre to the genus Kingella gen. nov. in the family Neisseriaceae. Int. J. Syst. Bacteriol. 26: 447–450.CrossRefGoogle Scholar
  3. Yagupsky, P. and R. Dagan. 1997. Kingella kingae : an emerging cause of invasive infections in young children. Clin. Infect. Dis. 24: 860–866.PubMedCrossRefGoogle Scholar

Further Reading

  1. Heiske, A. and R. Mutters. 1994. Differentiation of selected members of the family Neisseriaceae (Alysiella, Eikenella, Kingella, Simonsiella and CDC groups EF-4 and M-5) by carbohydrate fingerprints and selected phenotypic features. Zentbl. Bakteriol. 281: 67–79.CrossRefGoogle Scholar
  2. Kuhn, D.A. 1981. The genera Simonsiella and Alysiella. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes. A Handbook on Habitats, Isolation and Identification of Bacteria, Springer-Verlag, New York. pp. 390–399.Google Scholar
  3. McCowen, R.P., K.J. Cheng and J.W. Costerton. 1979. Colonization of a portion of the bovine tongue by unusual filamentous bacteria. Appl. Environ. Microbiol. 37: 1224–1229.Google Scholar

Further Reading

  1. Dewhirst, F.E., B.J. Paster and P.L. Bright. 1989. Chromobacterium,Eikenella, Kingella, Neisseria, Simonsiella, and Vitreoscilla species comprise a major branch of the beta group Proteobacteria by 16S ribosomal ribonucleic acid sequence comparison: transfer of Eikenella and Simonsiella to the family Neisseriaceae (emend). Int. J. Syst. Bacteriol. 39: 258–266.CrossRefGoogle Scholar
  2. Stahl, D.A., D.J. Lane, G.J. Olsen, D.J. Heller, T.M. Schmidt and N.R. Pace. 1987. Phylogenetic analysis of certain sulfide-oxidizing and related morphologically conspicuous bacteria by 5S ribosomal ribonu-cleic acid sequences. Int. J. Syst. Bacteriol. 37: 116–122.CrossRefGoogle Scholar
  3. Strohl, W.R., T.M. Schmidt, N.H. Lawry, M.J. Mezzino and J.M. Larkin. 1986. Characterization of Vitreoscilla beggiatoides and Vitreoscilla filiformis sp. nov., nom. rev., and comparison with Vitreoscilla stercoraria and Beggiatoa alba. Int. J. Syst. Bacteriol. 36: 302–313.CrossRefGoogle Scholar

Further Reading

  1. Sorokin, D.Y., L.A. Robertson and J.G. Kuenen. 1996. Sulfur cycling in Catenococcus thiocyclus. FEMS Microbiol. Ecol. 19: 117–125.CrossRefGoogle Scholar

Further Reading

  1. Hallbeck, L. 1993. On the biology of the iron-oxidizing and stalk-forming bacterium Gallionella ferruginea, Thesis, Göteborg University, Göteborg Sweden.Google Scholar

Further Reading

  1. Harwood, C.S., G. Burchhardt, H. Herrmann and G. Fuchs. 1998. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol. Rev. 22: 439–458.CrossRefGoogle Scholar
  2. Reinhold-Hurek, B. and T. Hurek. 1998. Life in grasses: diazotrophic endophytes. Trends Microbiol. 6: 139–144.CrossRefGoogle Scholar
  3. Reinhold-Hurek, B. and T. Hurek. 2000. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 50: 649–659.PubMedCrossRefGoogle Scholar
  4. Song, B., M.M. Haggblom, J. Zhou, J.M. Tiedje and N.J. Palleroni. 1999. Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azoarcus toluclasticus sp. nov. Int. J. Syst. Bacteriol. 49 Pt 3: 1129–1140.PubMedCrossRefGoogle Scholar

Further Reading

  1. Zvirbulis, E. and H.D. Hatt.. 1967. Status of the generic name Zoogloea and its species. Int. J. Syst. Bacteriol. 17: 11–21.CrossRefGoogle Scholar

References

  1. Aalen, R.B. and W.B. Gundersen. 1985. Polypeptides encoded by cryptic plasmids from Neisseria gonorrhoeae. Plasmid 14: 209–216.PubMedCrossRefGoogle Scholar
  2. Abalain, J.H., S. Di Stefano, M.L. Abalain-Colloc and H.H. Floch. 1995. Cloning, sequencing and expression of Pseudomonas testosteroni gene encoding 3-α-hydroxysteroid dehydrogenase. J. Steroid Biochem. Mol. Biol. 55: 233–238.PubMedCrossRefGoogle Scholar
  3. Abe, M. and T Nakazawa. 1994. Characterization of hemolytic and antifungal substance, cepalycin, from Pseudomonas cepacia. Microbiol. Immunol. 38: 1–9.PubMedGoogle Scholar
  4. Abe, M., M. Tsuda, M. Kimoto, S. Inouye, A. Nakazawa and T Nakazawa. 1996. A genetic analysis system of Burkholderia cepacia: construction of mobilizable transposons and a cloning vector. Gene 174: 191–194.PubMedCrossRefGoogle Scholar
  5. Achenbach, L.A., U. Michaelidou, R.A. Bruce,J. Fryman and J.D. Coates. 2001. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int. J. Syst. Evol. Microbiol. 51: 527–533.PubMedGoogle Scholar
  6. Adams, G.A. and A.S. Chaudhari. 1972. Galactosamine polymer isolated from the cell wall of Neisseria sicca. Can. J. Biochem. 50: 345–351.PubMedCrossRefGoogle Scholar
  7. Adams, L.F. and W.C. Ghiorse. 1986. Physiology and ultrastructure of Leptothrix discophora SS-1. Arch. Microbiol. 145: 126–135.CrossRefGoogle Scholar
  8. Adams, L.F. and W.C. Ghiorse. 1987. Characterization of extracellular Mn2+-oxidizing activity and isolation of manganese-oxidizing protein from Leptothrix discophora SS-1. J. Bacteriol. 169: 1279–1285.PubMedGoogle Scholar
  9. Adler, O. 1904. Über Eisenbakterien in ihrer Beziehung zu den thera-peutisch verwendteten naturlichen Eisenwässer. Zentbl. Bakteriol. 215: 277.Google Scholar
  10. Agathos, S.N., E. Hellin, H. Ali-Khodja, S. Deseveaux, F. Vandermesse and H. Naveau. 1997. Gas-phase methyl ethyl ketone biodegradation in a tubular biofilm reactor: microbiological and bioprocess aspects. Biodegradation 8: 251–264.CrossRefGoogle Scholar
  11. Ahmad, D., J. Fraser, M. Sylvestre, A. Larose, A. Kahn,J. Bergeron, J.M. Juteau and M. Sondossi. 1995. Sequence of the bphD gene encoding 2-hydroxy-6-oxo-(phenyl/chlorophenyl)hexa-2,4 dienoic acid (HOP/ cPDA) hydrolase involved in the biphenyl/polychlorinated biphenyl degradation pathway in Comamonas testosteroni: evidence suggesting involvement of Ser112 in catalytic activity. Gene 156: 69–74.PubMedCrossRefGoogle Scholar
  12. Aho, E.L. and J.G. Cannon. 1988. Characterization of a silent pilin gene locus from Neisseria meningitidis strain FAM18. Microb. Pathog. 5: 391–398.PubMedCrossRefGoogle Scholar
  13. Aho, E.L., A.M. Keating and S.M. McGillivray. 2000. A comparative analysis of pilin genes from pathogenic and nonpathogenic Neisseria species. Microb. Pathog. 28: 81–88.PubMedCrossRefGoogle Scholar
  14. Aho, E.L., G.L. Murphy and J.G. Cannon. 1987. Distribution of specific DNA sequences among pathogenic and commensal Neisseria species. Infect. Immun. 55: 1009–1013.PubMedGoogle Scholar
  15. Ahrens, A., A. Lipski, S. Klatte, H.J. Busse, G. Auling and K. Altendorf. 1997. Polyphasic classification of Proteobacteria isolated from biofilters. Syst. Appl. Microbiol. 20: 255–267.CrossRefGoogle Scholar
  16. Akagawa, M. and K. Yamasato. 1989. Synonymy of Alcaligenes aquamarinus, Alcaligenes faecalis subsp. homari, and Deleya aesta: Deleya aquamarina comb. nov. as the type species of the genus Deleya. Int. J. Syst. Bacteriol. 39: 462–466.CrossRefGoogle Scholar
  17. Akagawa-Matsushita, M., T. Itoh, Y. Katayama, H. Kuraishi and K. Yamasato. 1992. Isoprenoid quinone composition of some marine Alteromonas, Marinomonas, Deleya, Pseudomonas and Shewanella species. J. Gen. Microbiol. 138: 2275–2281.CrossRefGoogle Scholar
  18. Alban, P.S. and N.R. Krieg. 1996. Improved method for colony counts of the microaerophile Spirillum volutans. Can. J. Microbiol. 42: 701–704.CrossRefGoogle Scholar
  19. Alban, P.S. and N.R. Krieg. 1998. A hydrogen peroxide resistant mutant of Spirillum volutans has NADH peroxidase activity but no increased oxygen tolerance. Can. J. Microbiol. 44: 87–91.Google Scholar
  20. Alban, P.S., D.L. Popham, K.E. Rippere and N.R. Krieg. 1998. Identification of a gene for a rubrerythrin/nigerythrin-like protein in Spirillum volutans by using amino acid sequence data from mass spectrometry and NH2-terminal sequencing. J. Appl. Microbiol. 85: 875–882.PubMedCrossRefGoogle Scholar
  21. Albritton, W.L., J.K. Setlow, M.L. Thomas and F.O. Sottnek. 1986. Relatedness within the family Pasteurellaceae as determined by genetic transformation. Int. J. Syst. Bacteriol. 36: 103–106.CrossRefGoogle Scholar
  22. Aldon, D., B. Brito, C. Boucher and S. Genin. 2000. A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO. 19: 2304–2314.CrossRefGoogle Scholar
  23. Aldridge, K.E., G.T. Valainis and C.V. Sanders. 1988. Comparison of the in vitro activity of ciprofloxacin and 24 other antimicrobial agents against clinical strains of Chromobacterium violaceum. Diagn. Microbiol. Infect. Dis. 10: 31–39.PubMedCrossRefGoogle Scholar
  24. Allaker, R.P., K.A. Young and J.M. Hardie. 1994. Production of hydrolytic enzymes by oral isolates of Eikenella corrodens. FEMS Microbiol. Lett. 123: 69–74.PubMedCrossRefGoogle Scholar
  25. Allen, A.G., R.M. Thomas, J.T. Cadisch and D.J. Maskell. 1998. Molecular and functional analysis of the lipopolysaccharide biosynthesis locus wlb from Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Mol. Microbiol. 29: 27–38.PubMedCrossRefGoogle Scholar
  26. Allen, C., J. Gay and L. Simon-Buela. 1997. A regulatory locus, pehSR, controls polygalacturonase production and other virulence functions in Ralstonia solanacearum. Mol. Plant-Microbe Interact. 10: 1054–1064.PubMedCrossRefGoogle Scholar
  27. Allison, M.J. and H.M. Cook. 1981. Oxalate degradation by microbes of the large bowel of herbivores: the effect of dietary oxalate. Science 212: 675–676.PubMedCrossRefGoogle Scholar
  28. Allison, N., Turner, J.E. and Wait, R.. 1995. Degradation of homovanillate by a strain of Variovorax paradoxus via ring hydroxylation. FEMS Microbiol. Let.134: 213–219.CrossRefGoogle Scholar
  29. Allunans, J., M. Bjoras, E. Seeberg and K. B00F8;vre. 1998. Production, isolation and purification of bacteriocins expressed by two strains of Neisseria meningitidis. APMIS 106: 1181–1187.PubMedCrossRefGoogle Scholar
  30. Altenschmidt, U., B. Oswald, E. Steiner, H. Herrmann and G. Fuchs. 1993. New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp. J. Bacteriol. 175: 4851–4858.PubMedGoogle Scholar
  31. Altschul, S.F. 1989. Evolutionary trees for the genus Bordetella. J. Bacteriol. 171: 1211–1213.PubMedGoogle Scholar
  32. Amann, R.I., W. Ludwig, R. Schulze, S. Spring, E. Moore and K.H. Schleifer. 1996. rRNA-targeted oligonucleotide probes for the identification of genuine and former pseudomonads. Syst. Appl. Microbiol. 19: 501–509.CrossRefGoogle Scholar
  33. Amils, R., N. Irazabal, D. Moreira, J.P. Abad and I. Marin. 1998. Genomic organization analysis of acidophilic chemolithotrophic bacteria using pulsed field gel electrophoretic techniques. Biochimie 80: 911–921.PubMedCrossRefGoogle Scholar
  34. Amin, P.M. and S.V. Ganapati. 1967. Occurrence of Zoogloea colonies and protozoans at different stages of sewage purification. Appl. Microbiol. 15: 17–21.PubMedGoogle Scholar
  35. Amir, J. and P. Yagupsky. 1998. Invasive Kingella kingae infection associated with stomatitis in children. Pediatr. Infect. Dis. J. 17: 757–758.PubMedCrossRefGoogle Scholar
  36. Anantharam, V., M.J. Allison and P.C. Maloney. 1989. Oxalate:formate exchange: the basis for energy coupling in Oxalobacter. J. Biol. Chem. 264: 7244–7250.PubMedGoogle Scholar
  37. Anders, H.J., A. Kaetzke, P. Kämpfer, W. Ludwig and G. Fuchs. 1995. Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int. J. Syst. Bacteriol. 45: 327–333.PubMedCrossRefGoogle Scholar
  38. Andersen, B.M., O. Solberg, K. Bryn, L.O. Froholm, P. Gaustad, E.A. Hoiby, B.E. Kristiansen and K. Bovre. 1987. Endotoxin liberation from Neisseriam meningitidis isolated from carriers and clinical cases. Scand. J. Infect. Dis. 19: 409–419.PubMedCrossRefGoogle Scholar
  39. Andersen, B.M., A.G. Steigerwalt, S.P. O ’Connor, D.G. Hollis, R.S. Weyant, R.E. Weaver and D.J. Brenner. 1993. Neisseria weaveri sp. nov., formerly CDC group M-5, a Gram-negative bacterium associated with dog-bite wounds. J. Clin. Microbiol. 31: 2456–2466.PubMedGoogle Scholar
  40. Anderson, I.C., M. Poth, J. Homstead and D. Burdige. 1993. A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Appl. Environ. Microbiol. 59: 3525–3533.PubMedGoogle Scholar
  41. Anderson, J.E., P.F. Sparling and C.N. Cornelissen. 1994. Gonococcal transferrin-binding protein-2 facilitates but is not essential for transferrin utilization. J. Bacteriol. 176: 3162–3170.PubMedGoogle Scholar
  42. Andreasen, J.R., Jr. and T. Sandhu. 1993. Pasteurella anatipestifer-like bacteria associated with respiratory disease in pigeons. Avian Dis. 37: 908–911.PubMedCrossRefGoogle Scholar
  43. Angus, B.J., S.T. Green, J.J. McKinley, D.J. Goldberg and M. Frischer. 1994. Eikenella corrodens septicemia among drug injectors: a possible association with licking wounds. J. Infect. 28: 102–103.PubMedCrossRefGoogle Scholar
  44. Anzai, Y., H. Kim, J.Y. Park, H. Wakabayashi and H. Oyaizu. 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50: 1563–1589.PubMedCrossRefGoogle Scholar
  45. Aoki, M., K. Uehara, K. Koseki, K. Tsuji, M. Iijima, K. Ono and T. Samejima. 1991. An antimicrobial substance produced by Pseudomonas cepacia B5 against the bacterial wilt disease pathogen, Pseudomonas solanacearum. Agric. Biol. Chem. 55: 715–722.CrossRefGoogle Scholar
  46. Aoyama, T., Y. Murase, T. Iwata, A. Imaizumi, Y. Suzuki and Y. Sato. 1986. Comparison of blood-free medium (cyclodextrin solid medium) with Bordet-Gengou medium for clinical isolation of Bordetella pertussis. J. Clin. Microbiol. 23: 1046–1048.PubMedGoogle Scholar
  47. Apicella, M.A., M.A.J. Westerink, S.A. Morse, H. Schneider, P.A. Rice and J.M. Griffiss. 1986. Bactericidal antibody-response of normal human serum to the lipooligosaccharide of Neisseria gonorrhoeae. J. Infect. Dis. 153: 520–526.PubMedCrossRefGoogle Scholar
  48. Aragno, M. and H.G. Schlegel. 1977. Alcaligenes ruhlandii (Packer and Vishniac) comb. nov., a peritrichous hydrogen bacterium previously assigned to Pseudomonas. Int. J. Syst. Bacteriol. 27: 279–281.CrossRefGoogle Scholar
  49. Aragno, M. and H.G. Schlegel. 1978. Aquaspirillum autotrophicum, a new species of hydrogen-oxidizing, facultatively autotrophic bacteria. Int. J. Syst. Bacteriol. 28: 112–116.CrossRefGoogle Scholar
  50. Aragno, M. and H.G. Schlegel. 1992. The mesophilic hydrogen-oxidizing (Knallgas) bacteria. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 1, Springer-Verlag, New York. pp. 344–384.Google Scholar
  51. Aragno, M., A. Walther-Mauruschat, F. Mayer and H.G. Schlegel. 1977. Micromorphology of Gram-negative hydrogen bacteria. I. Cell morphology and flagellation. Arch. Microbiol. 114: 93–100.CrossRefGoogle Scholar
  52. Arensdorf, J.J. and D.D. Focht. 1995. A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166. Appl. Environ. Microbiol. 61: 443–447.PubMedGoogle Scholar
  53. Arico, B. and R. Rappuoli. 1987. Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes. J. Bacteriol. 169: 2847–2853.PubMedGoogle Scholar
  54. Ark, P.A. and H.E. Thomas. 1946. Bacterial leaf spot and bud rot of orchids caused by Phytomonas cattleyae. Phytopathology 36: 695–698.Google Scholar
  55. Arko, R.J. and T. Odugbemi. 1984. Superoxol and amylase inhibition tests for distinguishing gonococcal and nongonococcal cultures growing on selective media. J. Clin. Microbiol. 20: 1–4.PubMedGoogle Scholar
  56. Aronoff, S.C. 1988. Outer membrane permeability in Pseudomonas cepacia diminished porin content in a β-lactam resistant mutant and in resistant cystic fibrosis isolates. Antimicrob. Agents Chemother. 32: 1636–1639.PubMedCrossRefGoogle Scholar
  57. Arp, L.H. and N.F. Cheville. 1984. Tracheal lesions in young turkeys infected with Bordetella avium. Am. J. Vet. Res. 45: 2196–2200.PubMedGoogle Scholar
  58. Artymiuk, P.J., E.R. Bauminger, P.M. Harrison, D.M. Lawson, I. Nowik, A. Treffry and S.J. Yewdall. 1991. Ferritin: A model system for iron biomineralization. In Frankel and Blakemore (Editors), Iron Biominerals, Plenum Press, New York. pp. 269–294.CrossRefGoogle Scholar
  59. Assinder, S.J. and P.A. Williams. 1990. The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv. Microb. Physiol. 31: 1–69.PubMedCrossRefGoogle Scholar
  60. Atherton, J.G. 1983. Evaluation of selective supplements used in media for the isolation of the causative organism of contagious equine metritis. Vet. Rec. 113: 299–300.PubMedCrossRefGoogle Scholar
  61. Atkey, P.T., T.R. Fermor and S.P. Lincoln. 1992. Electron microscopy of the infection process of rapid soft rot disease of the edible mushroom Agaricus bitorquis. Mycol. Res. 96: 717–722.CrossRefGoogle Scholar
  62. Auling, G., H.-J. Busse, M. Hahn, H. Hennecke, R.-M. Kroppenstedt, A. Probst and E. Stackebrandt. 1988. Phylogenetic heterogeneity and chemotaxonomic properties of certain Gram-negative aerobic carboxydobacteria. Syst. Appl. Microbiol. 10: 264–272.CrossRefGoogle Scholar
  63. Auling, G., H.-J. Busse, F. Pilz, L. Webb, H. Kneifel and D. Claus. 1991. Rapid differentiation, by polyamine analysis, of Xanthomonas strains from phytopathogenic pseudomonads and other membersof the class Proteobacteria interacting with plants. Int. J. Syst. Bacteriol. 41: 223–228.CrossRefGoogle Scholar
  64. Auling, G., M. Reh, C.M. Lee and H.G. Schlegel. 1978. Pseudomonas pseudoflava a new species of hydrogen-oxidizing bacteria: its differentiation from Pseudomonas flava and other yellow-pigmented, Gram-negative, hydrogen oxidizing species. Int. J. Syst. Bacteriol. 28: 82–95.CrossRefGoogle Scholar
  65. Austin, B., C.J. Rodgers, J.M. Forns and R.R. Colwell. 1981. Alcaligenes faecalis subsp. homari subsp. nov., a new group of bacteria isolated from moribund lobsters. Int. J. Syst. Bacteriol. 31: 72–76.CrossRefGoogle Scholar
  66. Austin, J.W. and R.G.E. Murray. 1987. The perforate component of the regularly structured (RS) layer of Lampropedia hyalina. Can. J. Microbiol. 33: 1039–1045.CrossRefGoogle Scholar
  67. Azegami, K., K. Nishiyama, Y. Watanabe, I. Kadota, A. Ohuchi and C. Fukazawa. 1987. Pseudomonas plantarii sp. nov., the causal agent of rice seedling blight. Int. J. Syst. Bacteriol. 37: 144–152.CrossRefGoogle Scholar
  68. Aznar, R., R.J. Owen and J. Hernandez. 1992. DNA–DNA hybridization and ribotyping of Acidovorax delafieldii isolates from eels and aquatic environments. Lett. Appl. Microbiol. 14: 185–188.CrossRefGoogle Scholar
  69. Baalsrud, K. and K.S. Baalsrud. 1954. Studies on Thiobacillus denitrificans. Arch. Mikrobiol. 20: 34–62.PubMedCrossRefGoogle Scholar
  70. Babudieri, B. 1973. Experimental infections by spirilla. In Eichler (Editor), Handbuch der Experimentellen Pharmakologie, Vol. 17 11B, Springer-Verlag, New York Berlin. pp. 43–49.Google Scholar
  71. Bachofen, R. and A. Schenk. 1998. Quorum sensing autoinducers: do they play a role in natural microbial habitats& Microbiol. Res. 153: 61–63.CrossRefGoogle Scholar
  72. Backman, A., P. Lantz, P. Radstrom and P. Olcen. 1999. Evaluation of an extended diagnostic PCR assay for detection and verification of the common causes of bacterial meningitis in CSF and other biological samples. Mol. Cell. Probes 13: 49–60.PubMedCrossRefGoogle Scholar
  73. Badger, S.J., T. Butler, C.K. Kim and K.H. Johnston. 1979. Experimental Eikenella corrodens endocarditis in rabbits. Infect. Immun. 23: 751–757.PubMedGoogle Scholar
  74. Badger, S.J. and A.C.R. Tanner. 1981. Serological studies of Bacteroides gracilis, Campylobacter concisus, Wolinella recta, and Eikenella corrodens, all from humans with periodontal disease. Int. J. Syst. Bacteriol. 31: 446–451.CrossRefGoogle Scholar
  75. Bailie, W.E., E.C. Stowe and A.M. Schmitt. 1978. Aerobic bacterial flora of oral and nasal fluids of canines with reference to bacteria associated with bites. J. Clin. Microbiol. 7: 223–231.PubMedGoogle Scholar
  76. Baker, D.A. and R.W.A. Park. 1975. Changes in morphology and cell wall structure that occur during growth of Vibrio sp. NCTC 4716 in batch culture. J. Gen. Microbiol. 86: 12–28.PubMedCrossRefGoogle Scholar
  77. Baker, M.E. 1996.3-α-hydroxysteroid dehydrogenase is homologous to a fusion of bacterial ribosomal L10 and L7/12 genes. J. Steroid Biochem. Mol. Biol. 59: 365–366.PubMedCrossRefGoogle Scholar
  78. Balashova, V.V. and N.E. Cherni. 1970. Ultrastructure of Gallionella filamenta. Mikrobiologiya 39: 348–351.Google Scholar
  79. Baldani, J.I., V.L.D. Baldani, M.J.A.M. Sampaio and J. Dobereiner. 1984. A fourth Azospirillum species from cereal roots. An. Acad. Bras. Cienc. 56: 365.Google Scholar
  80. Baldani, J.I., B. Pot, G. Kirchhof, E. Falsen, V.L.D. Baldani, F.L. Olivares, B. Hoste, K. Kersters, A. Hartmann, M. Gillis and J. Döbereiner. 1996. Emended description of Herbaspirillum: inclusion of “Pseudomonasrubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbi-cans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Int. J. Syst. Bacteriol. 46: 802– 810.PubMedCrossRefGoogle Scholar
