Skip to main content

Finite Time Stabilization of Nonlinear Oscillators Subject to dry Friction

  • Conference paper
Nonsmooth Mechanics and Analysis

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 12))

Abstract

Given a smooth function f : ℝn → ℝ and a convex function Φ: ℝn → ℝ, we consider the following differential inclusion:

$$ \left( S \right) \ddot x\left( t \right) + \partial \Phi \left( {\dot x\left( t \right)} \right) + \nabla f\left( {x\left( t \right)} \right) \mathrel\backepsilon 0, t \geqslant 0, $$

where ∂Φ denotes the subdifferential of Φ. The term ∂Φ(∂Φ\( \dot x \) ) is strongly related with the notion of friction in unilateral mechanics. The trajectories of (S) are shown to converge toward a stationary solution of (S). Under the additional assumption that 0 ∈ int ∂Φ(0) (case of a dry friction), we prove that the limit is achieved in a finite time. This result may have interesting consequences in optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • S. Adly, D. Goeleven, A stability theory for second order nonsmooth dynamical systems with application to friction problems, Journal de Mathématiques Pures et Appliquées, vol. 83, (2004), 17–51.

    Article  MathSciNet  Google Scholar 

  • F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert space, SIAM J. on Control and Optimization, vol. 38, 4 (2000), 1102–1119.

    Article  MATH  MathSciNet  Google Scholar 

  • F. Alvarez, H. Attouch, J. Bolte, P. Redont, A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics, J. Math. Pures Appl., vol. 81,8 (2002), 747–779.

    Article  MathSciNet  Google Scholar 

  • H. Amann, J. I. Díz, A note on the dynamics of an oscillator in the presence of strong friction, Nonlinear Anal., vol. 55 (2003), 209–216.

    Article  MathSciNet  Google Scholar 

  • A. Amassad, C. Fabre, Analysis of a viscoelastic unilateral contact problem involving the Coulomb friction law, J. Optim. Theory Appl., vol. 116,3 (2003), 465–483.

    Article  MathSciNet  Google Scholar 

  • H. Attouch, X. Goudou, P. Redont, The heavy ball with friction method. I The continuous dynamical system, Communications in Contemporary Math, vol. 2,1 (2000), 1–34.

    Article  MathSciNet  Google Scholar 

  • H. Attouch, P. Redont, The second-order in time continuous Newton method. Approximation, optimization and mathematical economics (Pointe—Pitre, 1999), 25–36, Physica, Heidelberg, 2001.

    Google Scholar 

  • H. Brézis, Opérateurs maximaux monotones dans les espaces de Hilbert et équations d’évolution, Lecture Notes 5, North Holland, 1972.

    Google Scholar 

  • M. Cadivel, D. Goeleven and M. Shillor, Study of a unilateral oscillator With friction, Math. Comput. Modelling, vol. 32,2/3 (2000), 381–391.

    Article  MathSciNet  Google Scholar 

  • J. Conlisk, Why bounded rationality, Journal of Economic Literature, vol. 34 (1996), 669–700.

    Google Scholar 

  • J. I. Díz, A. Liñán, On the asymptotic behavior of a damped oscillator under a sublinear friction term, Rev. R. Acad. Cien. Serie A. Mat., vol. 95,1 (2001), 155–160.

    Google Scholar 

  • Y. Dumont, D. Goeleven, M. Rochdi and M. Shillor, Frictional contact of a nonlinear spring, Math. Comput. Modelling, vol. 31,2/3 (2000), 83–97.

    Article  MathSciNet  Google Scholar 

  • C. Eck, J. Jarusek, A survey on dynamic contact problems with Coulomb friction, Multifield problems, (2000), 254–261, Springer, Berlin.

    Google Scholar 

  • W. Han, M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, AMS and International Press, 2002.

    Google Scholar 

  • M. Jean, Unilateral contact with dry friction: time and space discrete variables formulation, Arch. Mech., vol. 40,5/6 (1988), 677–691.

    MATH  MathSciNet  Google Scholar 

  • T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces. Nonlinear functional analysis, Proc. Symp. Pure Math., vol. 18,1 (1970), 138–161.

    MATH  Google Scholar 

  • M. Mabrouk, Sur un principe variationnel pour un problème d’évolution hyperbolique non linéaire, working paper, Laboratoire de Mécanique Appliquée, Université de Franche-Comté, Besançon.

    Google Scholar 

  • M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems, Progress in nonlinear differential equations and their applications, vol. 9, Birkhauser, 1993.

    Google Scholar 

  • J. J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Diff. Equ., (1977), 347–374.

    Google Scholar 

  • J. J. Moreau, Standard inelastic shocks and the dynamics of unilateral constraints. In: Unilateral Problems in Structural Analysis (ed. by G. Del Piero and F. Maceri), CISM Courses and Lectures, vol. 288, Springer Verlag, Wien, New York 1985, 173–221.

    Google Scholar 

  • B.T. Polyack, Some methods of speeding up the convergence of iterative methods, Z. Vylist Math. Fiz., vol. 4, (1964), 1–17.

    Google Scholar 

  • R.T. Rockafellar and R. Wets, Variational analysis, Springer, Berlin, 1998.

    Google Scholar 

  • A. Rubinstein, Modeling bounded rationality, (1998), MIT Press.

    Google Scholar 

  • D. A. Russell, The piano hammer as a nonlinear spring, publications of the Science and Mathematics Department, GMI Engineering & Management Institute, Kettering University, 1997.

    Google Scholar 

  • M. Schatzman, A class of nonlinear differential equations of second order in time, Nonlinear Analysis, vol. 2, (1978), 355–373.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Sobel, Economists’ models of learning, Journal of Economics Theory, vol. 94, (2000), 241–261.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Adly, S., Attouch, H., Cabot, A. (2006). Finite Time Stabilization of Nonlinear Oscillators Subject to dry Friction. In: Alart, P., Maisonneuve, O., Rockafellar, R.T. (eds) Nonsmooth Mechanics and Analysis. Advances in Mechanics and Mathematics, vol 12. Springer, Boston, MA. https://doi.org/10.1007/0-387-29195-4_24

Download citation

Publish with us

Policies and ethics