  81. Baldani, V.L.D., J.I. Baldani, F. Olivares and J. Dobereiner. 1992. Identification and ecology of Herbaspirillum seropedicae and the closely related Pseudomonas rubrisubalbicans. Symbiosis 13: 65–73.Google Scholar
  82. Baldani, V.L.D., F.L. Olivares, S.R. Goi, J.I. Baldani and J. Döbereiner. 1994. Infection and colonization of rice and sugarcane plants by Her-baspirillum spp. Proceedings of the NATO Advanced Research Workshop on Azospirillum and related Microorganisms, Sárvar, Hungary. p. 5.Google Scholar
  83. Ballard, R.W., N.J. Palleroni, M. Doudoroff, R.Y. Stanier and M. Mandel. 1970. Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola, and P. caryophylli. J. Gen. Microbiol. 60: 199– 214.PubMedCrossRefGoogle Scholar
  84. Bano, N. and J.T. Hollibaugh. 2000. Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in the Arctic Ocean. Appl. Environ. Microbiol. 66: 1960–1969.PubMedCrossRefGoogle Scholar
  85. Baraldes, M.A., P. Domingo, J.L. Barrio, R. Pericas, M. Gurgui and G. Vazquez. 2000. Meningitis due to Neisseria subflava: Case report and review. Clin. infect. Dis. 30: 615–617.PubMedCrossRefGoogle Scholar
  86. Baraoidan, M.R. 1981. Bacterial stripe of rice: occurrence, identification and sources of inoculum, Thesis, University of the Philippines, Los Baños.Google Scholar
  87. Barelmann, I., J.M. Meyer, K. Taraz and H. Budzikiewicz. 1996. Cepaci-achelin, a new catecholate siderophore from Burkholderia (Pseudomonas) cepacia. Z. Naturforsch. Sect. C J. Biosci. 51: 627–630.Google Scholar
  88. Barrett, S.J. and P.H. Sneath. 1994. A numerical phenotypic taxonomic study of the genus Neisseria. Microbiology 140: 2867–2891.PubMedCrossRefGoogle Scholar
  89. Barsomian, G. and T.G. Lessie. 1986. Replicon fusions promoted by insertion sequences on Pseudomonas cepacia plasmid pTGL6. Mol. Gen. Genet. 204: 273–280.PubMedCrossRefGoogle Scholar
  90. Bart, A., J. Dankert and A. van der Ende. 1999. Antigenic variation of the class I outer membrane protein in hyperendemic Neisseria meningitidis strains ini the Netherlands. infect. Immun. 67: 3842–3846.PubMedGoogle Scholar
  91. Bartlett,J. and S.M. Finegold. 1978. Bacteriology of expectorated sputum with quantitative culture and wash technique compared to transtracheal aspirates. Am. Rev. Respir. Dis. 117: 1019–1027.PubMedGoogle Scholar
  92. Basnayake, W.V and R.G. Birch. 1995. A gene from Alcaligenes denitrificans that confers albicidin resistance by reversible antibiotic binding. Microbiology (Read.) 141: 551–560.CrossRefGoogle Scholar
  93. Batie, C.J., E. Lahaie and D.P. Ballou. 1987. Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia.J. Biol. Chem. 262: 1510–1518.PubMedGoogle Scholar
  94. Baumann, L. and P. Baumann. 1978. Studies of relationship among terrestrial Pseudomonas, Alcaligenes, and enterobacteria by an immunological comparison of glutamine synthetase. Arch. Microbiol. 119: 25– 30.PubMedCrossRefGoogle Scholar
  95. Baumann, L., P. Baumann, M. Mandel and R.D. Allen. 1972. Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110: 402–429.PubMedGoogle Scholar
  96. Baumann, L., R.D. Bowditch and P. Baumann. 1983. Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus, Alcaligenes pacificus, Alcaligenes cupidus, Alcaligenes venustus, and Pseudomonas marina Int. J. Syst. Bacteriol. 33: 793–802.CrossRefGoogle Scholar
  97. Baxter, I.A. and P.A. Lambert. 1994. Isolation and partial purification of a carbapenem hydrolysing metallo-β-lactamase from Pseudomonas cepacia. FEMS Microbiol. Lett. 122: 251–256.PubMedGoogle Scholar
  98. Baxter, I.A., P.A. Lambert and I.N. Simpson. 1997. Isolation from clinical sources of Burkholderia cepacia possessing characteristics of Burkholderia gladioli.J. Antimicrob. Chemother. 39: 169–175.PubMedCrossRefGoogle Scholar
  99. Beardsmore, A.J., P.N.G. Aperghis andJ.R. Quayle. 1982. Characterization of the assimilatory and dissimilatory pathways of carbon metabolism during growth of Methylophilus methylotrophus on methanol. J. Gen. Microbiol. 128: 1423–1440.Google Scholar
  100. Becking, J.H. 1981. The family Azotobacteraceae. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria, 1st Ed., Vol. 1, Springer-Verlag, Berlin. pp. 795–817.Google Scholar
  101. Beger, H. and G. Bringmann. 1953. Bisherige Anschauung über die Morphologie von Gallionella und neuere elektronenmikroskopische Befunde. Zentbl. Bakteriol. Parasitenkd. Infektkrankh. Hyg. Abt. II 107: 305–318.Google Scholar
  102. Behling, U.H., P. Phan and A. Nowotny. 1979. Biological activity of the slime and endotoxin of the periodontopathic organism Eikenella corrodens. Infect. Immunol. 26: 580–584.Google Scholar
  103. Bejuk, D., J. Begovac, A. Bace, N. Kuzmanovic-Sterk and B. Aleraj. 1995. Culture of Bordetella pertussis from three upper respiratory tract specimens. Pediatr. Infect. Dis. J. 14: 64–65.Google Scholar
  104. Belbahri, L., C. Boucher, T. Candresse, M. Nicole, P. Ricci and H. Keller. 2001. A local accumulation of the Ralstonia solanacearum PopA protein in transgenic tobacco renders a compatible plant-pathogen interaction incompatible. PlantJ. 28: 419–430.PubMedCrossRefGoogle Scholar
  105. Bell, S.C. andJ.M. Turner. 1973. Iodinin biosynthesis by a pseudomonad. Biochem. Soc. Trans. 1: 751–753.Google Scholar
  106. Beller, H.R. and A.M. Spormann. 1997. Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T. J. Bacteriol. 179: 670–676.PubMedGoogle Scholar
  107. Bemis, D.A., L.E. Carmichael and M.J.G. Appel. 1977. Naturally occurring respiratory disease in a kennel caused by Bordetella bronchiseptica. Cornell Vet. 67: 282–293.PubMedGoogle Scholar
  108. Ben-Tovim, T., E. Eylan, A. Romano and R. Stein. 1974. Gram-negative bacteria isolated from external eye infections. Infection 2: 162–165.PubMedCrossRefGoogle Scholar
  109. Berestetsky, O.A., L.F. Vasyuk, TA. Elisashvili and A.V Plyushch. 1985. The activity of nitrogen fixation and the effect of spirilla growing on plant roots. Mikrobiologiya 54: 1002–1007.Google Scholar
  110. Berger, U. 1960. Neisseria animalis nov. spec. Zeitschrift F. Hygiene. 147: 158–161.CrossRefGoogle Scholar
  111. Berger, U. 1962. Über das vorkommen von neisserien bei einigen tieren. Z. Hyg. Infektionskr. 148: 445–457.CrossRefGoogle Scholar
  112. Berger, U. 1963. Reinzüchtung von Simonsiella spp. Z. Hyg. 149: 336–340.CrossRefGoogle Scholar
  113. Berger, U. 1970. Untersuchungen yur Reduktionvon Nitrat und Nitrit durch Neisseria gonorrhoeae und Neisseria meningitidis. Z. Med. Mikro-biol. Immunol. 156: 86–89.CrossRefGoogle Scholar
  114. Berger, U. 1971. Neisseria mucosa var. heidelbergensis. Z. Med. Mikrobiol. Immunol. 156: 154–158.PubMedCrossRefGoogle Scholar
  115. Berger, U., I. Aboulkchair and W. Rottman. 1974. Sepsis und meningitis durch Neisseria mucosa var. heidelbergensis. Infection 2: 108–110.PubMedCrossRefGoogle Scholar
  116. Berger, U. and H. Brunhoeber. 1961. Neisseria flava (Bergey et al. 1923). Art oder Varietät? Z. Hyg. Infektionskr. 148: 39–44.PubMedCrossRefGoogle Scholar
  117. Berger, U. and E. Falsen. 1976. Über die Artenverteilung von Moraxella und Moraxella—ahnlichen Keimen im Nasopharynx gesunder Erwachsener. Med. Mikrobiol. Immunol. 162: 239–249.CrossRefGoogle Scholar
  118. Berger, U. and R. Issi. 1971. Resistenz gegen Acetezolamid als taxon-omisches Kriterium bei Neisseria. Arch. Hyg. 154: 540–544.Google Scholar
  119. Berger, U. and M. Miersch. 1970. The normal occurrence of Neisseria mucosa (Veron et al. 1959). Z Med Mikrobiol Immunol. 155: 186–191.PubMedCrossRefGoogle Scholar
  120. Berger, U. and H.D. Piotrowski. 1974. Die biochemische Diagnose von Neisseria elongata (Bøvre und Holten, 1970). Med. Microbiol. Immunol. 159: 309–316.PubMedCrossRefGoogle Scholar
  121. Berger, V. and B.W. Catlin. 1975. Biochemical differentiation between N. sicca and N. perflava. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I. Orig. Reike A. 232: 129–130.Google Scholar
  122. Bergeron, J., D. Ahmad, D. Barriault, A. Larose, M. Sylvestre and J. Pow-lowski. 1994. Identification and mapping of the gene translation products involved in the first steps of the Comamonas testosteroni B-356 biphenyl/chlorobiphenyl degradation pathway. Can. J. Microbiol. 40: 743–753.PubMedCrossRefGoogle Scholar
  123. Bergonzini, C. 1881. Sopra un nuovo bacterio colorato. Annuar. Soc. Nat. Modena, Ser. 2 14: 149–158.Google Scholar
  124. Berkhoff, H.A. and G.D. Riddle. 1984. Differentiation of Alcaligenes-like bacteria of avian origin and comparison with Alcaligenes spp. reference strains. J. Clin. Microbiol. 19: 477–481.PubMedGoogle Scholar
  125. Bernhard, M., T. Buhrke, B. Bleijlevens, A.L. De Lacey, V.M. Fernandez, S.P.J. Albracht and B. Friedrich. 2001. The H2 sensor of Ralstonia eutropha. Biochemical characteristics, spectroscopic properties, and its interaction with a histidine protein kinase. J. Biol. Chem. 276: 15592– 15597.PubMedCrossRefGoogle Scholar
  126. Bertolla, F, R. Pepin, E. Passelegue-Robe, E. Paget, A. Simkin, X. Nesme and P. Simonet. 2000. Plant genome complexity may be a factor limiting in situ the transfer of transgenic plant genes to the phytopath-ogen Ralstonia solanacearum. Appl. Environ. Microbiol. 66: 4161–4167.PubMedCrossRefGoogle Scholar
  127. Bertrand, J.L., B.A. Ramsay, J.A. Ramsay and C. Chavarie. 1990. Biosynthesis of poly-β-hydroxyalkanoates from pentoses by Pseudomonas pseu-doflava. Appl. Environ. Microbiol. 56: 3133–3138.PubMedGoogle Scholar
  128. Beuscher, N., F Mayer and G. Gottschalk. 1974. Citrate lyase from Rhodo-pseudomonas gelatinosa, electron microscopy and subunit structure. Arch. Microbiol. 100: 307–328.PubMedCrossRefGoogle Scholar
  129. Beveridge, T.J. and R.G.E. Murray. 1976. Dependence of the superficial layers of Spirillum putridiconchylium on Ca2 + or Sr2 +. Can.J. Microbiol. 22: 1233–1244.PubMedCrossRefGoogle Scholar
  130. Bevivino, A., S. Tabacchioni, L. Chiarini, M.V. Carusi, M. Del Gallo and P. Visca. 1994. Phenotypic comparison between rhizosphere and clinical isolates of Burkholderia cepacia. Microbiology 140: 1069–1077.PubMedCrossRefGoogle Scholar
  131. Beynon, L.M., A.D. Cox, C.J. Taylor, S.G. Wilkinson and M.B. Perry. 1995. Characterization of a lipopolysaccharide O antigen containing two different trisaccharide repeating units from Burkholderia cepacia serotype E (O2). Carbohydr. Res. 272: 231–239.PubMedCrossRefGoogle Scholar
  132. Bhat, M.A., T. Ishida, K. Horiike, C.S. Vaidyanathan and M. Nozaki. 1993. Purification of 3,5-dichlorocatechol 1,2-dioxygenase, a nonheme iron dioxygenase and a key enzyme in the biodegradation of a herbicide, 2,4- dichlorophenoxyacetic acid (2,4-D), from Pseudomonas cepacia CSV90. Arch. Biochem. Biophys. 300: 738–746.PubMedCrossRefGoogle Scholar
  133. Bhat, M.A., M. Tsuda, K. Horiike, M. Nozaki, C.S. Vaidyanathan and T. Nakazawa. 1994. Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90. Appl. Environ. Microbiol. 60: 307–312.PubMedGoogle Scholar
  134. Bianco, N., S. Neshat and K. Poole. 1997. Conservation of the multidrug resistance efflux gene oprM in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 41: 853–856.PubMedGoogle Scholar
  135. Biebl, H. 1973. Die Verbreitung der schwefelfreien Purpurbakterien im Plubsee und anderen Seen Ostholsteins, Ph.D. thesis, University of Freiburg, F.R.G.Google Scholar
  136. Biebl, H. and G. Drews. 1969. Das in-vivo-Spektrum als taxonomisches Merkmal bei Untersuchungen zur Bergreitung von Athiorhodoaceae. Zentbl. Bakteriol. Parasitenkd. Infektkrankh. Hyg. Abt. II Orig. 123: 425–452.Google Scholar
  137. Biebl, H. and N. Pfennig. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117: 9–16.CrossRefGoogle Scholar
  138. Biebl, H. and N. Pfennig. 1981. Isoation of members of Rhodospirillaceae. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokary-otes: A Handbook on Habitats, Isolation, and Identification of Bacteria, Springer-Verlag, Berlin. pp. 267–273.Google Scholar
  139. Bilos, Z.J., A. Kucharchuk and W. Metzger. 1978. Eikenella corrodens in human bites. Clin. Orthop. 134: 320–324.PubMedGoogle Scholar
  140. Birch, L. and H. Brandl. 1996. A rapid method for the determination of metal toxicity to the biodegradation of water insoluble polymers. Fresenius’ J. Anal. Chem. 354: 760–762.Google Scholar
  141. Birgisson, H., O. Steingrimsson and T. Gudnason. 1997. Kingella kingae infections in paediatric patients: 5 cases of septic arthritis, osteomyelitis and bacteraemia. Scand. J. Infect. Dis. 29: 495–498.PubMedCrossRefGoogle Scholar
  142. Bisacchi, G.S., D.R. Hockstein, W.H. Koster, W.L. Parker, M.L. Rathnum and S.E. Unger. 1987. Xylocandin: a new complex of antifungal peptides II. Structural studies and chemical modifications. J. Antibiot. 40: 1520–1529.PubMedCrossRefGoogle Scholar
  143. Biswas, G.D. and P.F. Sparling. 1995. Characterization of Lbpa, the structural gene for a lactoferrin receptor in Neisseria gonorrhoeae. Infect. Immun. 63: 2958–2967.PubMedGoogle Scholar
  144. Black, C.G., J.A. Fyfe and J.K. Davies. 1998. Absence of an SOS-like system in Neisseria gonorrhoeae. Gene 208: 61–66.PubMedCrossRefGoogle Scholar
  145. Blackall, L.L., A.C. Hayward and L.I. Sly. 1985. Cellulolytic and dextran-olytic Gram-negative bacteria — revival of the genus Cellvibrio. J. Appl. Bacteriol. 59: 81–97.CrossRefGoogle Scholar
  146. Blackall, P.J. and C.M. Doheny. 1987. Isolation and characterisation of Bordetella avium and related species and an evaluation of their role in respiratory disease in poultry. Aust. Vet. J. 64: 235–239.PubMedCrossRefGoogle Scholar
  147. Blackall, P.J., L.E. Eaves and M. Fegan. 1995. Antimicrobial sensitivity testing of Australian isolates of Bordetella avium and the Bordetella avium-like organism. Aust. Vet. J. 72: 97–100.PubMedCrossRefGoogle Scholar
  148. Blake, C.K. and G.D. Hegeman. 1987. Plasmid pCBI carries genes for anaerobic benzoate catabolism in Alcaligenes xylosoxidans subsp. denitrificans PN-1. J. Bacteriol. 169: 4878–4883.PubMedGoogle Scholar
  149. Blake, M.S., C.M. Blake, M.A. Apicella and R.E. Mandrell. 1995. Gonococcal opacity — lectin-like interactions between Opa proteins and lipooligosaccharide. Infect. Immun. 63: 1434–1439.PubMedGoogle Scholar
  150. Blake, M.S., C.M. Macdonald and K.P. Klugman. 1989. Colony morphology of piliated Neisseria meningitidis. J. Exp. Med. 170: 1727–1736.PubMedCrossRefGoogle Scholar
  151. Blakebrough, I.S., B.M. Greenwood, H.C. Whittle, A.K. Bradley and H.M. Gilles. 1982. The epidemiology of infections due to Neisseria menin-gitidis and Neisseria lactamica in a northern Nigerian community. J. Infect. Dis. 146: 626–637.PubMedCrossRefGoogle Scholar
  152. Blakemore, R.P., D. Maratea and R.S. Wolfe. 1979. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J. Bacteriol. 140: 720–729.PubMedGoogle Scholar
  153. Bleumink-Pluym, N.M.C. 1995. Taylorella equigenitalis: epidemiology and pathogenicity, Thesis, Utrecht University.Google Scholar
  154. Bleumink-Pluym, N.M.C., E.A. ter Laak and B.A.M. van der Zeijst. 1990. Epidemiologic study of Taylorella equigenitalis strains by field inversion gel electrophoresis of genomic restriction endonuclease fragments. J. Clin. Microbiol. 28: 2012–2016.PubMedGoogle Scholar
  155. Bleumink-Pluym, N.M.C., L. van Dijk, A.H.M. van Vliet, J.W.B. van der Giessen and B.A.M. van der Zeijst. 1993. Phylogenetic position of Taylorella equigenitalis determined by analysis of amplified 16S ribo-somal DNA sequences. Int. J. Syst. Bacteriol. 43: 618–621.PubMedCrossRefGoogle Scholar
  156. Bleumink-Pluym, N.M.C., M.E. Werdler, D.J. Houwers, J.M. Parlevliet, B. Colenbrander and B.A.M. van der Zeijst. 1994. Development and evaluation of PCR test for detection of Taylorella equigenitalis. J. Clin. Microbiol. 32: 893–896.PubMedGoogle Scholar
  157. Bloch, M. 1918. Beiträg zür Untersuchungen über die Zoogloca ramigera (Itzigsohn) auf Grund von Reinkulturen. Zentbl. Bakteriol. Parasi-tenkd. Infektkrankh. Hyg. Abt. II 48: 44–62.Google Scholar
  158. Blundell, J.K. and H.R. Perkins. 1981. Effects of beta-lactam antibiotics on peptidoglycan synthesis in growing Neisseria gonorrhoeae, including changes in the degree of O-acetylation. J. Bacteriol. 147: 633–641.PubMedGoogle Scholar
  159. Boivin, M.F., V.L. Morris, E.C.M. Lee-Chan and R.G.E. Murray. 1985. Deoxyribonucleic acid relatedness between selected members of the genus Aquaspirillum by slot blot hydridization: Aquaspirillum serpens (Mueller 1786) Hylemon, Wells, Krieg, and Jannasch 1973 emended to include Aquaspirillum bengal as a subjective synonym. Int. J. Syst. Bacteriol. 35: 512–517.CrossRefGoogle Scholar
  160. Boivin-Jahns, V., A. Bianchi, R. Ruimy, J. Garcin, S. Daumus and R. Christen. 1995. Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl. Environ. Microbiol. 61: 3400–3406.PubMedGoogle Scholar
  161. Boll, M., S.S.P. Albracht and G. Fuchs. 1997. Benzoyl-CoA reductase (de-aromatizing), a key enzyme of anaerobic aromatic metabolism: A study of adenosinetriphosphatase activity, ATP stoichiometry of the reaction and EPR properties of the enzyme. Eur. J. Biochem. 244: 840–851.PubMedCrossRefGoogle Scholar
  162. Bonnet, D., I. Artraud, C. Moali, D. Petre and D. Mansuy. 1997. Highly efficient control of iron-containing nitrile hydratase by stoichiometric amounts of nitric oxide and light. FEBS Lett. 409: 216–220.PubMedCrossRefGoogle Scholar
  163. Boon, N., J. Goris, P. De Vos, W. Verstraete and E.M. Top. 2001. Genetic diversity among 3-chloroaniline and aniline-degrading strains of the Comamonadaceae. Appl. Environ. Microbiol. 67: 1107–1115.PubMedCrossRefGoogle Scholar
  164. Bordet, J. and O. Gengou. 1906. Le microbe de al coqueluche. Ann. Inst. Pasteur (Paris) 20: 731–741.Google Scholar
  165. Borremans, B., J.L. Hobman, A. Provoost, N.L. Brown and D. van der Lelie. 2001. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J. Bacteriol. 183: 5651– 5658.PubMedCrossRefGoogle Scholar
  166. Borrow, R., H. Claus, M. Guiver, L. Smart, D.M. Jones, E.B. Kaczmarski, M. Frosch and A.J. Fox. 1997. Non-culture diagnosis and serogroup determination of meningococcal B and C infection by a sialyltrans-ferase (siaD) PCR ELISA. Epidemiol. Infect. 118: 111–117.PubMedCrossRefGoogle Scholar
  167. Bossier, P. and W. Verstraete. 1996. Comamonas testosteroni colony phenotype influences exopolysaccharide production and coaggregation with yeast cells. Appl. Environ. Microbiol. 62: 2687–2691.PubMedGoogle Scholar
  168. Bottone, E.J., J. Kittick and S.S. Schneierson. 1973. Isolation of Bacillus HB-1 from human clinical sources. Am. J. Clin. Pathol. 59: 560–566.PubMedGoogle Scholar
  169. Boucher, C., A. Martinel, P. Barberis, G. Alloing and C. Zischek. 1986. Virulence genes are carried by a megaplasmid of the plant pathogen Pseudomonas solanacearum. Mol. Gen. Genet. 205: 270–275.CrossRefGoogle Scholar
  170. Bourbeau, P., V. Holla and S. Piemontese. 1990. Ophthalmianeonatorum caused by Neisseria cinerea. J. Clin. Microbiol. 28: 1640–1641.PubMedGoogle Scholar
  171. Bøvre, K. 1964. Studies on transformation in Moraxella and organisms assumed to be related to Moraxella. 2. Quantitative transformation reactions between Moraxella nonliquefaciens strains, with streptomycin resistance marked DNA. Acta Pathol. Microbiol. Scand. 62: 239–248.Google Scholar
  172. Bøvre, K. 1965. Studies on transformation in Moraxella and organisms assumed to be related to Moraxella. 4. Streptomycin resistance transformation between asaccharolytic Neisseria strains. Acta Pathol. Microbiol. Scand. 64: 229–242.Google Scholar
  173. Bøvre, K. 1969. Identification of an asaccharolytic Neisseria strain causing meningitis. Acta Pathol. Microbiol. Scand. 76: 148–149.PubMedCrossRefGoogle Scholar
  174. Bøvre, K. 1979. Proposal to divide the genus Moraxella Lwoff 1939 emend. Henriksen and Bøvre 1968 into two subgenera — subgenus Moraxella (Lwoff 1939) Bøvre 1979 and subgenus Branhamella (Catlin 1970) Bøvre 1979. Int. J. Syst. Bacteriol. 29: 403–406.CrossRefGoogle Scholar
  175. Bøvre, K. 1980. Progress in classification and identification of Neisseriaceae based on genetic affinity. In Goodfellow and Board (Editors), Microbiological Classification and Identification, The Society for Applied Bacteriology Symposium Series No. 8, Academic Press, London. pp. 55–72.Google Scholar
  176. Bøvre, K., K. Bryn, O. Closs, N. Hagen and L.O. Frøholm. 1983. Surface polysaccharide of Moraxella nonliquefaciens identical to Neisseria men-ingitidis group B capsular polysaccharide: a chemical and immunological investigation. NIPH (Natl. Inst. Public Health) Ann. 6: 65–74.Google Scholar
  177. Bøvre, K. and L.O. Frøholm. 1971. Competence of genetic transformation correlated with the occurrence of fimbriae in three bacterial species. Nat. New Biol. 234: 151–152.PubMedCrossRefGoogle Scholar
  178. Bøvre, K. and L.O. Frøholm. 1972. Competence in genetic transformation related to colony type and fimbriation in three species of Moraxella. Acta Pathol. Microbiol. Scand. B Microbiol. Immunol. 80: 649– 659.PubMedGoogle Scholar
  179. Bøvre, K., L.O. Froholm, S.D. Henriksen and E. Holten. 1977. Relationship of Neisseria elongata subsp. glycolytica to other members of family Neisseriaceae. Acta Pathol. Microbiol. Scand. Sect. B Microbiol. 85: 18– 26.Google Scholar
  180. Bøvre, K., J.E. Fuglesang, N. Hagen, E. Jantzen and L.O. Frøholm. 1976. Moraxella atlantae sp. nov. and its distinction from Moraxella phenyl-pyruvica. Int. J. Syst. Bacteriol. 26: 511–521.CrossRefGoogle Scholar
  181. Bøvre, K. and N. Hagen. 1981. The family Neisseriaceae: rod-shaped species of the genera Moraxella, Acinetobacter, Kingella, and Neisseria, and the Branhamella group of cocci. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria, 1st Ed., Vol. 2, Springer-Verlag, New York. pp. 1506–1529.Google Scholar
  182. Bøvre, K., S.D. Henriksen and V. Jonsson. 1974. Correction of specific epithet kingii in the combinations Moraxella kingii Henriksen and Bøvre 1968 and Pseudomonas kingii Jonsson 1970 to kingae. Int. J. Syst. Bacteriol. 24: 307.CrossRefGoogle Scholar
  183. Bøvre, K. and E. Holten. 1970. Neisseria elongata sp.nov., a rod-shaped member of the genus Neisseria. Re-evaluation of cell shape as a criterion in classification. J. Gen. Microbiol. 60: 67–75..PubMedCrossRefGoogle Scholar
  184. Bøvre, K., R. Hytta, E. Jantzen and L.O. Frøholm. 1972. Gas chromatog-raphy of bacterial whole cell methanolysates. 3. Group relations of Neisseriae and Moraxellae. Acta Pathol. Microbiol. Scand. [B] Mi-crobiol. Immunol. 80: 683–689.Google Scholar
  185. Bowdre, J.H. and N.R. Krieg. 1974. Water quality monitoring: bacteria as indicators. Va. Polytech. Inst. State Univ. Water Resour. Res. Cent. Bull. 69:Google Scholar
  186. Bowdre, J.H., N.R. Krieg, P.S. Hoffman and R.M. Smibert. 1976. Stimulatory effect of dihydroxyphenyl compounds on the aerotolerance of Spirillum volutans and Campylobacter fetus subsp. jejuni. Appl. Environ. Microbiol. 31: 127–133.PubMedGoogle Scholar
  187. Bowman, J.P., L.I. Sly and A.C. Hayward. 1988. Pseudomonas mixta sp. nov., a bacterium from soil with degradative activity on a variety of complex polysaccharides. Syst. Appl. Microbiol. 11: 53–59.CrossRefGoogle Scholar
  188. Bowman, J.P., L.I. Sly and A.C. Hayward. 1989. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 29. Int. J. Syst. Bacteriol. 39: 205– 206.CrossRefGoogle Scholar
  189. Box, S.J., A.G. Brown, M.L. Gilpin, M.N. Gwynn and S.R. Spear. 1988. Mm-42842, a new member of the monobactam family produced by Pseudomonas cocovenenans II. Production, isolation and properties of Mm-42842. J. Antibiot. 41: 7–12.PubMedCrossRefGoogle Scholar
  190. Bradbury, J.F. 1973. Xanthomonas ampelina. Commonwealth Mycological Institute Descriptions of Pathogenic Fungi and Bacteria. No. 378, The Eastern Press Ltd., London.Google Scholar
  191. Bradbury, J.F. 1984. Genus II. Xanthomonas. In Krieg and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 1, The Williams & Wilkins Co., Baltimore. pp. 199–210.Google Scholar
  192. Bradley, D.E. 1980. Function of Pseudomonas aeruginosa PAO polar pili -twitching motility. Can. J. Microbiol. 26: 146–154.PubMedCrossRefGoogle Scholar
  193. Brambilla, E., H. Hippe, A. Hagelstein, B.J. Tindall and E. Stackebrandt. 2001. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5: 23–33.PubMedCrossRefGoogle Scholar
  194. Bramer, C.O. and A. Steinbuchel. 2001. The methylcitric acid pathway in Ralstonia eutropha: new genes identified involved in propionate metabolism. Microbiology 147: 2203–2214.PubMedGoogle Scholar
  195. Brandtzæg, P. 1995. Pathogenesis of meningococcal infections. In Cartwright (Editor), Meningococcal Disease, John Wiley and Sons Ltd., Chichester. pp. 71–114.Google Scholar
  196. Branham, S. 1930. A new meningococcus-like organism (Neisseria flaves-cens n. sp.) from epidemic meningitis. U.S. Public Health Serv. Rep. 45: 845–846.CrossRefGoogle Scholar
  197. Brannan, D.K. and D.E. Caldwell. 1980. Thermothrix thiopara: growth and metabolism of a newly isolated thermophile capable of oxidizing sulfur and sulfur compounds. Appl. Environ. Microbiol. 40: 211–216.PubMedGoogle Scholar
  198. Brannan, D.K. and D.E. Caldwell. 1982. Evaluation of a proposed surface colonization equation using Thermothrix thiopara as a model organism. Microb. Ecol. 8: 15–21.CrossRefGoogle Scholar
  199. Braun, K. and D.T. Gibson. 1984. Anaerobic degradation of 2-amino-benzoate (anthranilic acid) by denitrifying bacteria. Appl. Environ. Microbiol. 48: 102–107.PubMedGoogle Scholar
  200. Brett, P.J., D. Deshazer and D.E. Woods. 1997. Characterization of Burk-holderia pseudomallei and Burkholderia pseudomallei-like strains. Epidemiol. Infect. 118: 137–148.PubMedCrossRefGoogle Scholar
  201. Brett, P.J., D. DeShazer and D.E. Woods. 1998. Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int. J. Syst. Bacteriol. 48: 317–320.PubMedCrossRefGoogle Scholar
  202. Brett, P.J., D.C. Mah and D.E. Woods. 1994. Isolation and characterization of Pseudomonas pseudomallei flagellin proteins. Infect. Immun. 62: 1914–1919.PubMedGoogle Scholar
  203. Brett, P.J. and D.E. Woods. 1996. Structural and immunological characterization of Burkholderia pseudomallei O-polysaccharide flagellin protein conjugates. Infect. Immun. 64: 2824–2828.PubMedGoogle Scholar
  204. Brilon, C., W. Beckmann and H.-J. Knackmuss. 1981. Catabolism of naph-thalenesulfonic acids by Pseudomonas sp. A3 and Pseudomonas sp. C22. Appl. Environ. Microbiol. 42: 44–55.PubMedGoogle Scholar
  205. Brinkmann, U. and W. Reineke. 1992. Degradation of chlorotoluenes by in vivo constructed hybrid strains: problems of enzyme specificity, induction and prevention of meta-pathway. FEMS Microbiol. Lett. 75: 81–87.PubMedCrossRefGoogle Scholar
  206. Brinton, C.C., J. Bryan, J.-A. Dillon, N. Guerina, L.J. Jacobson, A. Labik, S. Lee, A. Levine, S. Lim, J. McMichael, S. Polen, K. Rogers, A.C.-C. To and S.C.-M. To. 1978. Uses of pili in gonorrhea control: Role of bacterial pili in disease, purification and properties of gonococcal pili, and progress in the development of a gonococcal pilus vaccine for gonorrhea. In Brooks, Gotschlich, Homes, Sawyer and Young (Editors), Immunobiology of Neisseria gonorrhoeae, American Society for Microbiology Press, Washington, D.C. pp. 155–178.Google Scholar
  207. Brock, F.M. and R.G. Murray. 1988. The ultrastructure and ATPase nature of polar membrane in Campylobacter jejuni. Can. J. Microbiol. 34: 594– 604.PubMedCrossRefGoogle Scholar
  208. Brokamp, A., B. Happe and F.R. Schmidt. 1997. Cloning and nucleotide sequence of a D,L-haloalkanoic acid dehalogenase encoding gene from Alcaligenes xylosoxidans subsp. denitrificans ABIV. Biodegradation 7: 383–396.CrossRefGoogle Scholar
  209. Brokamp, A. and F.R.J. Schmidt. 1991. Survival of Alcaligenes xylosoxidans degrading 2,2-dichloropropionate and horizontal transfer of its halidohydrolase in a soil microcosm. Curr. Microbiol. 22: 299–306.CrossRefGoogle Scholar
  210. Brooks, G.F., J.M. O’Donoghue and J.P. Rissing. 1974. Eikenella corrodens, a recently recognized pathogen: infections in medical-surgical patients and in association with methylphenylate abuse. Medicine (Baltimore) 53: 325–342.CrossRefGoogle Scholar
  211. Brosius, J., T.J. Dull, D.D. Sleeter and H.F. Noller. 1981. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148: 107–128.PubMedCrossRefGoogle Scholar
  212. Brothers, P.N., G. Blotny, L. Qi and R.M. Pollack. 1995. An active site phenylalanine of 3-oxo-delta 5-steroid isomerase is catalytically important for proton transfer. Biochemistry 34: 15453–15458.PubMedCrossRefGoogle Scholar
  213. Bruce, R.A., L.A. Achenbach and J.D. Coates. 1999. Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environ. Microbiol. 1: 319–329.PubMedCrossRefGoogle Scholar
  214. Bruckner, R.J. and S.H. Fahey. 1969. A giant bacterial form (Simonsiella) seen in oral exfoliative cytology preparations. Oral Surg. Oral Med. Oral Pathol. 28: 197–201.PubMedCrossRefGoogle Scholar
  215. Brumbley, S.M., B.F Carney and T.P. Denny. 1993. Phenotype conversion in Pseudomonas solanacearum due to spontaneous inactivation of PhcA, a putative LysR transcriptional regulator. J. Bacteriol. 175: 5477–5487.PubMedGoogle Scholar
  216. Brumbley, S.M. and T.P. Denny. 1990. Cloning of wild-type Pseudomonas solanacearum phcA, a gene that when mutated alters expression of multiple traits that contribute to virulence. J. Bacteriol. 172: 5677–5685.PubMedGoogle Scholar
  217. Brune, A., W. Ludwig and B. Schink. 2002. Propionivibrio limicola sp. nov, a fermentative bacterium specialized in the degradation of hydroaromatic compounds, reclassification of Propionibacterpelophilus and Propionivibrio pelophilus comb. nov. and amended description of the genus Propionivibrio. Int. J. Syst. Evol. Microbiol. 52: 441–444.PubMedGoogle Scholar
  218. Brunen, M. and H. Engelhardt. 1995. Significance of positively charged amino acids for the function of the Acidovorax delafieldii porin Omp34. FEMS Microbiol. Lett. 126: 127–132.CrossRefGoogle Scholar
  219. Brunen, M., H. Engelhardt, A. Schmid and R. Benz. 1991. The major outer membrane protein of Acidovorax delafieldii is an anion-selective porin. J. Bacteriol. 173: 4182–4187.PubMedGoogle Scholar
  220. Brunker, P., W. Minas, P.T. Kallio and J.E. Bailey. 1998. Genetic engineering of an industrial strain of Saccharopolyspora erythraea for stable expression of the Vitreoscilla haemoglobin gene (vhb). Microbiology 144: 2441–2448.PubMedCrossRefGoogle Scholar
  221. Bryant, R.D., K.M. McGroarty, J.W. Costerton and E.J. Laishley. 1983. Isolation and characterization of a new acidophilic Thiobacillus species (T. albertis). Can. J. Microbiol. 29: 1159–1170.CrossRefGoogle Scholar
  222. Bryn, K., E. Jantzen and K. Bøvre. 1977. Occurrence and patterns of waxes in Neisseriaceae. J. Gen. Microbiol. 102: 33–43.PubMedCrossRefGoogle Scholar
  223. Buchanan, G.E. and D.A. Kuhn. 1978. Patterns of growth and gliding motility in Simonsiella. Curr. Microbiol. 1: 257–262.CrossRefGoogle Scholar
  224. Buchanan, T.M. 1978. Antigen-specific serotyping of Neisseria gonor-rhoeae.1. Use of an enzyme-linked immunosorbent assay to quantitate pilus antigens on gonococci. J. Infect. Dis. 138: 319–325.PubMedCrossRefGoogle Scholar
  225. Buchanan, T.M., D.A. Eschenbach, J.S. Knapp and K.K. Holmes. 1980. Gonococcal salpingitis is less likely to recur with Neisseria gonorrhoeae of the same principal outer-membrane protein antigenic type. Am. J. Obstet. Gynecol. 138: 978–980.PubMedGoogle Scholar
  226. Buckle, K.A. and E. Kartadarma. 1990. Inhibition of bongkrek acid and toxoflavin production in tempe bongkrek containing Pseudomonas co-covenenans. J. Appl. Bacteriol. 68: 571–576.PubMedCrossRefGoogle Scholar
  227. Buckmire, F.L.A. 1971. A protective role for a cell wall protein layer of Spirillum serpens against infection by Bdellovibrio bacteriorovorus, Abstract G122. In Bacteriological Proceedings, American Society for Microbiology, Washington D.C. p. 43.Google Scholar
  228. Buckmire, F.L.A. and R.G.E. Murray. 1970. Studies on the cell wall of Spirillum serpens. 1. Isolation and partial purification of the outermost cell wall layer. Can. J. Microbiol. 16: 1011–1022.PubMedCrossRefGoogle Scholar
  229. Buhrke, T., B. Bleijlevens, S.P.J. Albracht and B. Friedrich. 2001. Involvement of hyp gene products in maturation of the H2-sensing (NiFe) hydrogenase of Ralstonia eutropha. J. Bacteriol. 183: 7087–7093.PubMedCrossRefGoogle Scholar
  230. Bulygina, E.S., N.I. Govorukhina, A.I. Netrusov, Y.A. Trotsenko and K.M. Chumakov. 1993. Comparative studies on 5S RNA sequences and DNA–DNA hybridization of obligately and restricted facultatively methylotrophic bacteria. Syst. Appl. Microbiol. 16: 85–91.CrossRefGoogle Scholar
  231. Burkhead, K.D., D.A. Schisler and P.J. Slininger. 1994. Pyrrolnitrin production by biological control agent Pseudomonas cepacia B37w in culture and in colonized wounds of potatoes. Appl. Environ. Microbiol. 60: 2031–2039.PubMedGoogle Scholar
  232. Burkholder, W.H. 1942. Three bacterial plant pathogens: Phytomonas caryophylli sp. n. Phytomonas alllicola sp. n., and Phytomonas manihotis (Ar-thaud-Berthet et Bondar) Viegas. Phytopathology 32: 141–149.Google Scholar
  233. Burns, J.L. and D.K. Clark. 1992. Salicylate inducible antibiotic resistance in Pseudomonas cepacia associated with absence of a pore forming outer membrane protein. Antimicrob. Agents Chemother. 36: 2280–2285.PubMedCrossRefGoogle Scholar
  234. Burns, J.L., C.D. Wadsworth, J.J. Barry and C.P. Goodall. 1996. Nucleotide sequence analysis of a gene from Burkholderia (Pseudomonas) cepacia encoding an outer membrane lipoprotein involved in multiple antibiotic resistance. Antimicrob. Agents Chemother. 40: 307–213.PubMedGoogle Scholar
  235. Busse, H.J. and G. Auling. 1988. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol. 11: 1–8.CrossRefGoogle Scholar
  236. Busse, H.J. and G. Auling. 1992. The genera Alcaligenes and “Achromobacter”. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 3, Springer-Verlag, New York. pp. 2544–2555.Google Scholar
  237. Busse, H.J., T. el Banna, H. Oyaizu and G. Auling. 1992. Identification of xenobiotic-degrading isolates from the beta subclass of the Proteobacteria by a polyphasic approach including 16S rRNA partial sequencing. Int. J. Syst. Bacteriol. 42: 19–26.PubMedCrossRefGoogle Scholar
  238. Butler, B.J., K.L. McCallum and W.E. Inniss. 1989. Characterization of Aquaspirillum arcticum sp. nov., a new psychrophilic bacterium. Syst. Appl. Microbiol. 12: 263–266.CrossRefGoogle Scholar
  239. Butterfield, C.T. 1935. Studies of sewage purification. II. A zoogloea-forming organism found in activated sludge. Pub. Health Rep. 50: 671–684.CrossRefGoogle Scholar
  240. Byng, G.S., J.L. Johnson, R.J. Whitaker, R.L. Gherna and R.A. Jensen. 1983. The evolutionary pattern of aromatic amino acid biosynthesis and the emerging phylogeny of pseudomonad bacteria. J. Mol. Evol. 19: 272–282.PubMedCrossRefGoogle Scholar
  241. Byng, G.S., R.J. Whitaker, R.L. Gherna and R.A. Jensen. 1980. Variable enzymological patterning in tyrosine biosynthesis as a means of determining natural relatedness among the Pseudomonadaceae. J. Bacteriol. 144: 247–257.PubMedGoogle Scholar
  242. Byrd, J.J., L.R. Zeph and L.E. Casida, Jr.. 1985. Bacterial control of Agromyces ramosus in soil. Can. J. Microbiol. 31: 1157–1163.CrossRefGoogle Scholar
  243. Byron, C.M., M.T. Stankovich, M. Hussain and V.L. Davidson. 1989. Unusual redox properties of electron-transfer flavoprotein from Methylophilus methylotrophus. Biochemistry 28: 8582–8587.PubMedCrossRefGoogle Scholar
  244. Cadwallader, K.R., R.J. Braddock and M.E. Parish. 1992. Isolationofalpha-terpineol dehydratase from Pseudomonas gladioli. J. Food. Sci. 57: 241–244.CrossRefGoogle Scholar
  245. Caldwell, D.E., S.J. Caldwell and J.P. Laycock. 1981. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 6. Int. J. Syst. Bacteriol. 31: 215–218.CrossRefGoogle Scholar
  246. Caldwell, D.E., S.J. Caldwell and J.P. Laylock. 1976. Thermothrix thioparus gen. et sp. nov. a facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature. Can. J. Microbiol. 22: 1509–1517.PubMedCrossRefGoogle Scholar
  247. Campbell, P.W., III, J.A. Phillips, III, G.J. Heidecker, M.R. Krishnamani, R. Zahorchak and T.L. Stull. 1995. Detection of Pseudomonas (Burkholderia) cepacia using PCR. Pediatr. Pulmonol. 20: 44–49.CrossRefGoogle Scholar
  248. Campêlo, A.B. and J. Döbereiner. 1970.. Ocorrêntia de Derxia sp. em solos de alguns Estados Brasileiro. Pesqui. Agropecuária Bras. 5: 327–332.Google Scholar
  249. Canale-Parola, E., S.L. Rosenthal and D.G. Kupfer. 1966. Morphological and physiological characteristics of Spirillum gracile sp. n. Antonie van Leeuwenhoek J. Microbiol. Serol. 32: 113–124.CrossRefGoogle Scholar
  250. Cannon, J.G., T.M. Buchanan and P.F. Sparling. 1983. Confirmation of association of protein-i serotype of Neisseria gonorrhoeae with ability to cause disseminated infection. Infect. Immun. 40: 816–819.PubMedGoogle Scholar
  251. Carandina, G., M. Bacchelli, A. Virgili and R. Strumia. 1984. Simonsiella filaments isolated from erosive lesions of the human oral cavity. J. Clin. Microbiol. 19: 931–933.PubMedGoogle Scholar
  252. Caraway, B.H. and N.R. Krieg. 1974. Aerotaxis in Spirillum volutans. Can. J. Microbiol. 20: 1367–1377.CrossRefGoogle Scholar
  253. Carbonetti, N.H., V.I. Simnad, H.S. Seifert, M. So and P.F. Sparling. 1988. Genetics of Protein-I of Neisseria gonorrhoeae— Construction of hybrid porins. Proc. Natl. Acad. Sci. U.S.A. 85: 6841–6845.PubMedCrossRefGoogle Scholar
  254. Carifo, K. and B.W. Catlin. 1973. Neisseria gonorrhoeae auxotyping: differentiation of clinical isolates based on growth responses on chemically defined media. Appl. Microbiol. 26: 223–230.PubMedGoogle Scholar
  255. Carney, J.F., L. Wan, T.E. Lovelace and R.R. Colwell. 1975. Numerical taxonomy study of Vibrio and Spirillum spp. Int. J. Syst. Bacteriol. 25: 38–46.CrossRefGoogle Scholar
  256. Carr, R.T., S. Balasubramanian, P.C.D. Hawkins and S.J. Benkovic. 1995. Mechanism of metal-independent hydroxylation by Chromobacterium violaceum phenylalanine hydroxylase. Biochemistry 34: 7525–7532.PubMedCrossRefGoogle Scholar
  257. Carr, R.T. and S.J. Benkovic. 1993. An examination of the copper requirement of phenylalanine hydroxylase from Chromobacterium violaceum. Biochemistry 32: 14132–14138.PubMedCrossRefGoogle Scholar
  258. Carrick, C.S., J.A. Fyfe and J.K. Davies. 1998. Neisseria gonorrhoeae contains multiple copies of a gene that may encode a site-specific recombinase and is associated with DNA rearrangements. Gene 220: 21–29.PubMedCrossRefGoogle Scholar
  259. Carruthers, M.M. and H.M. Sommers. 1973. Eikenella corrodens osteomyelitis. Ann. Intern. Med. 79: 900.PubMedGoogle Scholar
  260. Carter, H.V. 1888. Note on the occurrence of a minute blood-spirillum in an Indian rat. Sci. Mem. Offrs. Army India 3: 45–48.Google Scholar
  261. Cartwright, K.A.V. 1995. Meningococcal Disease, John Wiley and Sons Ltd., Chichester.Google Scholar
  262. Casalta, J.P., Y. Peloux, D. Raoult, P. Brunet and H. Gallais. 1989. Pneumonia and meningitis caused by a new nonfermentative unknown gram-negative bacterium. J. Clin. Microbiol. 27: 1446–1448.PubMedGoogle Scholar
  263. Casida, L.E., Jr. 1984. A growth initiation factor involved in magnesium utilization by certain soil bacteria. Can. J. Microbiol. 30: 824–829.CrossRefGoogle Scholar
  264. Casida, L.E., Jr 1987. Relation to copper of N-1, a nonobligate bacterial predator. Appl. Environ. Microbiol. 53: 1515–1518.PubMedGoogle Scholar
  265. Castellani, A. and A.J. Chalmers. 1919. Manual of Tropical Medicine, 3rd Ed., William Wood and Company, New York.Google Scholar
  266. Cataldi, M.S. 1939. Estudio fisiólogico y sistemático de algunas Chlamy-dobacteriales, Thesis, University of Buenos AiresGoogle Scholar
  267. Catlin, B.W. 1960. Transformation of Neisseria meningitidis by deoxyri-bonucleates from cells and from slime. J. Bacteriol. 79: 579–590.PubMedGoogle Scholar
  268. Catlin, B.W. 1970. Transfer of the organism named Neisseria catarrhalis to Branhamella gen. nov. Int. J. Syst. Bacteriol. 20: 155–159.CrossRefGoogle Scholar
  269. Catlin, B.W. 1973. Nutritional profiles of Neisseria gonorrhoeae, Neisseria meningitidis, Neisseria lactamica in chemically defined media and use of growth requirements for gonococcal typing. J. Infect. Dis. 128: 178–194.PubMedCrossRefGoogle Scholar
  270. Catlin, B.W. 1977. Nutritional requirements and auxotyping. In Roberts (Editor), The Gonococcus, John Wiley and Sons, New York. pp. 92–109.Google Scholar
  271. Catlin, B.W. 1978. Characterization and auxotyping of Neisseria gonorrhoeae. In Bergan and Norris (Editors), Methods in Microbiology, Vol. 10, Academic Press, New York. pp. 345–380.Google Scholar
  272. Catlin, B.W. 1991. Branhamaceae fam. nov., a proposed family to accommodate the genera Branhamella and Moraxella. Int. J. Syst. Bacteriol. 41: 320–323.CrossRefGoogle Scholar
  273. Catlin, B.W. and L.S. Cunningham. 1961. Transforming activities and base contents of deoxyribonucleate preparations from various neisseriae. J. Gen. Microbiol. 26: 303–312.PubMedCrossRefGoogle Scholar
  274. Caugant, D.A., L.O. Froholm, R.K. Selander and K. Bovre. 1989. Sulfonamide resistance in Neisseria meningitidis isolates of clones of the Et-5 complex. APMIS 97: 425–428.PubMedCrossRefGoogle Scholar
  275. Centers for Disease Control and Prevention 1998. Nosocomial Ralstonia pickettii colonization associated with intrinsically contaminated saline solution—Los Angeles, California, 1998. Morb. Mortal. Wkly. Rep. 47: 285–286.Google Scholar
  276. Centers for Disease Control and Prevention 2001. Recommended childhood immunization schedule - United States. Morb. Mortal. Wkly. Rep. 50: 7–10.Google Scholar
  277. Cerantola, S. and H. Montrozier. 1997. Structural elucidation of two polysaccharides present in the lipopolysaccharide of a clinical isolate of Burkholderia cepacia. Eur. J. Biochem. 246: 360–366.PubMedCrossRefGoogle Scholar
  278. Chadwick, P.R., H. Malnick and A.O. Ebizie. 1995. Haemophilus paraphro-philus infection: a pitfall in laboratory diagnosis. J. Infect. 30: 67–69.PubMedCrossRefGoogle Scholar
  279. Chakrabarty, A.M. 1976. Plasmids in Pseudomonas. Annu. Rev. Genet. 10: 7–30.PubMedCrossRefGoogle Scholar
  280. Chalcroft, J.P., H. Engelhardt and W. Baumeister. 1986. 3-Dimensional structure of a regular surface-layer from Pseudomonas acidovorans. Arch. Microbiol. 144: 196–200.CrossRefGoogle Scholar
  281. Chan, K.K., R. Bakhtiar and C. Jiang. 1997. Depsipeptide (FR901228, NSC-630176) pharmacokinetics in the rat by LC/MS/MS. Investig. New Drugs. 15: 195–206.CrossRefGoogle Scholar
  282. Chandrasekar, P.H., E. Arathoon and D.P. Levine. 1986. Infections due to Achromobacter xylosoxidans. Case report and review of the literature. Infection 14: 279–282.PubMedCrossRefGoogle Scholar
  283. Chang, Y.-H., J. Han, J. Chun, K.C. Lee, M.S. Rhee, Y.B. Kim and K.S. Bae. 2002. Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int. J. Syst. Evol. Microbiol. 52: 377–381.PubMedGoogle Scholar
  284. Chapman, J.A., R.G.E. Murray and M.R.J. Salton. 1963. The surface anatomy of Lampropedia hyalina. Proc. Roy. Soc. B. 158: 498–513.CrossRefGoogle Scholar
  285. Chapman, S.J. and H.R. Perkins. 1983. Peptidoglycan-degrading enzymes in ether-treated cells of Neisseria gonorrhoeae. J. Gen. Microbiol. 129: 877–883.PubMedGoogle Scholar
  286. Charles, I.G., G. Dougan, D. Pickard, S. Chatfield, M. Smith, P. Novotny, P. Morrissey and N.F. Fairweather. 1989. Molecular cloning and characterization of protective outer membrane protein P.69 from Bordetella pertussis. Proc. Natl. Acad. Sci. U.S.A. 86: 3554–3558.PubMedCrossRefGoogle Scholar
  287. Charlet, E. and W. Schwartz. 1954. Beiträge zur Biologie der Eisenmikroben. I. Untersuchungen über die Lebensweise von Leptothrix ochracea und einigen begleitenden Eisenmikroben. Schwiez. Z. Hydrol. 16: 318–341.Google Scholar
  288. Chase, A.R., J.W. Miller and J.B. Jones. 1984. Leaf spot and blight of Asplenium nidus caused by Pseudomonas gladioli. Plant Dis. 68: 344–347.Google Scholar
  289. Cheah, E., K. Macpherson, D. Quiggin, P. Keese and D.L. Ollis. 1998. Crystallization and preliminary X-ray analysis of IND, an enzyme with indole oxygenase activity from Chromobacterium violaceum. Acta Crystallographica Section D Biological Crystallography. 54:Google Scholar
  290. Chee-Sanford, J.C., J.W. Frost, M.R. Fries, J. Zhou and J.M. Tiedje. 1996. Evidence for acetyl coenzyme A and cinnamoyl coenzyme A in the anaerobic toluene mineralization pathway in Azoarcus tolulyticus Tol-4. Appl. Environ. Microbiol. 62: 964–973.PubMedGoogle Scholar
  291. Chekanova, Y.A. and G.A. Dubinina. 1990. Cytochemical localization of hydrogen peroxide and superoxide radicals in the cells of the colorless sulfur bacterium Macromonas bipunctata. Mikrobiologiya 59: 856–862.Google Scholar
  292. Chen, C. 1996. Distribution of a newly described species, Kingella oralis, in the human oral cavity. Oral Microbiol. Immunol. 11: 425–427.PubMedCrossRefGoogle Scholar
  293. Chen, W.M., S. Laevens, T.M. Lee, T. Coenye, P. De Vos, M. Mergeay and P. Vandamme. 2001. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int. J. of Syst. Evol. Microbiol. 51: 1729–1735.CrossRefGoogle Scholar
  294. Cheng, H.P. and T.G. Lessie. 1994. Multiple replicons constituting the genome of Pseudomonas cepacia 17616. J. Bacteriol. 176: 4034–4042.PubMedGoogle Scholar
  295. Chernin, L.S., M.K. Winson, J.M. Thompson, S. Haran, B.W. Bycroft, I. Chet, P. Williams and G.S.A.B. Stewart. 1998. Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J. Bacteriol. 180: 4435–4441.PubMedGoogle Scholar
  296. Cheron, M., E. Abachin, E. Guerot, M. el Bez and M. Simonet. 1994. Investigation of hospital-acquired infections due to Alcaligenes denitrificans subsp. xylosoxydans by DNA restriction fragment length polymorphism. J. Clin. Microbiol. 32: 1023–1026.PubMedGoogle Scholar
  297. Cherry, J.D. 1996. Historical review of pertussis and the classical vaccine. J. Infect. Dis. 174 (Suppl 3): S259–263.PubMedCrossRefGoogle Scholar
  298. Chester, I.R. and R.G.E. Murray. 1975. Analysis of the cell wall and lipopolysaccharide of Spirillum serpens. J. Bacteriol. 124: 1168–1176.PubMedGoogle Scholar
  299. Cholodny, N. 1924. Zur Morphologie der Eisenbakterien Gallionella und Spirophyllum. Ber. Dtsch. Bot. Ges. 42: 35–44.Google Scholar
  300. Cholodny, N. 1926. In Kolkwitz (Editor), Die Eisenbakterien. Beiträge zur einer Monographie. Pflanzenforsch. Heft 4, G. Fischer, Jena. 1–162.Google Scholar
  301. Chong, C.Y and M.S. Lam. 1997. Case report and review of chromo-bacterium sepsis: a gram-negative sepsis mimicking melioidosis. SMJ. 38: 263–265.Google Scholar
  302. Chorpenning, F.W., D.H. Schmidt, H.B. Stamper and P.R. Dugan. 1978. Antigenic relationships among floc-forming Pseudomonadaceae. Ohio J. Sci. 78: 29–33.Google Scholar
  303. Christenson, J.C., D.F. Welch, G. Mukwaya, M.J. Muszynski, R.E. Weaver and D.J. Brenner. 1989. Recovery of Pseudomonas gladioli from respiratory tract specimens of patients with cystic fibrosis. J. Clin. Microbiol. 27: 270–273.PubMedGoogle Scholar
  304. Christopher, W.N. and C.W. Edgerton. 1930. Bacterial stripe diseases of sugarcane in Louisiana. J. Agr. Res. 41: 259–267.Google Scholar
  305. Cihlar, R.L., T.G. Lessie and S.C. Holt. 1978. Characterization of bacteriophage Cp1, an organic solvent sensitive phage associated with Pseudomonas cepacia. Can. J. Microbiol. 24: 1404–1412.PubMedCrossRefGoogle Scholar
  306. Claesson, B., E. Falsen and B. Kjellman. 1985. Kingella kingae infections: a review and a presentation of data from 10 Swedish cases. Scand. J. Infect. Dis. 17: 233–243.PubMedGoogle Scholar
  307. Claflin, L.E., B.A. Ramundo, J.E. Leach and I.D. Erinle. 1989. Pseudomonas avenae, causal agent of bacterial leaf stripe on pearl millet. Plant Dis. 73: 1010–1014.CrossRefGoogle Scholar
  308. Clark, V.L., L.A. Campbell, D.A. Palermo, T.M. Evans and K.W. Klimpel. 1987. Induction and repression of outer-membrane proteins by anaerobic growth of Neisseria gonorrhoeae. Infect. Immun. 55: 1359–1364.PubMedGoogle Scholar
  309. Clark, V.L., J.S. Knapp, S. Thompson and K.W. Klimpel. 1988. Presence of antibodies to the major anaerobically induced gonococcal outermembrane protein in sera from patients with gonococcal infections. Microb. Pathog. 5: 381–390.PubMedCrossRefGoogle Scholar
  310. Clark, W.A., D.G. Hollis, R.E. Weaver and P. Riley. 1984. Identification of unusual pathogenic gram-negative aerobic and facultatively anaerobic bacteria, U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control, Atlanta.Google Scholar
  311. Clark-Walker, G.D. 1969. Association of microcyst formation in Spirillum itersonii with the spontaneous induction of a defective bacteriophage. J. Bacteriol. 97: 885–892.PubMedGoogle Scholar
  312. Clark-Walker, G.D. and S.B. Primrose. 1971. Isolation and characterization of a bacteriophage Si 1 for Spirillum itersonii. J. Gen. Virol. 11: 139–145.PubMedCrossRefGoogle Scholar
  313. Clarke, R.T.J. 1979. Niche in pasture-fed ruminants for the large rumen bacteria Oscillospira, Lampropedia, and Quinn’s and Eadie’s ovals. Appl. Environ. Microbiol. 37: 654–657.PubMedGoogle Scholar
  314. Clausen, V., J.G. Jones and E. Stackebrandt. 1985. 16S ribosomal RNA analysis of Filibacter limicola indicates a close relationship to the genus Bacillus. J. Gen. Microbiol. 131: 2659–2663.PubMedGoogle Scholar
  315. Cleasby, A., E. Garman, M.R. Egmond and M. Batenburg. 1992. Crystallization and preliminary X-ray study of a lipase from Pseudomonas glumae. J. Mol. Biol. 224: 281–282.PubMedCrossRefGoogle Scholar
  316. Cleenwerck, I., M. DeWachter, B. Hoste, D. Janssens and J. Swings. 2003. Aquaspirillum dispar Hylemon et al. 1973 and Microvirgula aerodenitrificans Patureau et al. 1998 are subjective synonyms; the name Micro-virgula dispar comb. nov. is proposed for this taxon. Int. J. Syst. Evol. Microbiol. 53: 1457–1459.PubMedCrossRefGoogle Scholar
  317. Clough, S.J., K.E. Lee, M.A. Schell and T.P. Denny. 1997. A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxy-palmitic acid methyl ester. J. Bacteriol. 179: 3639–3648.PubMedGoogle Scholar
  318. Clough, S.J., M.A. Schell and T.P. Denny. 1994. Evidence for involvement of a volatile extracellular factor in Pseudomonas solanacearum virulence gene expression. Mol. Plant-Microbe Interact. 7: 621–630.CrossRefGoogle Scholar
  319. Coates, J.D., U. Michaelidou, R.A. Bruce, S.M. O’Connor, J.N. Crespi and L.A. Achenbach. 1999. Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl. Environ. Microbiol. 65: 5234–5241.PubMedGoogle Scholar
  320. Coenye, T., E. Falsen, B. Hoste, M. Ohlen, J. Goris, J.R.W. Govan, M. Gillis and P. Vandamme. 2000. Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norim-bergensis comb. nov. Int. J. Syst. Evol. Microbiol. 50: 887–899.CrossRefGoogle Scholar
  321. Coenye, T. and J.J. LiPuma. 2002. Use of the gyrB gene for the identification of Pandoraea species. FEMS Microbiol. Lett. 208: 15–19.PubMedCrossRefGoogle Scholar
  322. Cole, J.A. and S.C. Rittenberg. 1971. A comparison of respiratory processes in Spirillum volutans, Spirillum itersonii, and Spirillum serpens. J. Gen. Microbiol. 69: 375–383.PubMedCrossRefGoogle Scholar
  323. Collin, B. 1913. Sur en ensemble de protistes parasites des bactraciens (note préliminaire). Arch. Zool. Exp. Gen. Notes Rev. 51: 59–76.Google Scholar
  324. Collins, R.F., L. Davidsen, J.P. Derrick, R.C. Ford and T. Tonjum. 2001. Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J. Bacteriol. 183: 3825–3832.PubMedCrossRefGoogle Scholar
  325. Colloc, M.L., O. Masure, Y. Perramant, B. Lejeune and C. Chastel. 1980. Actualités des infections á Eikenella corrodens. Medicine et Maladies Infectieuses. 10: 387–390.CrossRefGoogle Scholar
  326. Connell, T.D., W.J. Black, T.H. Kawula, D.S. Barritt, J.A. Dempsey, K. Kverneland, A. Stephenson, B.S. Schepart, G.L. Murphy and J.G. Cannon. 1988. Recombination among protein-ii genes of Neisseria gonorrhoeae generates new coding sequences and increases structural variability in the protein-ii family. Mol. Microbiol. 2: 227–236.PubMedCrossRefGoogle Scholar
  327. Contzen, M., E.R.B. Moore, S. Blümel, A. Stolz and P. Kämpfer. 2000. Hydrogenophaga intermedia sp. nov., a 4-aminobenzene-sulfonate degrading organism. Syst. Appl. Microbiol. 23: 487–493.PubMedCrossRefGoogle Scholar
  328. Cook, G.T. 1950. A plate test for nitrate reduction. J. Clin. Pathol. 3: 359–362.PubMedCrossRefGoogle Scholar
  329. Cooke, V.M., M.N. Hughes and R.K. Poole. 1995. Reduction of chromate by bacteria isolated from the cooling water of an electricity generating station. J. Ind. Microbiol. Biotechnol. 14: 323–328.Google Scholar
  330. Cookson, B.T., P. Vandamme, L.C. Carlson, A.M. Larson, J.V. Sheffield, K. Kersters and D.H. Spach. 1994. Bacteremia caused by a novel Bordetella species, Candidatus B. hinzii. J. Clin. Microbiol. 32: 2569–2571.PubMedGoogle Scholar
  331. Coote, J.G. and H. Hassal. 1973. The degradation of l-histidine, imida-zolyl-l-lactate and imidazolyl-propionate by Pseudomonas testosteroni. Biochem. J. 132: 409–422.PubMedGoogle Scholar
  332. Corbett, M.J., R.J. Black and C.E.I. Wilde. 1986. Antibodies to outer membrane protein–macromolecular complex (OMP-MC) are bactericidal for serum resistant gonococci. In Poolman, Zanen, Meyer, Heckels, Mäkelä, Smith and Beuvery (Editors), Gonococci and Meningococci, Klüwer Academic Publishers, Dordrecht. pp. 685–691.Google Scholar
  333. Cornelissen, C.N., M. Kelley, M.M. Hobbs, J.E. Anderson, J.G. Cannon, M.S. Cohen and P.F. Sparling. 1998. The transferrin receptor expressed by gonococcal strain FA1090 is required for the experimental infection of human male volunteers. Mol. Microbiol. 27: 611–616.PubMedCrossRefGoogle Scholar
  334. Corpe, W.A. 1951. A study of the wide spread distribution of Chromobacterium species in soil by a simple technique. J. Bacteriol. 62: 515–517.PubMedGoogle Scholar
  335. Corstjens, P.L.A.M., J.P.M. De Vrind, P. Westbroek and E.W. De Vrind-De Jong. 1992. Enzymatic iron oxidation by Leptothrix discophora: identification of an iron-oxidizing protein. Appl. Environ. Microbiol. 58: 450–454.PubMedGoogle Scholar
  336. Corstjens, P. and G. Muyzer. 1993. Phylogenetic analysis of the metaloxidizing bacteria Leptothrix discophora and Sphaerotilus natans using 16S-rDNA sequencing data. Syst. Appl. Microbiol. 16: 219–223.CrossRefGoogle Scholar
  337. Cortes, G., A. Mendoza and D. Munoz. 1996. Toxicity evaluation using bioassays in Rural Developing District 063 Hidalgo, Mexico. Environ. Toxicol. Water Qual. 11: 137–143.CrossRefGoogle Scholar
  338. Costerton, J.W.F., R.G.E. Murray and C.F. Robinow. 1961. Observations on the motility and the structure of Vitreoscilla. Can. J. Microbiol. 7: 329–339.PubMedCrossRefGoogle Scholar
  339. Cotter, P.A., M.H. Yuk, S. Mattoo, B.J. Akerley, J. Boschwitz, D.A. Relman and J.F. Miller. 1998. Filamentous hemagglutinin of Bordetella bronchiseptica is required for efficient establishment of tracheal colonization. Infect. Immun. 66: 5921–5929.PubMedGoogle Scholar
  340. Coulton, J.W. and R.G.E. Murray. 1978. Cell envelope associations of Aquaspirillum serpens flagella. J. Bacteriol. 136: 1037–1049.PubMedGoogle Scholar
  341. Covacevich, M.T. and G.N. Richards. 1978. Studies on dextranases. 7. Purification of intracellular dextranases and deuterium-glucosidases from Pseudomonas UQM 733. Carbohydr. Res. 64: 169–180.PubMedCrossRefGoogle Scholar
  342. Cover, W.H. 1978. Studies of the microaerophilic nature of Spirillum volutans, Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.Google Scholar
  343. Cowan, S.T. 1974. Cowan and Steel’s manual for the identification of medical bacteria, 2nd Ed., Cambridge University Press, London.Google Scholar
  344. Cox, A.D. and S.G. Wilkinson. 1991. Ionizing groups in lipopolysaccharides of Pseudomonas cepacia in relation to antibiotic resistance. Mol. Microbiol. 5: 641–646.PubMedCrossRefGoogle Scholar
  345. Cox, C.D., K.L. Rinehart, M.L. Moore and J.C. Cook. 1981. Pyochelin: novel ntructure of an iron chelating growth promoter for Pseudomonas aeruginosa. Proc. Nat. Acad. Sci. U.S.A. 78: 4256–4260.CrossRefGoogle Scholar
  346. Coykendall, A.L. and K.S. Kaczmarek. 1980. DNA homologies among Eikenella corrodens strains. J. Periodontal Res. 15: 615–620.PubMedCrossRefGoogle Scholar
  347. Crabtree, K. and E. McCoy. 1967. Zoogloea ramigera Itzigsohn, identification and description. Request for an opinion as to the status of the generic name Zoogloea. Int. J. Syst. Bacteriol. 17: 1–10.CrossRefGoogle Scholar
  348. Cramm, R., A. Pohlmann and B. Friedrich. 1999. Purification and characterization of the single-component nitric oxide reductase from Ralstonia eutropha H16. FEBS Lett. 460: 6–10.PubMedCrossRefGoogle Scholar
  349. Cronin, D., Y. Moenne-Loccoz, C. Dunne and F. O’Gara. 1997. Inhibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. Eur. J. Plant Pathol. 103: 433–440.CrossRefGoogle Scholar
  350. Crotchfelt, K.A., L.E. Welsh, D. DeBonville, M. Rosenstraus and T.C. Quinn. 1997. Detection of Neisseria gonorrhoeae and Chlamydia trachomatis in genitourinary specimens from men and women by a coamplification PCR assay. J. Clin. Microbiol. 35: 1536–1540.PubMedGoogle Scholar
  351. Cullinane, L.C., M.R. Alley, R.B. Marshall and B.W. Manktelow. 1987. Bordetella parapertussis from lambs. N. Z. Vet. J. 35: 175–175.PubMedCrossRefGoogle Scholar
  352. Cummings, D.E., F. Caccavo, S. Spring and R.F. Rosenzweig. 1999. Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)- reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch. Microbiol. 171: 183–188.CrossRefGoogle Scholar
  353. Cummings, D.E., F. Caccavo, S. Spring and R.F. Rosenzweig. 2000. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List No.77. Int. J. Syst. Evol. Microbiol. 50: 1953.CrossRefGoogle Scholar
  354. Daane, L.L., J.A. Molina, E.C. Berry and M.J. Sadowsky. 1996. Influence of earthworm activity on gene transfer from Pseudomonas fluorescens to indigenous soil bacteria. Appl. Environ. Microbiol. 62: 515–521.PubMedGoogle Scholar
  355. Dagley, S. and M.D. Patel. 1957. Oxidation of p-cresol and related compounds by a Pseudomonas. Biochem. J. 66: 227–233.PubMedGoogle Scholar
  356. Dailey, H.A., Jr. 1976. Membrane-bound respiratory chain of Spirillum itersonii. J. Bacteriol. 127: 1286–1291.PubMedGoogle Scholar
  357. Dailey, H.A., Jr. and J. Lascelles. 1974. Ferrochelatase activity in wild-type and mutant strains of Spirillum itersonii. Arch. Biochem. Biophys. 160: 523–529.PubMedCrossRefGoogle Scholar
  358. Dainty, R.H., D.J. Etherington, B.G. Shaw, J. Barlow and G.T. Banks. 1978. Studies on the production of extracellular proteinases by a non-pig-mented strain of Chromobacterium lividum isolated from abbatoir effluent. J. Appl. Bacteriol. 45: 111–124.PubMedCrossRefGoogle Scholar
  359. D’Amato, R.F., L.A. Eriquez, K.M. Tomfahrde and E. Singerman. 1978. Rapid identification of Neisseria gonorrhoeae and Neisseria meningitidis by using enzymatic profiles. J. Clin. Microbiol. 7: 77–81.PubMedGoogle Scholar
  360. Daneshvar, M.I., D.G. Hollis, A.G. Steigerwalt, A.M. Whitney, L. Spangler, M.P. Douglas, J.G. Jordan, J.P. MacGregor, B.C. Hill, F.C. Tenover, D.J. Brenner and R.S. Weyant. 2001. Assignment of CDC weak oxidizer group 2 (WO-2) to the genus Pandoraea and characterization of three new Pandoraea genomospecies. J. Clin. Microbiol. 39: 1819–1826.PubMedCrossRefGoogle Scholar
  361. Danganan, C.E., S. Shankar, R.W. Ye and A.M. Chakrabarty. 1995. Substrate diversity and expression of the 2,4,5-trichlorophenoxyacetic acid oxygenase from Burkholderia cepacia AC1100. Appl. Environ. Microbiol. 61: 4500–4504.PubMedGoogle Scholar
  362. Danganan, C.E., R.W. Ye, D.L. Daubaras, L. Xun and A.M. Chakrabarty. 1994. Nucleotide sequence and functional analysis of the genes encoding 2,4,5- trichlorophenoxyacetic acid oxygenase in Pseudomonas cepacia AC1100. Appl. Environ. Microbiol. 60: 4100–4106.PubMedGoogle Scholar
  363. Dangmann, E., A. Stolz, A.E. Kuhm, A. Hammer, B. Feigel, R.N. Noisommit, M. Rizzi, M. Reuss and H.J. Knackmuss. 1996. Degradation of 4-aminobenzenesulfonate by a two-species bacterial coculture. Biodegradation 7: 223–229.PubMedCrossRefGoogle Scholar
  364. Daniel, S.L., H.M. Cook, P.A. Hartman and M.J. Allison. 1989. Enumeration of anaerobic oxalate-degrading bacteria in the ruminal contents of sheep. FEMS Microbiol. Ecol. 62: 329–334.CrossRefGoogle Scholar
  365. Dasen, S.E., J.J. LiPuma, J.R. Kostman and T.L. Stull. 1994. Characterization of PCR-ribotyping for Burkholderia (Pseudomonas) cepacia. J. Clin. Microbiol. 32: 2422–2424.PubMedGoogle Scholar
  366. Davidson, D., B. Beheshti and M.W. Mittelman. 1996. Effects of Arthrobacter sp., Acidovorax delafieldii, and Bacillus megaterium colonisation on copper solvency in a laboratory reactor. Biofouling 9: 279–292.CrossRefGoogle Scholar
  367. Davis, D.H., M. Doudoroff, R.Y. Stanier and M. Mandel. 1969. Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int. J. Syst. Bacteriol. 19: 375–390.CrossRefGoogle Scholar
  368. Davis, D.H., R.Y. Stanier, M. Doudoroff and M. Mandel. 1970. Taxonomic studies on some Gram negative polarly flagellated “hydrogen bacteria” and related species. Arch. Mikrobiol. 70: 1–13.PubMedCrossRefGoogle Scholar
  369. Davis, G.H.G. and R.W.A. Park. 1962. A taxonomic study of certain bacteria currently classified as Vibrio species. J. Gen. Microbiol. 27: 101–119.PubMedCrossRefGoogle Scholar
  370. Davis, R.H. and M.R. Salton. 1975. Some properties of a D-alanine carboxypeptidase in envelope fractions of Neisseria gonorrhoeae. Infect. Immun. 12: 1065–1069.PubMedGoogle Scholar
  371. Dawson, K.A. 1979. Enrichment, isolation and characterization of anaerobic oxalate-degrading bacteria from the rumen, Doctoral thesis, Iowa State University. 92 pp.Google Scholar
  372. De Baere, T., S. Steyaert, G. Wauters, P. De Vos, J. Goris, T. Coenye, T. Suyama, G. Verschraegen and M. Vaneechoutte. 2001. Classification of Ralstonia pickettii biovar 3/‘thomasii’ strains (Pickett 1994) and of new isolates related to nosocomial recurrent meningitis as Ralstonia mannitolytica sp. nov. Int. J. Syst. Evol. Microbiol. 51: 547–558.PubMedGoogle Scholar
  373. de Jong, G.A., A. Geerlof, J. Stoorvogel, J.A. Jongejan, S. de Vries and J.A. Duine. 1995. Quinohaemoprotein ethanol dehydrogenase from Comamonas testosteroni. Purification, characterization and reconstitution of the apoenzyme with pyrroloquinoline quinone analogues. Eur. J. Biochem. 230: 899–905.PubMedCrossRefGoogle Scholar
  374. De Ley, J. 1992. The Proteobacteria ribosomal RNA cistron similarities and bacterial taxonomy. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 2, Springer-Verlag, New York. pp. 2111–2140.Google Scholar
  375. De Ley, J. and I.W. Park. 1966. Molecular biological taxonomy of some free living nitrogen-fixing bacteria. Antonie Leeuwenhoek J. Microbiol. Serol. 32: 6–16.CrossRefGoogle Scholar
  376. De Ley, J., P. Segers and M. Gillis. 1978. Intra- and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 28: 154–168.CrossRefGoogle Scholar
  377. De Ley, J., P. Segers, K. Kersters, W. Mannheim and A. Lievens. 1986. Intrageneric and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family, Alcaligenaceae. Int. J. Syst. Bacteriol. 36: 405–414.CrossRefGoogle Scholar
  378. De Rore, H., K. Demolder, K. De Wilde, E. Top, F. Houwen and W. Verstraete. 1994. Transfer of the catabolic plasmid RP4::Tn4371 to indigenous soil bacteria and its effect on respiration and biphenyl breakdown. FEMS Microbiol. Ecol. 15: 71–77.CrossRefGoogle Scholar
  379. De Smedt, J., M. Banwens, R. Tijtgat and J. De Ley. 1980. Intra- and intergeneric similarities of ribosomal ribonucleic acid cistrons of free living, nitrogen-fixing bacteria. Int. J. Syst. Bacteriol. 30: 106–122.CrossRefGoogle Scholar
  380. de Souza, M.P. and D.C. Yoch. 1995. Purification and characterization of dimethylsulfoniopropionate lyase from an Alcaligenes like dimethyl sulfide-producing marine isolate. Appl. Environ. Microbiol. 61: 21–26.PubMedGoogle Scholar
  381. de Toni, J.B. and V. Trevisan. 1889. Schizomycetaceae Naeg. In Saccardo (Editor), Sylloge fungorum omnium hujusque cognitorum, Vol. 8, pp. 923–1087.Google Scholar
  382. de Vries, F.P., R. Cole, J. Dankert, M. Frosch and J.P.M. van Putten. 1998. Neisseria meningitidis producing the Opc adhesin binds epithelial cell proteoglycan receptors. Mol. Microbiol. 27: 1203–1212.PubMedCrossRefGoogle Scholar
  383. Degryse, E., N. Glansdorff and A. Pierard. 1978. A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch. Microbiol. 117: 189–196.PubMedCrossRefGoogle Scholar
  384. Dehning, I. and B. Schink. 1990. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 34. Int. J. Syst. Bacteriol. 40: 320–321.CrossRefGoogle Scholar
  385. Delafield, F.P., M. Doudoroff, N.J. Palleroni, C.J. Lusty and R. Contopoulos. 1965. Decomposition of poly-β-hydroxybutyrate by pseudomonads. J. Bacteriol. 90: 1455–1466.PubMedGoogle Scholar
  386. Delaporte, B. 1964. Etude comparee de grands spirilles format des spores: Sporospirillum (Spirillum) praeclarum (Collie) n. g., Sporospirillum gyrini n sp. et Sporospirillum bisporum n. sp. Ann. Inst. Pasteur (Paris) 107: 246–262.Google Scholar
  387. DeMello, F.J. and M.S. Leonard. 1979. Eikenella corrodens, a new pathogen. Oral Surg. 45: 401–404.CrossRefGoogle Scholar
  388. Dempsey, J.A., A.B. Wallace and J.G. Cannon. 1995. The physical map of the chromosome of a serogroup A strain of Neisseria meningitidis shows complex rearrangements relative to the chromosomes of the two mapped strains of the closely related species N. gonorrhoeae. J. Bacteriol. 177: 6390–6400.PubMedGoogle Scholar
  389. Denisov, I.I. and V.I. Kapliev. 1991. The level of spontaneous phage production and sensitivity to melioidosis phages of museum cultures of Pseudomonas pseudomallei. Mikrobiol. Zh. 53: 66–70.PubMedGoogle Scholar
  390. Denisov, I.I. and V.I. Kapliev. 1995. The isolation and characteristics of cloned strains of Pseudomonas pseudomallei phages. Mikrobiol. Zh. 57: 53–56.Google Scholar
  391. Derrick, J.P., R. Urwin, J. Suker, I.M. Feavers and M.C.J. Maiden. 1999. Structural and evolutionary inference from molecular variation in Neisseria porins. Infect. Immun. 67: 2406–2413.PubMedGoogle Scholar
  392. Desjardins, M., C. Fenlon and D. Madison. 1999. Non-chromogenic Chromobacterium violaceum bacteremia. Clin. Microbiol. Newsl. 21: 14–16.CrossRefGoogle Scholar
  393. Deveer, A.M.T.J., R. Dijkman, M. Leuvelingtjeenk, L. Vandenberg, S. Ransac, M. Batenburg, M. Egmond, H.M. Verheij and G.H. Dehaas. 1991. A monolayer and bulk study on the kinetic behavior of Pseudomonas glumae lipase using synthetic pseudoglycerides. Biochemistry 30: 10034–10042.PubMedCrossRefGoogle Scholar
  394. Devereux, J., P. Haeberli and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12: 387– 395.PubMedCrossRefGoogle Scholar
  395. DeVoe, I.W. and J.E. Gilchrist. 1975. Pili on meningococci from primary cultures of nasopharyngeal carriers and cerebrospinal fluid of patients with acute disease. J. Exp. Med. 141: 297–305.PubMedCrossRefGoogle Scholar
  396. Dewhirst, F.E., C.K.C. Chen, B.J. Paster and J.J. Zambon. 1993. Phylogeny of species in the family Neisseriaceae isolated from human dental plaque and description of Kingella orale, sp. nov. Int. J. Syst. Bacteriol. 43: 490–499.PubMedCrossRefGoogle Scholar
  397. Dewhirst, F.E., B.J. Paster and P.L. Bright. 1989. Chromobacterium, Eikenella, Kingella, Neisseria, Simonsiella, and Vitreoscilla species comprise a major branch of the beta group Proteobacteria by 16S ribosomal ribonucleic acid sequence comparison: transfer of Eikenella and Simonsiella to the family Neisseriaceae (emend). Int. J. Syst. Bacteriol. 39: 258–266.CrossRefGoogle Scholar
  398. Dewhirst, F.E., B.J. Paster, S. La Fontaine and J.I. Rood. 1990. Transfer of Kingella indologenes (Snell and Lapage 1976) to the genus Suttonella gen. nov. as Suttonella indologenes comb. nov.; transfer of Bacteroides nodosus (Beveridge 1941) to the genus Dichelobacter gen. nov. as D. nodosus comb. nov.; and assignment of the genera Cardiobacterium, Dichelobacter, and Suttonella to Cardiobacteriaceae fam. nov. in the gamma division of Proteobacteria on the basis of 16S rRNA sequence comparisons. Int. J. Syst. Bacteriol. 40: 426–433.PubMedCrossRefGoogle Scholar
  399. Dianese, J.C., J. Dobereiner and L.T. Dos Santos. 1989. Membrane protein patterns of three Azospirillum species and Herbaspirillum seropedicae. Ann. Acad. Bras. Cienc. 61: 223–230.Google Scholar
  400. Dias, F.F. and J.V. Bhat. 1964. Microbial ecology of activated sludge. Appl. Microbiol. 12: 412–417.PubMedGoogle Scholar
  401. Dillon, J.R. and M. Pauze. 1981. Appearance in Canada of Neisseria gonorrhoeae strains with a 3.2 megadalton penicillinase-producingplasmid and a 24.5 megadalton transfer plasmid. Lancet 2: 700.PubMedCrossRefGoogle Scholar
  402. Dillon, J.R., M. Pauze and K.H. Yeung. 1983. Spread of penicillinase-producing and transfer plasmids from the gonococcus to Neisseria meningitidis. Lancet 1: 779–781.PubMedCrossRefGoogle Scholar
  403. Dillon, J.A. and K.H. Young. 1989. Beta-lactamase plasmids and chro-mosomally mediated antibiotic resistance in pathogenic Neisseria species. Clin. Microbiol. Rev. 2 Suppl: S125–S133.PubMedGoogle Scholar
  404. Döbereiner, J. 1991. The genera Azospirillum and Herbaspirillum.In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 3, Springer-Verlag, New York. 2236–2253.Google Scholar
  405. Döbereiner, J. and V.L.D. Baldani. 1998. Biological nitrogen fixation by endophytic diazotrophs in non-leguminous crops in the tropics. In Malik, Mirza and Ladha (Editors), Nitrogen Fixation with Non-Legumes, Kluwer Academic Publishers, Dordecht. pp. 3–7.CrossRefGoogle Scholar
  406. Döbereiner, J., V.L.D. Baldani and J.I. Baldani. 1995. Como isolar e identificar bacterias diazotroficas de plants nao-leguminosas, Embrapa-SPI: Itaguai, RJ: Embrapa-CNPAB, Brasilia.Google Scholar
  407. Dobson, S.J. and P.D. Franzmann. 1996. Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int. J. Syst. Bacteriol. 46: 550–558.CrossRefGoogle Scholar
  408. Dobson, S.J., T.A. McMeekin and P.D. Franzmann. 1993. Phylogenetic relationships between some members of the genera Deleya, Halomonas, and Halovibrio. Int. J. Syst. Bacteriol. 43: 665–673.PubMedCrossRefGoogle Scholar
  409. Don, R.H. and J.M. Pemberton. 1981. Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J. Bacteriol. 145: 681–686.PubMedGoogle Scholar
  410. Dondero, N.C. 1975. The Sphaerotilus-Leptothrix group. Annu. Rev. Microbiol. 29: 407–428.PubMedCrossRefGoogle Scholar
  411. Dorff, G.F., L.J. Jackson and M.W. Rytel. 1974. Infections with Eikenella corrodens, a newly recognized human pathogen. Ann. Intern. Med. 80: 305–309.PubMedGoogle Scholar
  412. Dorff, P. 1934. Die Eisenorganismen. Pflanzenforsch. Heft 16. Hrsg. von Kolkwitz, F. Fischer, Jena.Google Scholar
  413. Doronina, N.V. and Y.A. Trotsenko. 1994. Methylophilus leisingerii sp. nov., a new species of restricted facultatively methylotrophic bacteria. Mikrobiologiya 63: 529–536.Google Scholar
  414. Dörr, J., T. Hurek and B. Reinhold-Hurek. 1998. Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol. Microbiol. 30: 7–17.PubMedCrossRefGoogle Scholar
  415. Doudoroff, M. and R.Y. Stanier. 1959. Role of poly-β-hydroxybutyric acid in the assimilation of organic carbon by bacteria. Nature 183: 1440–1442.PubMedCrossRefGoogle Scholar
  416. Douglas, S.L., M.K. Lee and H. Nikaido. 1981. Protein I of Neisseria gonorrhoeae is a porin. FEMS Microbiol. Lett. 12: 305–309.CrossRefGoogle Scholar
  417. Drake, S.L. and M. Koomey. 1995. The product of the pilQ gene is essential for the biogenesis of type IV pili in Neisseria gonorrhoeae. Mol. Microbiol. 18: 975–986.PubMedCrossRefGoogle Scholar
  418. Drake, S.L., S.A. Sandstedt and M. Koomey. 1997. PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a highmolecular-mass multimer. Mol. Microbiol. 23: 657–668.PubMedCrossRefGoogle Scholar
  419. Drewlo, S., C.O. Bramer, M. Madkour, F. Mayer and A. Steinbuchel. 2001. Cloning and expression of a Ralstonia eutropha HF39 gene mediating indigo formation in Escherichia coli. Appl. Environ. Microbiol. 67: 1964–1969.PubMedCrossRefGoogle Scholar
  420. Drobner, E., H. Huber, R. Rachel and K.O. Stetter. 1992. Thiobacillus plumbophilus, sp. nov, a novel galena and hydrogen oxidizer. Arch. Microbiol. 157: 213–217.PubMedCrossRefGoogle Scholar
  421. Dubinina, G.A. and M.Y. Grabovich. 1984. Isolation, cultivation and characteristics of Macromonas bipunctata. Mikrobiologiya 53: 748–755.Google Scholar
  422. Dubinina, G.A. and M.Y. Grabovich. 1989. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 31. Int. J. Syst. Bacteriol. 39: 495–497.CrossRefGoogle Scholar
  423. Dubinina, G.A., M.Y. Grabovich, A.M. Lysenko, N.A. Chernykh and V.V. Churikova. 1993. Revision of taxonomic position of colorless sulfur spirilla of the genus Thiospira and description of a new species Aquaspirillum bipunctata comb. nov. Microbiology 62: 368–644.Google Scholar
  424. Dudley, J.P., E.J.C. Goldstein, W.L. George, B.V. Bock, B.D. Kirby and S.M. Finegold. 1978. Sinus infection due to Eikenella corrodens. Arch. Otolaryngol. 104: 462–463.PubMedCrossRefGoogle Scholar
  425. Duetz, W.A., C. Dejong, P.A. Williams and J.G. Vanandel. 1994. Competition in chemostat culture between Pseudomonas strains that use different pathways for the degradation of toluene. Appl. Environ. Microbiol. 60: 2858–2863.PubMedGoogle Scholar
  426. Dugan, P.R. and D.G. Lundgren. 1960. Isolation of the floc-forming organism Zoogloea ramigera and its culture in complex and synthetic media. Appl. Microbiol. 8: 357–361.PubMedGoogle Scholar
  427. Dunbar, J.M., I. Zlatkin and L.J. Forney. 1995. Variation in genome organization among Variovorax paradoxus clones isolated from soil. In Center for Microbial Ecology, an NSF Science and Technology Center, Research Findings, Center for Microbial Ecology, Michigan State University, East Lansing.Google Scholar
  428. Dunne, W.M., Jr. and S. Maisch. 1995. Epidemiological investigation of infections due to Alcaligenes species in children and patients with cystic fibrosis: use of repetitive-element-sequence polymerase chain reaction. Clin. Infect. Dis. 20: 836–841.PubMedCrossRefGoogle Scholar
  429. Duran, N., R.V. Antonio, M. Haun and R.A. Pilli. 1994. Biosynthesis of a trypanocide by Chromobacterium violaceum. World J. Microbiol. Biotechnol. 10: 686–690.CrossRefGoogle Scholar
  430. Duran, N. and C.F. Menck. 2001. Chromobacterium violaceum: a review of pharmacological and industiral perspectives. Crit. Rev. Microbiol. 27: 201–222.PubMedCrossRefGoogle Scholar
  431. Dutka, B.J., N. Nyholm and J. Petersen. 1983. Comparison of several microbiological toxicity screening tests. Water Res. 17: 1363–1368.CrossRefGoogle Scholar
  432. Dutton, P.L. and W.C. Evans. 1969. The metabolism of aromatic compounds by Rhodopseudomonas palustris. Biochem. J. 113: 525–536.PubMedGoogle Scholar
  433. Eadie, J.M. 1962. The development of rumen microbial populations in lambs and calves under various conditions of management. J. Gen. Microbiol. 29: 563–578.CrossRefGoogle Scholar
  434. Ebisu, S., H. Nakae and H. Okada. 1988. Coaggregation of Eikenella corrodens with oral bacteria mediated by bacterial lectin-like substance. Adv. Dent. Res. 2: 323–327.PubMedGoogle Scholar
  435. Ebisu, S. and H. Okada. 1983. Agglutination of human erythrocytes by Eikenella corrodens. FEMS Microbiol. Lett. 18: 153–156.CrossRefGoogle Scholar
  436. Eden, P.A. and R.P. Blakemore. 1991. Electroporation and conjugal plasmid transfer to members of the genus Aquaspirillum. Arch. Microbiol. 155: 449–452.PubMedCrossRefGoogle Scholar
  437. Edwards, C.E. and R. Kraus. 1960. Spirillum serpens meningitis: Report of a case. N. Engl. J. Med. 262: 458–460.PubMedCrossRefGoogle Scholar
  438. Egener, T., T. Hurek and B. Reinhold-Hurek. 1999. Endophytic expression of nif genes of Azoarcus sp. strain BH72 in rice roots. Mol. PlantMicrobe Interact. 12: 813–819.CrossRefGoogle Scholar
  439. Egener, T., D.E. Martin, A. Sarkar and B. Reinhold-Hurek. 2001. Role of a ferredoxin gene cotranscribed with the nifHDK operon in N2 fixation and nitrogenase “switch-off” of Azoarcus sp. strain BH72. J. Bacteriol. 183: 3752–3760.PubMedCrossRefGoogle Scholar
  440. Ehrenberg, C.G. 1832. Beiträge zür Kenntnis der Organization der Infusorien und ihrer geographischen Verbreitung, besonders in Sibirien, Abh. Konig Akad. Wiss., 1830, Berlin. pp. 88.Google Scholar
  441. Ehrenberg, C.G. 1836. Vorlaufige Mittheilung uber das wirkliche Vorkommen fossiler Infusorien und ihre grosse Verbreitung. Ann. Phys. Chem. 38: 213–227.Google Scholar
  442. Ehrenberg, C.G. 1838. Die Infusionthierchen als vollkommene Organismen: ein Blick in das tiefere organische Leben der Natur, L. Voss, Leipzig. pp. i–xvii; 1–547.CrossRefGoogle Scholar
  443. Eikelboom, D.H. 1975. Filamentous organisms observed in activated sludge. Water Res. 9: 365–388.CrossRefGoogle Scholar
  444. Eiken, M. 1958. Studies on an anaerobic rod-shaped Gram-negative microorganism: Bacteroides corrodens N. sp. Acta Pathol. Microbiol. Scand. 43: 404–416.PubMedGoogle Scholar
  445. Eisenberg, J. 1891. Bacteriologische Diagnostik Hiflstabellen zum Gebrauche beim Praktischen Arbeiten 3 Aufl, Leopold Voss, Hamburg.Google Scholar
  446. Eisenstein, B.I., T. Sox, G. Biswas, E. Blackman and P.F. Sparling. 1977. Conjugal transfer of the gonococcal penicillinase plasmid. Science 195: 998–1000.PubMedCrossRefGoogle Scholar
  447. Ekendahl, S., J. Arlinger, F. Ståhl and K. Pedersen. 1994. Characterization of attached bacterial populations in deep granitic groundwater from the Stripa research mine by 16S ribosomal RNA gene sequencing and scanning electron microscopy. Microbiology (Reading) 140: 1575– 1583.CrossRefGoogle Scholar
  448. Elander, R.P., J.A. Mabe, R.H. Hamill and M. Gorman. 1968. Metabolism of tryptophans by Pseudomonas aureofaciens. VI. Production of pyrrolnitrin by selected Pseudomonas species. Appl. Microbiol. 16: 753–758.PubMedGoogle Scholar
  449. Eldering, G. and P.L. Kendrick. 1938. Bacillus parapertussis: A species resembling both Bacillus pertussis and Bacillus bronchisepticus but identical to neither. J. Bacteriol. 35: 561–572.PubMedGoogle Scholar
  450. ElRayes, E.G., I.M. Banat and I.Y. Hamdan. 1991. Methanol metabolism and ammonia assimilation in four Methylophilus strains. Acta Biotechnol. 11: 87–93.CrossRefGoogle Scholar
  451. Engelhard, M., T. Hurek and B. Reinhold-Hurek. 2000. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ. Microbiol. 2: 131–141.PubMedCrossRefGoogle Scholar
  452. Enright, M.C., P.E. Carter, I.A. MacLean and H. McKenzie. 1994. Phylogenetic relationships between some members of the genera Neisseria, Acinetobacter, Moraxella, and Kingella based on partial 16S ribosomal DNA sequence analysis. Int. J. Syst. Bacteriol. 44: 387–391.PubMedCrossRefGoogle Scholar
  453. Enright, M.C. and B.G. Spratt. 1999. Multilocus sequence typing. Trends Microbiol. 7: 482–487.PubMedCrossRefGoogle Scholar
  454. Ensminger, P.W. 1953. Pigment production by Haemophilus parapertussis. J. Bacteriol. 63: 509–510.Google Scholar
  455. Erasmus, H.D., F.N. Matthee and H.A. Louw. 1974.Acomparisonbetween plant pathogenic species of Pseudomonas, Xanthomonas, and Erwinia with special reference to the bacterium responsible for bacterial blight of vines. Phtyophylactica. 6: 11–18.Google Scholar
  456. Ewanowich, C.A., L.W. Chui, M.G. Paranchych, M.S. Peppler, R.G. Marusyk and W.L. Albritton. 1993. Major outbreak of pertussis in northern Alberta, Canada: analysis of discrepant directfluorescent-antibody and culture results by using polymerase chain reaction methodology. J. Clin. Microbiol. 31: 1715–1725.PubMedGoogle Scholar
  457. Ewers, J., D. Freier Schroder and H.J. Knackmuss. 1990. Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE. Arch. Microbiol. 154: 410–413.PubMedCrossRefGoogle Scholar
  458. Faast, R., M.A. Ogierman, U.H. Stroeher and P.A. Manning. 1989. Nucleotide sequence of the structural gene, tcpA, for a major pilin subunit of Vibrio cholerae. Gene 85: 227–231.PubMedCrossRefGoogle Scholar
  459. Facinelli, B. and P.E. Varaldo. 1987. Plasmid-mediated sulfonamide resistance in Neisseria meningitidis. Antimicrob. Agents Chemother. 31: 1642–1643.PubMedCrossRefGoogle Scholar
  460. Falk, E.C., J.L. Johnson, V.L.D. Baldani, J. Döbereiner and N.R. Krieg. 1986. Deoxyribonucleic and ribonucleic acid homology studies of the genera Azospirillum and Conglomeromonas. Int. J. Syst. Bacteriol. 36: 80–85.CrossRefGoogle Scholar
  461. Falsen, E. 1996. Catalogue of strains, CCUG Culture Collection, University of Göteborg, Sweden.Google Scholar
  462. Fantino, M.G. and C. Bazzi. 1982. Azione antagonista di Pseudomonas cepacia verso Fusarium oxysporum f.sp. cepae. Inf. Fitopol. 32: 55–58.Google Scholar
  463. Farrah, S.R. and R.F. Unz. 1975. Fluorescent antibody study of natural finger-like zoogloeae. Appl. Microbiol. 30: 132–139.PubMedGoogle Scholar
  464. Farrah, S.R. and R.F. Unz. 1976. Isolation of exocellular polymer from Zoogloea strains MP6 and 106 and from activated sludge. Appl. Environ. Microbiol. 32: 33–37.PubMedGoogle Scholar
  465. Fass, R.J. and J. Barnishan. 1976. Acute meningitis due to a Pseudomonas-like Group Va-1 bacillus. Ann. Intern. Med. 84: 51–52.PubMedGoogle Scholar
  466. Faur, Y.C., M.H. Weisburd and M.E. Wilson. 1973. A new medium for the isolation of pathogenic Neisseria (NYC nmedium). 3. Performance as a culture and transport medium without addition of ambient carbon dioxide. Health Lab. Sci. 10: 61–74.PubMedGoogle Scholar
  467. Feavers, I.M. and M.C.J. Maiden. 1998. A gonococcal porA pseudogene: implications for understanding the evolution and pathogenicity of Neisseria gonorrhoeae. Mol. Microbiol. 30: 647–656.PubMedCrossRefGoogle Scholar
  468. Feil, E., J. Zhou, J. Maynard Smith and B.G. Spratt. 1996. A comparison of the nucleotide sequences of the adk and recA genes of pathogenic and commensal Neisseria species: evidence for extensive interspecies recombination within adk. J. Mol. Evol. 43: 631–640.PubMedCrossRefGoogle Scholar
  469. Fellinger, B.E. 1924. Untersuchungen über die Mundoscillarien des Menschen. Zentralbl. Bakteriol. Abt. 1 Orig. 91: 398–401.Google Scholar
  470. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368–376.PubMedCrossRefGoogle Scholar
  471. Felsenstein, J. 1982. Numerical methods for inferring evolutionary trees. Q. Rev. Biol. 57: 379–404.CrossRefGoogle Scholar
  472. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39: 783–791.CrossRefGoogle Scholar
  473. Felsenstein, J. 1989. PHYLIP-Phylogeny Inference Package. Cladistics 5: 164–166.Google Scholar
  474. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package), Version 3.5c. Department of Genetics, University of Washington, Seattle.Google Scholar
  475. Felter, R.A., R.R. Colwell and G.B. Chapman. 1969. Morphology and round body formation in Vibrio marinus. J. Bacteriol. 99: 326–335.PubMedGoogle Scholar
  476. Fernandez, R.C. and A.A. Weiss. 1994. Cloning and sequencing of a Bordetella pertussis serum resistance locus. Infect. Immun. 62: 4727–4738.PubMedGoogle Scholar
  477. Ferreiros, C.M., L. Ferron and M.T. Criado. 1994. In vivo human immuneresponse to transferrin-binding protein-2 and other iron-regulated proteins of Neisseria meningitidis. FEMS Immunol. Med. Microbiol. 8: 63–68.PubMedCrossRefGoogle Scholar
  478. Ferry, N.S. 1911. Etiology of canine distemper. J. Infect. Dis. 8: 399–420.CrossRefGoogle Scholar
  479. Ferry, N.S. 1912. Bacillus bronchisepticus (bronchicanis): the cause of distemper in dogs and a similar disease in other animals. Vet. J. 68: 376–391.Google Scholar
  480. Fetzner, S., R. Muller and F. Lingens. 1989. Degradation of 2-chloroben-zoate by Pseudomonas cepacia 2CBS. Bio. Chem. Hoppe-Seyler 370: 1173–1182.CrossRefGoogle Scholar
  481. Fetzner, S., R. Muller and F. Lingens. 1992. Purification and some properties of 2-halobenzoate 1,2-dioxygenase, a two-component enzyme system from Pseudomonas cepacia 2CBS. J. Bacteriol. 174: 279–290.PubMedGoogle Scholar
  482. Finegold, S.M. and H. Jousimies-Somer. 1997. Recently described clinically important anaerobic bacteria: medical aspects. Clin. Infect. Dis. 25 (Suppl. 2): S88–S93.PubMedCrossRefGoogle Scholar
  483. Finn, T.M. and L.A. Stevens. 1995. Tracheal colonization factor: a Bordetella pertussis secreted virulence determinant. Mol. Microbiol. 16: 625–634.PubMedCrossRefGoogle Scholar
  484. Finne, J.M., M. Leinonen and P.H. Mäkelä. 1983. Antigenic similarities between brain components and bacteria causing meningitis. Lancet ii: 7175–7179.Google Scholar
  485. Finstein, M.S. 1967. Growth and flocculation in a Zoogloea culture. Appl. Microbiol. 15: 962–963.PubMedGoogle Scholar
  486. Flesher, S.A. and E.J. Bottone. 1989. Eikenella corrodens cellulitis and arthritis of the knee. J. Clin. Microbiol. 27: 2606–2608.PubMedGoogle Scholar
  487. Fletcher, M.T., P.J. Blackall and C.M. Doheny. 1987. A note on the iso-prenoid quinone content of Bordetella avium and related species. J. Appl. Bacteriol. 62: 275–277.PubMedCrossRefGoogle Scholar
  488. Florin, C., T. Kohler, M. Grandguillot and P. Plesiat. 1996. Comamonas testosteroni 3-ketosteroid-d4(5-a)-dehydrogenase: gene and protein characterization. J. Bacteriol. 178: 3322–3330.PubMedGoogle Scholar
  489. Flügge, C. 1886. Die Microorganismen, F. C. W. Vogel, Leipzig.Google Scholar
  490. Foissner, W. 1977. Euplotes moebiusi f. quadricirratus (Ciliophora, Hypotrichida). II. Die Feinstruktur einiger cytoplasmatischer Organellen. Naturkd. Jahrb. Stadt Linz. 23: 17–24.Google Scholar
  491. Foss, S. and J. Harder. 1998. Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov, isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) and nitrate. Syst. Appl. Microbiol. 21: 365–373.PubMedCrossRefGoogle Scholar
  492. Foss, S. and J. Harder. 1999. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 68. Int. J. Syst. Bacteriol. 49: 1–3.CrossRefGoogle Scholar
  493. Fothergill, J.C. and J.R. Guest. 1977. Catabolism of L-lysine by Pseudomonas aeruginosa. J. Gen. Microbiol. 99: 139–155.PubMedCrossRefGoogle Scholar
  494. Fox, K.K. and J.S. Knapp. 1999. Antimicrobial resistance in Neisseria gonorrhoeae. Curr. Opin. Urol. 9: 65–70.PubMedCrossRefGoogle Scholar
  495. Fraenkel, D.G. 1992. Genetics and intermediary metabolism. Annu. Rev. Gen. 26: 159–177.CrossRefGoogle Scholar
  496. Franzmann, P.D. and B.J. Tindall. 1990. A chemotaxonomic study of members of the family Halomonadaceae. Syst. Appl. Microbiol. 13: 142–147.CrossRefGoogle Scholar
  497. Frasch, C.E. 1980. Role of lipopolysaccharide in wheat germ agglutinin-mediated agglutination of Neisseria meningitidis and Neisseria gonorrhoeae. J. Clin. Microbiol. 12: 498–501.PubMedGoogle Scholar
  498. Frasch, C.E. 1989. Vaccines for prevention of meningococcal disease. Clin. Microbiol. Rev. 2: S134–S138.PubMedGoogle Scholar
  499. Frazier, W.C. 1926. A method for the detection of changes in gelatin due to bacteria. J. Infect. Dis. 39: 302–309.CrossRefGoogle Scholar
  500. Freitag, N.E., H.S. Seifert and M. Koomey. 1995. Characterization of the pilF–pilD pilus-assembly locus of Neisseria gonorrhoeae. Mol. Microbiol. 16: 575–586.PubMedCrossRefGoogle Scholar
  501. Freitas, M., F.A. Rainey, M.F. Nobre, A.J. Silvestre and M.S. da Costa. 2003. Tepidimonas aquatica sp. nov., a new slightly thermophilic β-proteobacterium isolated from a hot water tank. Syst. Appl. Microbiol. 26: 376–381.PubMedCrossRefGoogle Scholar
  502. Friedman, B.A. and P.R. Dugan. 1968. Identification of Zoogloea species and the relationship to zoogloeal matrix and floc formation. J. Bacteriol. 95: 1903–1909.PubMedGoogle Scholar
  503. Friedman, B.A., P.R. Dugan, R.M. Pfister and C.C. Remsen. 1968. Fine structure and composition of the zoogloeal matrix surrounding Zoogloea ramigera. J. Bacteriol. 96: 2144–2153.PubMedGoogle Scholar
  504. Friedman, R.L., R.L. Fiederlein, L. Glasser and J.N. Galgiani. 1987. Bordetella pertussis adenylate cyclase: effects of affinity-purified adenylate cyclase on human polymorphonuclear leukocyte functions. Infect. Immun. 55: 135–140.PubMedGoogle Scholar
  505. Fries, M.R., J. Zhou, J. Chee-Sanford and J.M. Tiedje. 1994. Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl. Environ. Microbiol. 60: 2802–2810.PubMedGoogle Scholar
  506. Frøholm, L.O. and K. Bøvre. 1972. Fimbriation associated with the spreading-corroding colony type of Moraxella kingii. Acta Pathol. Microbiol. Scand Sect. B. 80: 641–648.Google Scholar
  507. Frøholm, L.O., K. Jyssum and K. Bovre. 1973. Electron microscopical and cultural features of Neisseria meningitidis competence variants. Acta Pathol. Microbiol. Scand. [B] Microbiol. Immunol. 81: 525–537.Google Scholar
  508. Froman, B.E., R.C. Tait and L.D. Gottlieb. 1989. Isolation and characterization of the phosphoglucose isomerase gene from Escherichia coli. Mol. Gen. Genet. 217: 126–131.PubMedCrossRefGoogle Scholar
  509. Frosch, M., C. Weisgerber and T.F. Meyer. 1989. Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. Proc. Natl. Acad. Sci. U.S.A. 86: 1669–1673.PubMedCrossRefGoogle Scholar
  510. Fujishima, M. and K. Heckmann. 1984. Intraspecies and interspecies transfer of endosymbionts in Euplotes.J. Exp. Zool. 230: 339–345.CrossRefGoogle Scholar
  511. Fujita, S., T. Yoshida and F. Matsubara. 1981. Pseudomonas pickettii bacteremia. J. Clin. Microbiol. 13: 781–782.PubMedGoogle Scholar
  512. Fukumoto, F., M. Sato and Y. Minobe. 1997. Transformation of pBR322-derived plasmids in phytopathogenic Pseudomonas avenae and enhanced transformation in its proline-auxotrophic mutant. Curr. Microbiol. 34: 138–143.PubMedCrossRefGoogle Scholar
  513. Fulton, H.R., P.O. Sikorowski and B.R. Morment. 1974. A survey of North Mississippi mosquitoes for pathogenic microorganisms. Mosq. News. 34: 86–90.Google Scholar
  514. Fung-Tomc, J., K. Bush, B. Minassian, B. Kolek, R. Flamm, E. Gradelski and D. Bonner. 1997. Antibacterial activity of BMS-180680, a new catechol-containing monobactam. Antimicrob. Agents Chemother. 41: 1010–1016.PubMedGoogle Scholar
  515. Funke, G., T. Hess, A. von Graevenitz and P. Vandamme. 1996. Characteristics of Bordetella hinzii strains isolated from a cystic fibrosis patient over a 3-year period. J. Clin. Microbiol. 34: 966–969.PubMedGoogle Scholar
  516. Gaffney, T.D. and T.G. Lessie. 1987. Insertion sequence dependent rearrangements of Pseudomonas cepacia plasmid Ptgl1. J. Bacteriol. 169: 224–230.PubMedGoogle Scholar
  517. Gahrn-Hansen, B., P. Alstrup, R. Dessau, K. Fuursted, A. Knudsen, H. Olsen, H. Oxhoj, A.R. Petersen, A. Siboni and K. Siboni. 1988. Outbreak of infection with Achromobacter xylosoxidans from contaminated intravascular pressure transducers. J. Hosp. Infect. 12: 1–6.PubMedCrossRefGoogle Scholar
  518. Galarneault, T.P. and E. Leifson. 1956. Taxonomy of Lophomonas N. Gen. Can. J. Microbiol. 2: 102–110.CrossRefGoogle Scholar
  519. Galimand, M. 1999. High-level chloramphenicol resistance in Neisseria meningitidis. New Engl. J. Med. 340: 824–824.Google Scholar
  520. Gallus, C., N. Gorny, W. Ludwig and B. Schink. 1997. Anaerobic degradation of alpha-resorcylate by a nitrate-reducing bacterium,Thauera aromatica strain AR-1. Syst. Appl. Microbiol. 20: 540–544.CrossRefGoogle Scholar
  521. Gallus, C. and B. Schink. 1998. Anaerobic degradation of alpha-resor-cylate by Thauera aromatica strain AR-1 proceeds via oxidation and decarboxylation to hydroxyhydroquinone. Arch. Microbiol. 169: 333– 338.PubMedCrossRefGoogle Scholar
  522. Gandy, D.E. 1968. A technique for screen bacteria causing Brown blotch of cultivated mushrooms, Rep. Glasshouse Crops Res. Inst.. 150–154.Google Scholar
  523. Garcia, J.L., S. Roussos, D. Gauthier, G. Rinaudo and M. Mandel. 1983. Taxonomical study of free-living N2-fixing bacteria isolated from the endorhizosphere of rice. Ann. Microbiol. B134: 329–346.Google Scholar
  524. García-Valdés, E., E. Cozar, R. Rotger, J. Lalucat and J. Ursing. 1988. New naphthalene-degrading marine Pseudomonas strains. Appl. Environ. Microbiol. 54: 2478–2485.PubMedGoogle Scholar
  525. Gardan, L., C. Dauga, P. Prior, M. Gillis and G.S. Saddler. 2000. Acidovoarx anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium. Int. J. Syst. Evol. Microbiol. 50: 235– 246.PubMedCrossRefGoogle Scholar
  526. Garg, R.P., J. Huang, W. Yindeeyoungyeon, T.P. Denny and M.A. Schell. 2000. Multicomponent transcriptional regulation at the complex promoter of the exopolysaccharide I biosynthetic operon of Ralstonia solanacearum. J. Bacteriol. 182: 6659–6666.PubMedCrossRefGoogle Scholar
  527. Garrard, W.T. 1971. Selective release of proteins from Spirillum itersonii by tris(hydroxymethyl)aminomethane and ethylenediaminetetraace-tate. J. Bacteriol. 105: 93–100.PubMedGoogle Scholar
  528. Garrard, W.T. 1972. Synthesis, assembly, and localization of periplasmic cytochrome c. J. Biol. Chem. 247: 5935–5943.PubMedGoogle Scholar
  529. Gaubier, P., D. Vega and R. Cooke. 1992. Nucleotide sequence of a 2 kb plasmid from Pseudomonas cepacia implicated in the degradation of phenylcarbamate herbicides. DNA Seq. 2: 269–271.PubMedGoogle Scholar
  530. Gaudy, E. and R.S. Wolfe. 1961. Factors affecting filamentous growth of Sphaerotilus natans. Can. J. Microbiol. 9: 580–584.Google Scholar
  531. Gaudy, E. and R.S. Wolfe. 1962. Compostition of an extracellular polysaccharaide produced by Sphaerotilus natans. Appl. Microbiol. 10: 200– 205.PubMedGoogle Scholar
  532. Gaur, D. and S.G. Wilkinson. 1996. Structure of the O-specific polysac-charide from Burkholderia vietnamiensis strain LMG 6998. Carbohydr. Res. 295: 179–184.PubMedGoogle Scholar
  533. Gauthier, D.K., G.D. Clark-Walker, W.T. Garrard, Jr. and J. Lascelles. 1970. Nitrate reductase and soluble cytochrome c in Spirillum itersonii. J. Bacteriol. 102: 797–803.Google Scholar
  534. Gauthier, M.J. 1976. Morphological, physiological, and biochemical characteristics of some violet-pigmented bacteria isolated from seawater. Can. J. Microbiol. 22: 138–149.PubMedCrossRefGoogle Scholar
  535. Gehring, F. 1962. Untersuchungen über den Infektionsverlauf einer durch Pectobacterium parthenii (Starr) Hellmers var. dianthicola Hell-mers verursachten Nelkenbakteriose sowie über enymatische Eigenschaften dieses Bakteriums in Verleich mit Pseudomonas caryophylli (Burkholder) Starr et Burkholder und einigen typyschen Nassfäuleerregern. Phytopathol. Zeitschr. 43: 383–407.CrossRefGoogle Scholar
  536. Gerner-Smidt, P., H. Keiser-Nielsen, M. Dorsch, E. Stackebrandt, J. Ursing, J. Blom, A.C. Christensen, J.J. Christensen, W. Frederiksen, S. Hoffmann, W. Holten-Andersen and YT. Ying. 1994. Lautropia mirabilis gen. nov, sp. nov, a Gram-negative motile coccus with unusual morphology isolated from the human mouth. Microbiology 140: 1787–1797.PubMedCrossRefGoogle Scholar
  537. Gerstenberg, C., B. Friedrich and H.G. Schlegel. 1982. Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing bacteria. Arch. Microbiol. 133: 90–96.CrossRefGoogle Scholar
  538. Gessner, A.R. and J.E. Mortensen. 1990. Pathogenic factors of Pseudomonas cepacia isolates from patients with cystic fibrosis. J. Med. Microbiol. 33: 115–120.PubMedCrossRefGoogle Scholar
  539. Ghadi, S.C. and U.M. Sangodkar. 1994. Identification of a meta cleavage pathway for metabolism of phenoxyacetic acid and phenol in Pseudomonas cepacia AC1100. Biochem. Biophys. Res. Commun. 204: 983– 993.PubMedCrossRefGoogle Scholar
  540. Ghiorse, W.C. and S.D. Chapnick. 1983. Metal-depositing bacteria and the distribution of manganese and iron in swamp waters. In Hallberg (Editor), Environmental Biogeochemistry. Ecol. Bull. 35, FRN, Stockholm. pp. 367–376.Google Scholar
  541. Ghosh, S.K., P.B. Doctor and P.K. Kulkarni. 1996. Toxicity of zinc in three microbial test systems. Environ. Toxicol. Water Qual. 11: 13–19.CrossRefGoogle Scholar
  542. Gibson, J., E. Stackebrandt, L.B. Zablen, R. Gupta and C.R. Woese. 1979. A phylogenetic analysis of the purple photosynthetic bacteria. Curr. Microbiol. 3: 59–64.CrossRefGoogle Scholar
  543. Giesberger, G. 1936. Beitrage zur Kenntnis der Gattung Spirillum, Utrecht. pp. 1–136.Google Scholar
  544. Giffhorn, F., N. Beuscher and G. Gottschalk. 1972. Regulation of citrate lyase activity in Rhodopseudomonas gelatinosa. Biochem. Biophys. Res. Commun. 49: 467–471.PubMedCrossRefGoogle Scholar
  545. Gilardi, G.L. 1971. Characterization of nonfermentative nonfastidious Gram negative bacteria encountered in medical bacteriology. J. Appl. Bacteriol. 34: 623–644.PubMedCrossRefGoogle Scholar
  546. Gilardi, G.L. 1985. Pseudomonas. In Lennette, Balows, Hausler and Shadomy (Editors), Manual of Clinical Microbiology, 4th ed, American society for Microbiology, Washington, D.C. pp. 350–372.Google Scholar
  547. Gilligan, P.H. and M.C. Fisher. 1984. Importance of culture in laboratory diagnosis of Bordetella pertussis infections. J. Clin. Microbiol. 20: 891–893.PubMedGoogle Scholar
  548. Gillis, M., J. Döbereiner, B. Pot, M. Goor, E. Falsen, B. Hoste, B. Reinhold and K. Kersters. 1991. Taxonomic relationships between [Pseudomonas] rubrisubalbicans, some clinical isolates (EF group 1), Herbaspirillum seropedicae and [Aquaspirillum] autotrophicum. In Polsinelli, Materassi and Vincenzini (Editors), Nitrogen Fixation, Kluwer Academic Publishers, Dordrecht. pp. 293–294.CrossRefGoogle Scholar
  549. Gillis, M., T. Van Van, R. Bardin, M. Goor, P. Hebbar, A. Willems, P. Segers, K. Kersters, T. Heulin and M.P. Fernandez. 1995. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int. J. Syst. Bacteriol. 45: 274–289.CrossRefGoogle Scholar
  550. Giron, J.A., A.S. Ho and G.K. Schoolnik. 1991. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254: 710–713.PubMedCrossRefGoogle Scholar
  551. Giron, J.A., M.M. Levine and J.B. Kaper. 1994. Longus: a long pilus ultrastructure produced by human enterotoxigenic Escherichia coli. Mol. Microbiol. 12: 71–82.PubMedCrossRefGoogle Scholar
  552. Gitahy, P.M., J.F. Salles, K.R.S. Teixeira, L. Skot and J.I. Baldani. 1997. Expression of Bacillus thuringiensis cry3A gene in the endophytic diazotrophic bacteria of the genus Herbaspirillum. Proceedings of the XXI Reunião de Genética de Microoganismos, Universidade Estadual de Londrina.p. 83.Google Scholar
  553. Glaser, P., H. Sakamoto, J. Bellalou, A. Ullmann and A. Danchin. 1988. Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclasehaemolysin bifunctional protein of Bordetella pertussis. Embo J. 7: 3997–4004.PubMedGoogle Scholar
  554. Glupczynski, Y., W. Hansen, J. Freney and E. Yourassowsky. 1988. In vitro susceptibility of Alcaligenes denitrificans pathovar xylosoxidans to 24 antimicrobial agents. Antimicrob. Agents Chemother. 32: 276–278.PubMedCrossRefGoogle Scholar
  555. Goatcher, L.J., A.A. Qureshi and I.D. Gaudet. 1984. Evaluation and refinement of Spirillum volutans test for use in toxicity screening. In Dickson and Dutka (Editors), Toxicity Screening Procedures Using Bacterial Systems, Marcel Dekker, New York. pp. 89–108.Google Scholar
  556. Goebel, B.M., P.R. Norris and N.P. Burton. 2000. Acidophiles in bio-mining. In Priest and Goodfellow (Editors), Applied Microbial Systematics, Kluwer, Dordrecht. pp. 293–314.CrossRefGoogle Scholar
  557. Goldman, W.E., D.G. Klapper and J.B. Baseman. 1982. Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect. Immun. 36: 782–794.PubMedGoogle Scholar
  558. Goldmann, D.A. and J.D. Klinger. 1986. Pseudomonas cepacia: biology, mechanisms of virulence, epidemiology. J. Pediatr. 108: 806–812.PubMedCrossRefGoogle Scholar
  559. Goldstein, E.J.C., E.O. Agyare and R. Silletti. 1981. Comparative growth of Eikenella corrodens on fifteen media in three atmospheres of incubation. J. Clin. Microbiol. 13: 951–953.PubMedGoogle Scholar
  560. Goldstein, E.J.C., V.L. Sutter and S.M. Finegold. 1978. The susceptibility of Eikenella corrodens to 10 cephalosporins. Antimicrob. Agents Chemother. 14: 404.Google Scholar
  561. Goldstein, R., L. Sun, R.Z. Jiang, U. Sajjan, J.F. Forstner and C. Campanelli. 1995. Structurally variant classes of pilus appendage fibers coexpressed from Burkholderia (Pseudomonas) cepacia. J. Bacteriol. 177: 1039–1052.PubMedGoogle Scholar
  562. González, C.F. and A.K. Vidaver. 1979. Bacteriocin, plasmid and pectolytic diversity in Pseudomonas cepacia of clinical and plant origin. J. Gen. Microbiol. 110: 161–170.PubMedCrossRefGoogle Scholar
  563. Goodman, A.D. 1977. Eikenella corrodens isolated in oral infections of dental origin. Oral Surg. 44: 128–134.PubMedCrossRefGoogle Scholar
  564. Goodman, S.D. and J.J. Scocca. 1988. Identification and arrangement of the DNA-sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. U.S.A. 85: 6982–6986.PubMedCrossRefGoogle Scholar
  565. Goodnow, R.A. 1980. Biology of Bordetella bronchiseptica. Microbiol. Rev. 44: 722–738.PubMedGoogle Scholar
  566. Goris, J., P. De Vos, T. Coenye, B. Hoste, D. Janssens, H. Brim, L. Diels, M. Mergeay, K. Kersters and P. Vandamme. 2001. Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int. J. Syst. Evol. Microbiol. 51: 1773–1782.PubMedCrossRefGoogle Scholar
  567. Goto, E., T. Kodama and Y. Minoda. 1977. Isolation and culture conditions of thermophilic hydrogen bacteria. Agric. Biol. Chem. 41: 685– 690.CrossRefGoogle Scholar
  568. Goto, E., T. Kodama and Y. Minoda. 1978. Growth and taxonomy of thermophilic hydrogen bacteria. Agric. Biol. Chem. 42: 1305–1308.CrossRefGoogle Scholar
  569. Goto, M. 1983. Pseudomonas pseudoalcaligenes subsp. konjaci subsp. nov., the causal agent of bacterial leaf blight of konjac (Amorphopallus konjac Koch). Int. J. Syst. Bacteriol. 33: 539–545.CrossRefGoogle Scholar
  570. Goto, M. and M.P. Starr. 1971. A comparative study of Pseudomonas andropogonis, P stizolobii and P. alboprecipitans. Ann. Phytopathol. Soc. Japan 37: 233–241.CrossRefGoogle Scholar
  571. Gotschlich, E.C., B.A. Fraser, O. Nishimura, J.B. Robbins and T.Y. Liu. 1981. Lipid on capsular polysaccharides of gram-negative bacteria. J. Biol. Chem. 256: 8915–8921.PubMedGoogle Scholar
  572. Gottschal, J.C. and J.G. Kuenen. 1980. Selective enrichment of facultatively chemolithotrophic thiobacilli and related organisms in continuous culture. FEMS Microbiol. Lett. 7: 2.CrossRefGoogle Scholar
  573. Gounot, A.M. 1991. Bacterial life at low-temperature - physiological aspects and biotechnological implications. J. Appl. Bacteriol. 71: 386– 397.PubMedCrossRefGoogle Scholar
  574. Goutzmanis, J.J., G. Gonis and G.L. Gilbert. 1991. Kingella kingae infection in children: ten cases and a review of the literature. Pediatr. Infect. Dis. J. 10: 677–683.PubMedCrossRefGoogle Scholar
  575. Govan, J.R.W. and G. Harris. 1985. Typing of Pseudomonas cepacia by bacteriocin susceptibility and production. J. Clin. Microbiol. 22: 490– 494.PubMedGoogle Scholar
  576. Govindaraj, S., E. Eisenstein, L.H. Jones, J. Sanders Loehr, A.Y. Chistoserdov, V.L. Davidson and S.L. Edwards. 1994. Aromatic amine dehydrogenase, a second tryptophan tryptophylquinone enzyme. J. Bacteriol. 176: 2922–2929.PubMedGoogle Scholar
  577. Govorukhina, N.I., L.V. Kletsova, Y.D. Tsygankov, Y.A. Trotsenko and A.I. Netrusov. 1987. Characteristics of a new obligate methylotroph. Mikrobiologiya 56: 849–854.Google Scholar
  578. Govorukhina, N.I. and Y.A. Trotsenko. 1991. Methylovorus, a new genus of restricted facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 41: 158–162.CrossRefGoogle Scholar
  579. Goyal, A.K. and G.J. Zylstra. 1996. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ29. Appl. Environ. Microbiol. 62: 230–236.PubMedGoogle Scholar
  580. Grabovich, M.Y., V.V. Churikova, N.A. Chernykh, I.O. Kononykhina and I.P. Popravko. 1987. Isolation and characteristics of strains belonging to Aquaspirillum voronezhense, new species. Mikrobiologiya 56: 666–672.Google Scholar
  581. Grabovich, M.Y., G.A. Dubinina, V.V. Churikova, S.N. Churikov and T.I. Korovina. 1995. Mechanisms of synthesis and utilization of oxalate inclusions in the colorless sulfur bacterium Macromonas bipunctata. Mikrobiologiya 64: 630–636.Google Scholar
  582. Grabovich, M.Y., G.A. Dubinina, V.V. Churikova and A.E. Glushkov. 1993. Peculiarities of carbon metabolism in the colorless sulfur bacterium Macromonas bipunctata. Mikrobiologiya 62: 421–428.Google Scholar
  583. Granada, G.A. and L. Sequeira. 1983. Survival of Pseudomonas solanacearum in soil rhizosphere and plant roots. Can. J. Microbiol. 29: 433– 440.CrossRefGoogle Scholar
  584. Granato, P.A. and M.R. Franz. 1990. Use of the Gen-Probe PACE system for the detection of Neisseria gonorrhoeae in urogenital samples. Diagn. Microbiol. Infect. Dis. 13: 217–221.PubMedCrossRefGoogle Scholar
  585. Granstrom, M., A.M. Olindernielsen, P. Holmblad, A. Mark and K. Hanngren. 1991. Specific immunoglobulin for treatment of whoopingcough. Lancet 338: 1230–1233.PubMedCrossRefGoogle Scholar
  586. Grant, P.E., D.J. Brenner, A.G. Steigerwalt, D.G. Hollis and R.E. Weaver. 1990. Neisseria elongata subsp. nitroreducens subsp. nov., formerly CDC group M-6, a gram-negative bacterium associated with endocarditis. J. Clin. Microbiol. 28: 2591–2596.PubMedGoogle Scholar
  587. Grassè, P.P. 1924. Notes protistologiques I. La sporulation des Oscillos-piracèes. II Le genre Alysiella Langeron 1923. Archives de Zoologie Expèrimentale et Gènèrale. 62: 25–34.Google Scholar
  588. Grasso, S., W.J. Moller, E. Refatti, G.M. Di San Lio and G. Granata. 1979. Xanthomonas ampelina as causal agent of a grape (Vitis vinifera) decline in Sicily, Italy. Rivista di Patologia Vegetale. 15: 91–106.Google Scholar
  589. Gray, P.H.H. and H.G. Thornton. 1928. Soil bacteria that decompose certain aromatic compounds. Centralbl. Bakteriol. Parasitenkd. Infektionskr. 2. Abt. 73: 74–96.Google Scholar
  590. Greenwood, J.A., J. Mills, P.D. Tyler and C.W. Jones. 1998. Physiological regulation, purification and properties of urease from Methylophilus methylotrophus. FEMS Microbiol. Lett. 160: 131–135.CrossRefGoogle Scholar
  591. Grey, B.E. and T.R. Steck. 2001. The viable but nonculturable state of Ralstonia solanaceurum may be involved in long-term survival and plant infection. Appl. Environ. Microbiol. 67: 3866–3872.PubMedCrossRefGoogle Scholar
  592. Griffin, P.J. and E. Racker. 1956. The carbon dioxide requirement of Neisseria gonorrhoeae. J. Bacteriol. 71: 717–721.PubMedGoogle Scholar
  593. Griffiss, J.M., J.P. Obrien, R. Yamasaki, G.D. Williams, P.A. Rice and H. Schneider. 1987. Physical heterogeneity of neisserial lipooligosac-charides reflects oligosaccharides that differ in apparent molecular weight, chemical composition, and antigenic expression. Infect. Immun. 55: 1792–1800.PubMedGoogle Scholar
  594. Griffiss, J.M., H. Schneider, R.E. Mandrell, R. Yamasaki, G.A. Jarvis, J.J. Kim, B.W. Gibson, R. Hamadeh and M.A. Apicella. 1988. Lipooligo-saccharides—The principal glycolipids of the neisserial outer membrane. Rev. Infect. Dis. 10: S287–S295.PubMedGoogle Scholar
  595. Griffith, B.M. 1853. Gallionella ferruginea. Ehr. Ann. Mag. Nat. Hist. II Ser. 12: 438.Google Scholar
  596. Grifoll, M., S.A. Selifonov, C.V. Gatlin and P.J. Chapman. 1995. Actions of a versatile fluorene degrading bacterial isolate on polycyclic aromatic compounds. Appl. Environ. Microbiol. 61: 3711–3723.PubMedGoogle Scholar
  597. Grimes, D.J., C.R. Woese, M.T. MacDonell and R.R. Colwell. 1997. Systematic study of the genus Vogesella gen. nov. and its type species, Vogesella indigofera comb. nov. Int. J. Syst. Bacteriol. 47: 19–27.PubMedCrossRefGoogle Scholar
  598. Grones, J. and J. Turna. 1995. Transformation of microorganisms with the plasmid vector with the replicon from pAC1 from Acetobacter pasteurianus. Biochem. Biophys. Res. Commun. 206: 942–947.PubMedCrossRefGoogle Scholar
  599. Gross, M.J. and B.E. Logan. 1995. Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media. Appl. Environ. Microbiol. 61: 1750–1756.PubMedGoogle Scholar
  600. Grzeszik, C., T. Jeffke, J. Schaeferjohann, B. Kusian and B. Bowien. 2000. Phosphoenolpyruvate is a signal metabolite in transcriptional control of the cbb CO2 fixation operons in Ralstonia eutropha. J. Mol. Microbiol. Biotechnol. 2: 311–320.PubMedGoogle Scholar
  601. Gubish, E.R.J., K.C. Chen and T.M. Buchanan. 1982. Detection of a gonococcal endo-β-N-acetyl-D-glucosaminidase and its peptidoglycan cleavage site. J. Bacteriol. 151: 172–176.PubMedGoogle Scholar
  602. Gueirard, P., A. Druilhe, M. Pretolani and N. Guiso. 1998. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect. Immun. 66: 1718–1725.PubMedGoogle Scholar
  603. Guerin, W.F. and S.A. Boyd. 1995. Maintenance and induction of naphthalene degradation activity in Pseudomonas putida and an Alcaligenes sp. under different culture conditions. Appl. Environ. Microbiol. 61: 4061–4068.PubMedGoogle Scholar
  604. Gully, N.J. and A.H. Rogers. 1996. Energy production and peptidase activity in Eikenella corrodens. FEMS Microbiol. Lett. 139: 209–213.PubMedGoogle Scholar
  605. Gumaelius, L., G. Magnusson, B. Pettersson and G. Dalhammar. 2001. Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 51: 999–1006.PubMedCrossRefGoogle Scholar
  606. Günther, K.A. 1894. Uber einen neuen, im Erdboden gefundenen Kommabacillus. Centralbl. Bakteriol. Parasitenkd. 16: 746–747.Google Scholar
  607. Guris, D., P.M. Strebel, B. Bardenheier, M. Brennan, R. Tachdjian, E. Finch, M. Wharton and J.R. Livengood. 1999. Changing epidemiology of pertussis in the United States: Increasing reported incidence among adolescents and adults, 1990–1996. Clin. Infect. Dis. 28: 1230–1237.PubMedCrossRefGoogle Scholar
  608. Gwynn, M.N., S.J. Box, A.G. Brown and M.L. Gilpin. 1988. MM 42842, a new member of the monobactam family produced by Pseudomonas cocovenenans. I. Identification of the producing organism. J. Antibiot. 41: 1–6.PubMedCrossRefGoogle Scholar
  609. Haak, B., S. Fetzner and F. Lingens. 1995. Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS. J. Bacteriol. 177: 667–675.PubMedGoogle Scholar
  610. Haas, R. and T.F. Meyer. 1986. The repertoire of silent pilus genes in Neisseria gonorrhoeae—evidence for gene conversion. Cell 44: 107–115.PubMedCrossRefGoogle Scholar
  611. Hagedorn, C., W.D. Gould, T.R. Bardinelli and D.R. Gustavson. 1987. A selective medium for enumeration and recovery of Pseudomonas cepacia biotypes from soil. Appl. Environ. Microbiol. 53: 2265–2268.PubMedGoogle Scholar
  612. Hagman, M. and D. Danielsson. 1989. Increased adherence to vaginal epithelial cells and phagocytic killing of gonococci and urogenital meningococci associated with heat modifiable proteins. APMIS 97: 839–844.PubMedCrossRefGoogle Scholar
  613. Haines, K.A., L. Yeh, M.S. Blake, P. Cristello, H. Korchak and G. Weissmann. 1988. Protein-I, a translocatable ion channel from Neisseria gonorrhoeae, selectively inhibits exocytosis from human neutrophils without inhibiting O2 generation. J. Biol. Chem. 263: 945–951.PubMedGoogle Scholar
  614. Hallander, H.O., E. Reizenstein, B. Renemar, G. Rasmuson, L. Mardin and P. Olin. 1993. Comparison of nasopharyngeal aspirates with swabs for culture of Bordetella pertussis. J. Clin. Microbiol. 31: 50–52.PubMedGoogle Scholar
  615. Hallbeck, L. and K. Pedersen. 1990. Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea. J. Gen. Microbiol. 136: 1675–1680.CrossRefGoogle Scholar
  616. Hallbeck, L. and K. Pedersen. 1991. Autotrophic and mixotrophic growth of Gallionella ferruginea. J. Gen. Microbiol. 137: 2657–2661.CrossRefGoogle Scholar
  617. Hallbeck, L. and K. Pedersen. 1995. Benefits associated with the stalk of Gallionella ferruginea, evaluated by comparison of a stalk-forming and a non-stalk-forming strain and biofilm studies in situ. Microb. Ecol. 30: 257–268.CrossRefGoogle Scholar
  618. Hallbeck, L., F. Stahl and K. Pedersen. 1993. Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J. Gen. Microbiol. 139: 1531–1535.PubMedCrossRefGoogle Scholar
  619. Halperin, S.A., R. Bortolussi and A.J. Wort. 1989. Evaluation of culture, immunofluorescence, and serology for the diagnosis of pertussis. J. Clin. Microbiol. 27: 752–757.PubMedGoogle Scholar
  620. Hamana, K. 1997. Polyamine distribution patterns within the families Aeromonadaceae, Vibrionaceae, Pasteurellaceae, and Halomonadaceae, and related genera of the gamma subclass of the Proteobacteria. J. Gen. Appl. Microbiol. 43: 49–59.PubMedCrossRefGoogle Scholar
  621. Hamana, K. and S. Matsuzaki. 1993. Polyamine distribution patternsserve as a phenotypic marker in the chemotaxonomy of the Proteobacteria. Can. J. Microbiol. 39: 304–310.CrossRefGoogle Scholar
  622. Hamana, K., T. Sakane and A. Yokota. 1994. Polyamine analysis of the genera, Aquaspirillum, Magnetospirillum, Oceanospirillum and Spirillum. J. Gen. Appl. Microbiol. 40: 75–82.CrossRefGoogle Scholar
  623. Hamana, K. and M. Takeuchi. 1998. Polyamine profiles as chemotaxonomic markers within alpha, beta, gamma, delta, and epsilon sub-sses of class Proteobacteria: Distribution of 2-hydroxyputrescine and homospermidine. Microbiol. Cult. Coll. 14: 1–14.Google Scholar
  624. Hamilton, R.D. and K.E. Austin. 1967. Physiological and cultural characteristics of Chromobacterium marinum sp. n. Antonie Leeuwenhoek J. Microbiol. Serol. 33: 257–264.Google Scholar
  625. Hammadi, A., A. Menez and R. Genet. 1997. Asymmetric deuteration of N-acetyl-(Z)-alpha,beta-dehydrotryptophan-(L)phenylalanine methyl ester produced by (l)-tryptophan 2′,3′-oxidase from Chromobacterium violaceum. A new route for stereospecific labelling of peptides. Tetrahedron. 53: 16115–16122.CrossRefGoogle Scholar
  626. Hammerschmidt, S., A. Muller, H. Sillmann, M. Muhlenhoff, R. Borrow, A. Fox, J. vanPutten, W.D. Zollinger, R. Gerardy-Schahn and M. Frosch. 1996. Capsule phase variation in Neisseria meningitidis sero-group B by slipped-strand mispairing in the polysialyltransferase gene (siaD): Correlation with bacterial invasion and the outbreak of meningococcal disease. Mol. Microbiol. 20: 1211–1220.PubMedCrossRefGoogle Scholar
  627. Han, Y.-H., R.M. Smibert and N.R. Krieg. 1991. Wolinella recta, Wolinella curva, Bacteroides ureolyticus, and Bacteroides gracilisare microaerophiles, not anaerobes. Int. J. Syst. Bacteriol. 41: 218–222.PubMedCrossRefGoogle Scholar
  628. Handrick, R., S. Reinhardt and D. Jendrossek. 2000. Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha.J. Bacteriol. 182: 5916– 5918.PubMedCrossRefGoogle Scholar
  629. Hanert, H.H. 1989. Genus Gallionella. In Staley, Bryant, Pfenning and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 3, The Williams & Wilkins Co., Baltimore. pp. 1974–1979.Google Scholar
  630. Hansen, M.V. and CE. Wilde. 1984. Conservation of peptide structure of outer-membrane protein- macromolecular complex from Neisseria gonorrhoeae. Infect. Immun. 43: 839–845.PubMedGoogle Scholar
  631. Hansen, T.A., H.E. Nienhuis-Kuiper and A.J.M. Stams. 1990. A rodshaped, Gram-negative, propionigenic bacterium with a wide substrate range and the ability to fix molecular nitrogen. Arch. Microbiol. 155: 42–45.CrossRefGoogle Scholar
  632. Hanski, E. and Z. Farfel. 1985. Bordetella pertussis invasive adenylate cyclase, partial resolution and properties of its cellular penetration. J. Biol. Chem. 260: 5526–5532.PubMedGoogle Scholar
  633. Happe, R.P., W. Roseboom, G. Egert, CG. Friedrich, C. Massanz, B. Friedrich and S.P.J. Albracht. 2000. Unusual FTIR and EPR properties of the H2-activating site of the cytoplasmic NAD-reducinghydrogenase from Ralstonia eutropha. FEBS Lett. 466: 259–263.PubMedCrossRefGoogle Scholar
  634. Harder, J. 1997. Anaerobic degradation of cyclohexane-1,2-diol by a new Azoarcus species. Arch. Microbiol. 168: 199–204.CrossRefGoogle Scholar
  635. Hardy, S.J., M. Christodoulides, R.O. Weller and J.E. Heckels. 2000. Interactions of Neisseria meningitidis with cells of the human meninges. Mol. Microbiol. 36: 817–829.PubMedCrossRefGoogle Scholar
  636. Harkness, J.E. and J.E. Wagner. 1995. Bordetella bronchiseptica infections. In Biology and Medicine of Rabbits and Rodents, Williams & Wilkins Co., Baltimore. 182–185.Google Scholar
  637. Harms, H., H.P. Koops and H. Wehrmann. 1976. An ammonia-oxidizing bacterium, Nitrosovibrio tenuis nov. gen. nov. sp. Arch. Microbiol. 108: 105–111.PubMedCrossRefGoogle Scholar
  638. Harmsen, D., C. Singer, J. Rothganger, T. Tonjum, G.S. de Hoog, H. Shah, J. Albert and M. Frosch. 2001. Diagnostics of Neisseriaceae and Moraxellaceae by ribosomal DNA sequencing: ribosomal differentiation of medical microorganisms. J. Clin. Microbiol. 39: 936–942.PubMedCrossRefGoogle Scholar
  639. Harmsen, H.J.M., D. Prieur and C. Jeanthon. 1997. Distribution of microorganisms in deep-sea hyrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic sub-populations. Appl. Environ. Microbiol. 63: 2876–2883.PubMedGoogle Scholar
  640. Harrison, A.P. 1982. Genomic and physiological diversity amongst strains of thiobacillus ferrooxidans and genomic comparison with Thiobacillus thiooxidans. Arch. Microbiol. 131: 68–76.CrossRefGoogle Scholar
  641. Harrison, A.P., Jr. 1983. Genomic and physiological comparisons between heterotrophic thiobacilli and Acidiphilum cryptum, Thiobacillus versutus sp. nov., and Thiobacillus acidophilus nom. rev. Int. J. Syst. Bacteriol. 33: 211–217.CrossRefGoogle Scholar
  642. Harrison, A.P. 1989. Genus Acidiphilium. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, Vol. 3, The Williams & Wilkins Co., Baltimore. pp. 1863–1868.Google Scholar
  643. Harvill, E.T., P.A. Cotter, M.H. Yuk and J.F. Miller. 1999. Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. Infect. Immun. 67: 1493–1500.PubMedGoogle Scholar
  644. Harwood, C.S., G. Burchhardt, H. Herrmann and G. Fuchs. 1998. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol. Rev. 22: 439–458.CrossRefGoogle Scholar
  645. Harwood, C.S. and R.E. Parales. 1996. The beta-ketoadipate pathway and the biology of self identity. Annu. Rev. Microbiol. 50: 553–590.PubMedCrossRefGoogle Scholar
  646. Hassan, H., S. Susntharalingam and K.S. Dhillon. 1993. Fatal Chromobacterium violaceum septicaemia. Singapore Med. J. 34: 456–458.PubMedGoogle Scholar
  647. Hassan, I.J. and L. Hayek. 1993. Endocarditis caused by Kingella denitrificans. J. Infect. 27: 291–295.PubMedCrossRefGoogle Scholar
  648. Haugland, R.A., U.M.X. Sangodkar, P.R. Sferra and A.M. Chakrabarty. 1991. Cloning and characterization of a chromosomal DNA region required for growth on 2,4,5-T by Pseudomonas cepacia Ac1100. Gene 100: 65–73.PubMedCrossRefGoogle Scholar
  649. Haugland, R.A., D.J. Schlemm, R.P. Lyons, III, P.R. Sferra and A.M. Chakrabarty. 1990. Degradation of the chlorinated phenoxyacetate herbicides 2,4- dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl. Environ. Microbiol. 56: 1357–1362.PubMedGoogle Scholar
  650. Havel, J. and W. Reineke. 1991. Total degradation of various chlorobiphenyls by cocultures and in vivo constructed hybrid pseudomonads. FEMS Microbiol. Lett. 78: 163–170.Google Scholar
  651. Hayashi, N.R., T. Ishida, A. Yokota, T. Kodama and Y. Igarashi. 1999. Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium. Int. J. Syst. Bacteriol. 49: 783–786.PubMedCrossRefGoogle Scholar
  652. Haynes, W.C. and W.H. Burkholder. 1957. Genus I Pseudomonas. In Breed, Murray and Smith (Editors), Bergey’s Manual of Determinative Bacteriology, 7th Ed., The Williams & Wilkins Co., Baltimore. pp. 89– 152.Google Scholar
  653. Hayward, A.C. 1962. Studies on bacterial pathogens of sugar cane. II. Differentiation, taxonomy and nomenclature of the bacteria causing red stripe and mottled stripe diseases. Mauritius Sugar Ind. Res. Inst. Occas. Pap. 13: 13–27.Google Scholar
  654. Hayward, A.C. 1964. Characteristics of Pseudomonas solanacearum. J. Appl. Bacteriol. 27: 265–277.CrossRefGoogle Scholar
  655. Hayward, A.C. 1972. A bacterial disease of clover in Hawaii. Plant Dis. Rep. 56: 446–450.Google Scholar
  656. Hebbar, K.P., A.G. Davey, J. Merrin, T.J. McLoughlin and P.J. Dart. 1992. Pseudomonas cepacia, a potential suppressor of maize soil borne diseases seed inoculation and maize root colonization. Soil Biol. Biochem. 24: 999–1007.CrossRefGoogle Scholar
  657. Hebeler, B.H. and F.E. Young. 1976. Chemical composition and turnover of peptidoglycan in Neisseria gonorrhoeae. J. Bacteriol. 126: 1180–1185.PubMedGoogle Scholar
  658. Heckels, J.E. 1989. Structure and function of pili of pathogenic Neisseria species. Clin. Microbiol. Rev. 2: S66–S73.PubMedGoogle Scholar
  659. Heckly, R. 1961. Preservation of bacteria by lyophilization. Adv. Appl. Microbiol. 3: 1–76.PubMedCrossRefGoogle Scholar
  660. Heckmann, K. 1975. Omikron, ein essentieller Endosymbiont von Euplotes aediculatus. J. Protozool. 22: 97–104.Google Scholar
  661. Heckmann, K. 1983. Endosymbionts of Euplotes. Int. Rev. Cytol. Suppl. 14: 111–114.Google Scholar
  662. Heckmann, K., J.R. Preer, Jr. and W.H. Straetling. 1967. Cytoplasmic particles in the killers of Euplotes minuta and their relationship to the killer substance. J. Protozool. 14: 360–363.PubMedGoogle Scholar
  663. Heckmann, K. and H.J. Schmidt. 1987. Polynucleobacter necessarius gen. nov., sp. nov., an obligately endosymbiotic bacterium living in the cytoplasm of Euplotes aediculatus. Int. J. Syst. Bacteriol. 37: 456–457.CrossRefGoogle Scholar
  664. Heckmann, K., R. Tenhagen and H.D. G϶. 1983. Fresh water Euplotes species with a 9-type-1 cirrus pattern depend upon endosymbionts. J. Protozool. 30: 284–289.Google Scholar
  665. Hedlund, B.P. and J.T. Staley. 2002. Phylogeny of the genus Simonsiella and other members of the Neisseriaceae. Int. J. Syst. Evol. Microbiol. 52: 1377–1382.PubMedCrossRefGoogle Scholar
  666. Heider, J., M. Boll, K. Breese, S. Breinig, J.C. Ebenau, U. Feil, N. Gad’on, D. Laempe, B. Leuthner, M.E. Mohamed, S. Schneider, G. Burchhardt and G. Fuchs. 1998. Differential induction of enzymes involved inanaerobic metabolism of aromatic compounds in the denitrifying bacterium Thauera aromatica. Arch. Microbiol. 170: 120–131.PubMedCrossRefGoogle Scholar
  667. Heidt, A., H. Monteil and C. Richard. 1983. O and H serotyping of Pseudomonas cepacia. J. Clin. Microbiol. 18: 738–740.PubMedGoogle Scholar
  668. Heimbrook, M.E., W.L.L. Wang and G. Campbell. 1989. Staining bacterial flagella easily. J. Clin. Microbiol. 27: 2612–2615.PubMedGoogle Scholar
  669. Heiske, A. and R. Mutters. 1994. Differentiation of selected members of the family Neisseriaceae (Alysiella, Eikenella, Kingella, Simonsiella and CDC groups EF-4 and M-5) by carbohydrate fingerprints and selected phenotypic features. Zentbl. Bakteriol. 281: 67–79.CrossRefGoogle Scholar
  670. Hemmingsen, S.M., C. Woolford, S.M. Vandervies, K. Tilly, D.T. Dennis, C.P. Georgopoulos, R.W. Hendrix and R.J. Ellis. 1988. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330–334.PubMedCrossRefGoogle Scholar
  671. Hendrie, M.S., A.J. Holding and J.M. Shewan. 1974. Emended descriptions of the genus Alcaligenes and of Alcaligenes faecalis and proposal that the generic name Achromobacter be rejected; status of the named species of Alcaligenes and Achromobacter. Int. J. Syst. Bacteriol. 24: 534–550.CrossRefGoogle Scholar
  672. Henrichsen, J. 1972. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 36: 478–503.PubMedGoogle Scholar
  673. Henrichsen, J., L.O. Frøhlm and K. Bøvre. 1972. Studies on bacterial surface translocation 2. Correlation of twitching motility and fimbriation in colony variants of Moraxella nonliquefaciens, M. bovis and M. kingii. Acta Pathol. Microbiol. Scand. Sect. B Microbiol. 80: 445–452.Google Scholar
  674. Henriksen, S.D. 1948. Studies on Gram-negative anaerobes II. Gram-negative anaerobic rods with spreading colonies. Acta Pathol. Microbiol. Scand. 25: 368.CrossRefGoogle Scholar
  675. Henriksen, S.D. 1952. Moraxella: classification and taxonomy. J. Gen. Microbiol. 6: 318–328.PubMedCrossRefGoogle Scholar
  676. Henriksen, S.D. 1976. Moraxella, Neisseria, Branhamella, and Acinetobacter. Annu. Rev. Microbiol. 30: 63–83.PubMedCrossRefGoogle Scholar
  677. Henriksen, S.D. and K. Bøvre. 1976. Transfer of Moraxella kingae Henriksen and Bøvre to the genus Kingella gen. nov. in the family Neisseriaceae. Int. J. Syst. Bacteriol. 26: 447–450.CrossRefGoogle Scholar
  678. Henriksen, S.D. and E. Holten. 1976. Neisseria elongata subsp. glycolytica subsp. nov. Int. J. Syst. Bacteriol. 26: 478–481.CrossRefGoogle Scholar
  679. Henry, D.A., E. Mahenthiralingam, P. Vandamme, T. Coenye and D.P. Speert. 2001. Phenotypic methods for determining genomovar status of the Burkholderia cepacia complex. J. Clin. Microbiol. 39: 1073–1078.PubMedCrossRefGoogle Scholar
  680. Hess, A., B. Zarda, D. Hahn, A. Haner, D. Stax, P. Hohener and J. Zeyer. 1997. In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl. Environ. Microbiol. 63: 2136–2141.PubMedGoogle Scholar
  681. Hewlett, E.L. 1990. Bordetella species. In Mandell, Douglas and Bennett (Editors), Principles and Practice of Infectious Diseases, Churchhill Livingstone Inc., New York. 1756–1762.Google Scholar
  682. Hewlett, E.L. 1997. Pertussis: current concepts of pathogenesis and prevention. Pediatr. Infect. Dis. J. 16: S78–84.PubMedCrossRefGoogle Scholar
  683. Hill, L.R., J.J.S. Snell and S.P. Lapage. 1970. Identification and characteristics of Bacteroides corrodens. J. Med. Microbiol. 3: 483–491.PubMedCrossRefGoogle Scholar
  684. Hill, S. 1971. Influence of oxygen concentration on the colony type of Derxia gummosa grown on nitrogen-free media. J. Gen. Microbiol. 67: 77–83.CrossRefGoogle Scholar
  685. Hill, S. and J.R. Postgate. 1969. Failure of putative nitrogen-fixing bacteria to fix nitrogen. J. Gen. Microbiol. 58: 277–285.PubMedCrossRefGoogle Scholar
  686. Hinteregger, C., M. Loidl and F. Streichsbier. 1994. Pseudomonas acidovorans - a bacterium capable of mineralizing 2-chloroaniline. J. Basic Microbiol. 34: 77–85.PubMedCrossRefGoogle Scholar
  687. Hinz, K.H., G. Glünder and H. Lüders. 1978. Acute respiratory disease in turkey poults caused by Bordetella bronchiseptica-like bacteria. Vet. Rec. 103: 262–263.PubMedCrossRefGoogle Scholar
  688. Hippe, H., A. Hagelstein, I. Kramer, J. Swiderski and E. Stackebrandt. 1999. Phylogenetic analysis of Formivibrio citricus, Propionivibrio dicarboxylicus, Anaerobiospirillum thomasii, Succinimonas amylolytica and Succinivibrio dextrinosolvens and proposal for Succinivibrionaceae fam. nov. Int. J. Syst. Bacteriol. 49: 779–782.PubMedCrossRefGoogle Scholar
  689. Hiraishi, A. 1994. Phylogenetic affiliations of Rhodoferax fermentans and related species of phototrophic bacteria as determined by automated 16S DNA sequencing. Curr. Microbiol. 28: 25–28.PubMedCrossRefGoogle Scholar
  690. Hiraishi, A. and Y. Hoshino. 1984. Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. J. Gen. Appl. Microbiol. 30: 435–448.CrossRefGoogle Scholar
  691. Hiraishi, A. and H. Kitamura. 1984. Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. Bull. Jpn. Soc. Sci. Fish. 50: 1929–1938.CrossRefGoogle Scholar
  692. Hiraishi, A., K.V.P. Nagashima, K. Matsuura, K. Shimada, S. Takaichi, N. Wakao and Y. Katayama. 1998. Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int. J. Syst. Bacteriol. 48: 1389–1398.PubMedCrossRefGoogle Scholar
  693. Hitchcock, P.J. 1989. Unified nomenclature for pathogenic Neisseria species. Clin. Microbiol. Rev. 2: S64–S65.PubMedGoogle Scholar
  694. Hitchcock, P.J., T.M. Brown, D. Corwin, S.F. Hayes, A. Olszewski and W.J. Todd. 1985. Morphology of three strains of contagious equine metritis organism. Infect. Immun. 48: 94–108.PubMedGoogle Scholar
  695. Hitzig, W.M. and A. Liebesman. 1944. Subacute endocarditis associated with infection by a spirillum. Arch. Intern. Med. 73: 415–424.CrossRefGoogle Scholar
  696. Ho, Y.K. and J. Lascelles. 1971. d-Aminolevulinic acid dehydratase of Spirillum itersonii and the regulation of tetrapyrrole synthesis. Arch. Biochem. Biophys. 144: 734–740.PubMedCrossRefGoogle Scholar
  697. Hobbs, M.M., B. Malorny, P. Prasad, G. Morelli, B. Kusecek, J.E. Heckels, J.G. Cannon and M. Achtman. 1998. Recombinational reassortment among opa genes from ET-37 complex Neisseria meningitidis isolates of diverse geographical origins. Microbiology-Uk. 144: 157–166.CrossRefGoogle Scholar
  698. Hoeniger, J.F., H.D. Tauschel and J.L. Stokes. 1973. The fine structure of Sphaerotilus natans. Can. J. Microbiol. 19: 309–313.PubMedCrossRefGoogle Scholar
  699. Hofstad, T., O. Hope and E. Falsen. 1998. Septicaemia with Neisseria elongata ssp. nitroreducens in a patient with hypertrophic obstructive cardiomyopathia. Scand. J. Infect. Dis. 30: 200–201.PubMedCrossRefGoogle Scholar
  700. Höhnl, G. 1955. Ein Beitrag zur Physiologie der Eisenbakterien. Vom Wasser 22: 176–193.Google Scholar
  701. Holding, A.J. and J.M. Shewan. 1974. Genus Alcaligenes. In Buchanan and Gibbons (Editors), Bergey’s Manual of Determinative Bacteriology, 8th Ed., The Williams & Wilkins Co., Baltimore. pp. 273–275.Google Scholar
  702. Holländer, R. and W. Mannheim. 1975. Characterization of hemophilic and related bacteria by their respiratory quinones and cytochromes. Int. J. Syst. Bacteriol. 25: 102–107.CrossRefGoogle Scholar
  703. Hollender, J., J. Hopp and W. Dott. 1997. Degradationof4-cholorophenol via the meta cleavage pathway by Comamonas testosteroni JH5. Appl. Environ. Microbiol. 63: 4567–4572.PubMedGoogle Scholar
  704. Hollis, D.G., R.E. Weaver and P.S. Riley. 1983. Emended description of Kingella denitrificans (Snell and Lapage 1976): correction of the maltose reaction. J. Clin. Microbiol. 18: 1174–1176.PubMedGoogle Scholar
  705. Hollis, D.G., G.L. Wiggins and R.E. Weaver. 1969. Neisseria lactamicus sp. n., a lactose-fermenting species resembling Neisseria meningitidis. Appl. Microbiol. 17: 71–77..PubMedGoogle Scholar
  706. Hollis, D.G., G.L. Wiggins and R.E. Weaver. 1972. An unclassified Gramnegative rod isolated from the pharynx on Thayer-Martin medium (selective agar). Appl. Microbiol. 24: 772–777.PubMedGoogle Scholar
  707. Holm, P. 1950. Studies on the etiology of human actinomycosis. I. The “other microbes” and their importance. Acta Pathol. Microbiol. Scand. 27: 736–751.CrossRefGoogle Scholar
  708. Holmes, B., M. Costas, S.L.W. On, P. Vandamme, E. Falsen and K. Kersters. 1993. Neisseria weaveri sp. nov. (formerly CDC group M-5), from dog-bite wounds of humans. Int. J. Syst. Bacteriol. 43: 687–693.PubMedCrossRefGoogle Scholar
  709. Holmes, B. and C.A. Dawson. 1983. Numerical taxonomic studies on Achromobacter isolates from clinical material. In Leclerc (Editor), Gram Negative Bacteria of Medical and Public Health Importance: Taxonomy-Identification-Applications, Les Colloques de l’INSERM. Vol. 114, L’Institut National de la Sante et de la Recherche Medicale, Paris. pp. 331–341.Google Scholar
  710. Holmes, B., A.G. Steigerwalt, R.E. Weaver and D.J. Brenner. 1987. Chryseomonas luteola, comb. nov. and Flavimonas oryzihabitans, gen.nov., comb. nov., Pseudomonas-like species from human clinical specimens and formerly known, respectively, as groups Ve-1 and Ve-2. Int. J. Syst. Bacteriol. 37: 245–250.CrossRefGoogle Scholar
  711. Holmes, E.C., R. Urwin and M.C. Maiden. 1999. The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Mol. Biol. Evol. 16: 741–749.PubMedCrossRefGoogle Scholar
  712. Holmes, P.A. 1985. Application of PHB–a microbially produced biodegradable thermoplastic. Phys. Technol. 16: 32–36.CrossRefGoogle Scholar
  713. Holt, J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley and S.T. Williams (Editors). 1994. Bergey’s Manual of Determinative Bacteriology, 9th Ed., The Williams & Wilkins Co., Baltimore.Google Scholar
  714. Holten, E. 1973. Glutamate dehydrogenases in genus Neisseria. Acta Pathol. Microbiol. Scand. [B] Microbiol. Immunol. 81: 49–58.Google Scholar
  715. Holten, E. 1975. Radiorespirometric studies in genus Neisseria. I. The catabolism of glucose. Acta Pathol. Microbiol. Scand. [B]. 83: 353–366.Google Scholar
  716. Holten, E. 1976a. Pyridine nucleotide independent oxidation of l-malate in genus Neisseria. Acta Pathol. Microbiol. Scand. [B]. 84: 17–21.Google Scholar
  717. Holten, E., D. Bratlid and K. Bovre. 1978. Carriage of Neisseria meningitidis in a semi-isolated arctic community. Scand. J. Infect. Dis. 10: 36–40.PubMedGoogle Scholar
  718. Holten, E. and K. Jyssum. 1973. Glutamate dehydrogenases in Neisseria meningitidis. Acta Pathol. Microbiol. Scand. [B] Microbiol. Immunol. 81: 43–48.Google Scholar
  719. Holten, E. and K. Jyssum. 1974. Activities of some enzymes concerning pyruvate metabolism in Neisseria. Acta Pathol. Microbiol. Scand. [B] Microbiol. Immunol. 82: 843–848.Google Scholar
  720. Homma, Y., Z. Sato, F. Hirayama, K. Konno, H. Shirahama and T. Suzui. 1989. Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol. Biochem. 21: 723–728.CrossRefGoogle Scholar
  721. Hood, B.L. and R. Hirschberg. 1995. Purification and characterization of Eikenella corrodens type IV pilin. Infect. Immun. 63: 3693–3696.PubMedGoogle Scholar
  722. Hook, E.W., S.F. Ching, J. Stephens, K.F. Hardy, K.R. Smith and H.H. Lee. 1997. Diagnosis of Neisseria gonorrhoeae infections in women by using the ligase chain reaction on patient-obtained vaginal swabs. J. Clin. Microbiol. 35: 2129–2132.PubMedGoogle Scholar
  723. Höpfl, P., W. Ludwig, K.H. Schleifer and N. Larsen. 1989. The 23S ribosomal RNA higher order structure of Pseudomonas cepacia and other prokaryotes. Eur. J. Biochem. 185: 355–364.PubMedCrossRefGoogle Scholar
  724. Hoppe, J.E. 1988. Methods for isolation of Bordetella pertussis from patients with whooping cough. Eur. J. Clin. Microbiol. Infect. Dis. 7: 616–620.PubMedCrossRefGoogle Scholar
  725. Hoppe, J.E. 1999. Bordetella. In Murray, Baron, Phaller, Tenover and Yolken (Editors), Manual of Clinical Microbiology, American Society for Microbiology, Washington DC. 614–624.Google Scholar
  726. Hoppe, J.E. and T. Paulus. 1998. Comparison of three media for agar dilution susceptibility testing of Bordetella pertussis using six antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 17: 391–393.PubMedGoogle Scholar
  727. Hoppe, J.E. and C.G. Simon. 1990. In vitro susceptibilities of Bordetella pertussis and Bordetella parapertussis to seven fluoroquinolones. Antimicrob. Agents Chemother. 34: 2287–2288.PubMedCrossRefGoogle Scholar
  728. Hoppe, J.E. and T. Tschirner. 1997. Comparison of Etest and agar dilution for testing the activity of three macrolides against Bordetella parapertussis. Diagn. Microbiol. Infect. Dis. 28: 49–51.PubMedCrossRefGoogle Scholar
  729. Hoppe, J.E. and A. Weiss. 1987. Recovery of Bordetella pertussis from four kinds of swabs. Eur. J. Clin. Microbiol. 6: 203–205.PubMedCrossRefGoogle Scholar
  730. Hoshino, T., T. Hayashi and T. Uchiyama. 1994. Pseudodeoxyviolacein, a new red pigment produced by the tryptophan metabolism of Chromobacterium violaceum. Biosci. Biotechnol. Biochem. 58: 279–282.CrossRefGoogle Scholar
  731. Hougardy, A. and J.-H. Klemme. 1995. Nitrate reduction in a new strain of Rhodoferax fermentans. Arch. Microbiol. 164: 358–362.CrossRefGoogle Scholar
  732. Houston, L.S., R.G. Cook and S.J. Norris. 1990. Isolation and characterization of a Treponema pallidum major 60 kilodalton protein resembling the Groel protein of Escherichia coli. J. Bacteriol. 172: 2862–2870.PubMedGoogle Scholar
  733. Hu, F.P. and J.M. Young. 1998. Biocidal activity in plant pathogenic Acidovorax, Burkholderia, Herbaspirillum, Ralstonia and Xanthomonas spp. J. Appl. Microbiol. 84: 263–271.PubMedCrossRefGoogle Scholar
  734. Hu, F.P., J.M. Young and C.M. Triggs. 1991. Numerical analysis and determinative tests for nonfluorescent plant-pathogenic Pseudomonas spp. and genomic analysis and reclassification of species related to Pseudmonas avenae Manns 1909. Int. J. Syst. Bacteriol. 41: 516–525.CrossRefGoogle Scholar
  735. Hu, W.J., X.M. Chen, H.D. Meng and Z.H. Meng. 1989. Fermented cornflour poisoning in rural areas of China. III. Isolation and identification of main toxin produced by causal microorganisms. Biomed. Environ. Sci. 2: 65–71.PubMedGoogle Scholar
  736. Huang, J., W. Yindeeyoungyeon, R.P. George, T.P. Denny and M.A. Schell. 1998. Joint transcriptional control of xpsR, the unusual signal integrator of the Ralstonia solanacearum virulence gene regulatory network, by a response regulator and a LysR-type transcriptional activator. J. Bacteriol. 180: 2736–2743.PubMedGoogle Scholar
  737. Huang, Q. and C. Allen. 1997. An exo-poly-α-D-galacturonosidase, PehB, is required for wild-type virulence of Ralstonia solanacearum. J. Bacteriol. 179: 7369–7378.PubMedGoogle Scholar
  738. Huber, H. and K.O. Stetter. 1989. Thiobacillus prosperus, sp. nov., represents a new group of halotolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch. Microbiol. 151: 479–485.CrossRefGoogle Scholar
  739. Huber, H. and K.O. Stetter. 1990. Thiobacillus cuprinus sp. nov., a novel facultatively organotrophic metal mobilizing bacterium. Appl. Environ. Microbiol. 56: 315–322.PubMedGoogle Scholar
  740. Huber, R., T. Wilharm, D. Huber, A. Trincone, S. Burggraf, H. König, R. Rachel, I. Rockinger, H. Fricke and K.O. Stetter. 1992. Aquifex pyrophilus gen. nov. sp. nov, represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst. Appl. Microbiol. 15: 340–351.CrossRefGoogle Scholar
  741. Hubner, A. and W. Hendrickson. 1997. A fusion promoter created by a new insertion sequence, IS1490, activates transcription of 2,4,5-trichlorophenoxyacetic acid catabolic genes in Burkholderia cepacia AC1100.J. Bacteriol. 179: 2717–2723.PubMedGoogle Scholar
  742. Hugh, R. 1962. Comamonas terrigena comb. nov. with proposal of a neotype and request for an opinion. Int. Bull. Bacteriol. Nomencl. Taxon. 12: 33–35.Google Scholar
  743. Hugh, R. 1965. A comparison of Pseudomonas testosteroni and Comamonas terrigena. Int. Bull. Bacteriol. Nomencl. Taxon. 15: 125–132.Google Scholar
  744. Hugh, R. and E. Leifson. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gramnegative bacteria. J. Bacteriol. 66: 24–26.PubMedGoogle Scholar
  745. Hungate, R.E. 1966. The rumen and its microbes, Academic Press, New York.Google Scholar
  746. Hungerer, C., B. Troup, U. Romling and D. Jahn. 1995. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. J. Bacteriol. 177: 1435–1443.PubMedGoogle Scholar
  747. Hurek, T., S. Burggraf, C.R. Woese and B. Reinhold-Hurek. 1993. 16S rRNA-targeted polymerase chain reaction and oligonucleotide hybridization to screen for Azoarcus spp., grass-associated diazotrophs. Appl. Environ. Microbiol. 59: 3816–3824.PubMedGoogle Scholar
  748. Hurek, T., B. Reinhold, I. Fendrik and E.G. Niemann. 1987. Root-zonespecific oxygen tolerance of Azospirillum spp. and diazotrophic rods closely associated with Kallar grass. Appl. Environ. Microbiol. 53: 163–169.PubMedGoogle Scholar
  749. Hurek, T. and B. Reinhold-Hurek. 1995. Identification of grass-associated and toluene-degrading diazotrophs, Azoarcus spp., by analyses of partial 16S ribosomal DNA sequences. Appl. Environ. Microbiol. 61: 2257–2261.PubMedGoogle Scholar
  750. Hurek, T. and B. Reinhold-Hurek. 1999. Interactions of Azoarcus sp. with rhizosphere fungi. In Varma, A. and B. Hock (Editors), Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology, 2nd Ed., Springer, Berlin. 595–614.Google Scholar
  751. Hurek, T., M. Van Montagu, E. Kellenberger and B. Reinhold-Hurek. 1995. Induction of complex intracytoplasmic membranes related to nitrogen fixation in Azoarcus sp. BH72. Mol. Microbiol. 18: 225–236.PubMedCrossRefGoogle Scholar
  752. Hurtubise, Y., D. Barriault, J. Powlowski and M. Sylvestre. 1995. Purification and characterization of the Comamonas testosteroni B-356 biphenyl dioxygenase components. J. Bacteriol. 177: 6610–6618.PubMedGoogle Scholar
  753. Huska, J., I. Zavdska, D. Toth, M. Dobrotova and P. Gemeiner. 1996. Immobilization of surfactant degrading bacteria in alginate gel. Biologia 51: 279–283.Google Scholar
  754. Hylemon, P.B., N.R. Krieg and P.V. Phibbs, Jr.. 1974. Transport and ca-tabolism of d-fructose by Spirillum itersonii. J. Bacteriol. 117: 144–150.PubMedGoogle Scholar
  755. Iida, T., Y. Haishima, A. Tanaka, K. Nishiyama, S. Saito and K. Tanamoto. 1996. Chemical structure of lipid A isolated from Comamonas testosteroni lipopolysaccharide. Eur. J. Biochem. 237: 468–475.PubMedCrossRefGoogle Scholar
  756. Imaizumi, A., Y. Suzuki, S. Ono, H. Sato and Y. Sato. 1983. Heptakis(2,6-O-dimethyl)β-cyclodextrin: a novel growth stimulant for Bordetella pertussis phase I. J. Clin. Microbiol. 17: 781–786.PubMedGoogle Scholar
  757. Imanaka, H., M. Kousaka, G. Tamura and K. Arima. 1965. Studies on pyrrolnitrin, a new antibiotic. 3. Structure of pyrrolnitrin. J. Antibiot. 18: 207–210.PubMedGoogle Scholar
  758. Imhoff, J.F. 1992. The family Ectothiorhodospiraceae. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Springer Verlag, New York. 3222–3229.Google Scholar
  759. Imhoff, J.F. and U. Bias-Imhoff. 1995. Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria. In Blankenship, Madigan and Bauer (Editors), Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishing, The Netherlands. pp. 179–205.Google Scholar
  760. Imhoff, J.F, H.G. Trüper and N. Pfennig. 1984. Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int. J. Syst. Bacteriol. 34: 340–343.CrossRefGoogle Scholar
  761. Imhoff, J.F. and H.G. Trüper. 1989. Genus Rhodocyclus. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, Vol. 3, The Williams & Wilkins Co., Baltimore. pp. 1678–1682.Google Scholar
  762. Inglis, T.J.J., D. Chiang, G.S.H. Lee and K.L. Chor. 1998. Potential misidentification of Burkholderia pseudomallei by API 20NE. Pathology 30: 62–64.PubMedCrossRefGoogle Scholar
  763. Ingvorsen, K., B. Hojer-Pedersen and S.E. Godtfredsen. 1991. Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans. Appl. Environ. Microbiol. 57: 1783–1789.PubMedGoogle Scholar
  764. Inoue, K. and K. Komagata. 1976. Taxonomic study on obligately psychrophilic bacteria isolated from Antarctica. J. Gen. Appl. Microbiol. 22: 165–176.CrossRefGoogle Scholar
  765. Irgens, R.L., J.J. Gosink and J.T. Staley. 1996. Polaromonas vacuolata gen. nov., sp. nov., a psychrophilic, marine, gas vacuolate bacterium from Antarctica. Int. J. Syst. Bacteriol. 46: 822–826.PubMedCrossRefGoogle Scholar
  766. Irgens, R.L., I. Suzuki and J.T. Staley. 1989. Gas vacuolate bacteria obtained from marine waters of Antarctica. Curr. Microbiol. 18: 261– 265.CrossRefGoogle Scholar
  767. Isaac, L. and G.C. Ware. 1974. The flexibility of bacterial cell walls. J. Appl. Bacteriol. 37: 335–339.PubMedCrossRefGoogle Scholar
  768. Ison, C.A., C.M. Bellinger and J. Walker. 1986. Homology of cryptic plasmid of Neisseria gonorrhoeae with plasmids from Neisseria meningitidis and Neisseria lactamica. J. Clin. Pathol. 39: 1119–1123.PubMedCrossRefGoogle Scholar
  769. Itoh, J., S. Miyadoh, S. Takahasi, S. Amano, N. Ezaki and Y. Yamada. 1979. Studies on antibiotic Bn-227 and antibiotic Bn227-F, new antibiotics I. Taxonomy, isolation and characterization. J. Antibiot. 32: 1089– 1095.PubMedCrossRefGoogle Scholar
  770. Itoh, Y. and D. Haas. 1985. Cloning vectors derived from the Pseudomonas plasmid Pvs1. Gene 36: 27–36.PubMedCrossRefGoogle Scholar
  771. Itoh, Y., J.M. Watson, D. Haas and T. Leisinger. 1984. Genetic and molecular characterization of the Pseudomonas plasmid Pvs1. Plasmid 11: 206–220.PubMedCrossRefGoogle Scholar
  772. Itzigsohn, H. 1868. Entwicklungsvorgange von Zoogloea, Oscillaria,Synedra, Staurastrum, Spirotaenia und Chroolepus. In S. B. Ges. Natur Fr. (19 Nov. 1967), Berlin. pp. 30–31.Google Scholar
  773. Jackson, F.L. and Y.E. Goodman. 1972. Transfer of the facultatively anaerobic organism Bacteroides corrodens Eiken to a new genus, Eikenella. Int. J. Syst. Bacteriol. M22: 73–77.CrossRefGoogle Scholar
  774. Jackson, F.L. and YE. Goodman. 1978. Bacteroides ureolyticus, a new species to accommodate strains previously identified as Bacteroides corrodens, anaerobic. Int. J. Syst. Bacteriol. 28: 197–200.CrossRefGoogle Scholar
  775. Jackson, F.L., Y.E. Goodman, F.R. Bel, P.C. Wong and R.L.S. Whitehouse. 1971. Taxonomic status of facultative and strictly anaerobic corroding bacilli that have been classified as Bacteroides corrodens. J. Med. Microbiol. 4: 171–184.PubMedCrossRefGoogle Scholar
  776. Jackwood, M.W. and YM. Saif. 1987. Pili of Bordetella avium: expression, characterization, and role in in vitro adherence. Avian Dis. 31: 277– 286.PubMedCrossRefGoogle Scholar
  777. Jackwood, M.W., YM. Saif, P.D. Moorhead and R.N. Dearth. 1985. Further characterization of the agent causing coryza in turkeys. Avian Dis. 29: 690–705.PubMedCrossRef