Skip to main content

Putative Roles of kin17, a Mammalian Protein Binding Curved DNA, in Transcription

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

In bacteria, RecA protein is indispensable for recombination, mutagenesis and for the induction of SOS genes. Curiously, anti-RecA antibodies recognize kin 17, a human nuclear Zn-finger protein of 45 kDa that preferentially binds to curved DNA and participates in a general response to diverse genotoxics. KIN17 gene is conserved from yeast to man and codes for a protein involved in DNA replication. Recent observations suggest that kin 17 protein may also participate in RNA metabolism. Taken together all these data indicate the participation of kin 17 protein in a pathway that harmonizes transcription, replication and repair in order to circumvent the topological constraints caused by unusually complex lesions like multiply damaged sites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Toney JH, Donahue BA, Kellett PJ et al. Isolation of cDNAs encoding a human protein that binds selectively to DNA modified by the anticancer drug cis-diamminedichloroplatinum(II). Proc Natl Acad Sci USA 1989; 86:8328–8332.

    Article  PubMed  CAS  Google Scholar 

  2. Donahue BA, Augot M, Bellon SF et al. Characterization of a DNA damage-recognition protein from mammalian cells that binds specifically to intrastrand d(GpG) and d(ApG) DNA adducts of the anticancer drug cisplatin. Biochemistry 1990; 29:5872–5880.

    Article  PubMed  CAS  Google Scholar 

  3. Donahue BA, Yin S, Taylor JS et al. Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. Proc Natl Acad Sci USA 1994; 91:8502–8506.

    Article  PubMed  CAS  Google Scholar 

  4. Coates PJ, Save V, Ansari B et al. Demonstration of DNA damage/repair in individual cells using in situ end labelling: association of p53 with sites of DNA damage. J Pathol 1995; 176:19–26.

    Article  PubMed  CAS  Google Scholar 

  5. Bianchi ME, Beltrame M, Paonessa G. Specific recognition of cruciform DNA by nuclear protein HMG1. Science 1989; 243:1056–1059.

    Article  PubMed  CAS  Google Scholar 

  6. Pierro P, Capaccio L, Gadaleta G. The 25 kDa protein recognizing the rat curved region upstream of the origin of the L-strand replication is the rat homologue of the human mitochondrial transcription factor A. FEBS Lett 1999; 457:307–310.

    Article  PubMed  CAS  Google Scholar 

  7. Setlow RB, Setlow JK. Evidence that ultraviolet-induced thymine dimers in DNA cause biological damage. Proc Natl Acad Sci USA 1962; 48:1250–1257.

    Article  PubMed  CAS  Google Scholar 

  8. Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature 1968; 218:652–656.

    Article  PubMed  CAS  Google Scholar 

  9. Tanaka K, Miura N, Satokata I et al. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature 1990; 348:73–76.

    Article  PubMed  CAS  Google Scholar 

  10. Friedberg EC, Walker GC, Siede W. Human hereditary diseases with defective processing of DNA damage. In: DNA Repair and Mutagenesis. Washington DC: ASM Press, 1995:633–685.

    Google Scholar 

  11. Eggleston AK, West SC. Exchanging partners: recombination in E. coli. Trends Genet 1996; 12:20–26.

    Article  PubMed  CAS  Google Scholar 

  12. Sommer S, Bailone A, Devoret R. The appearance of the UmuD’C protein complex in Escherichia coli switches repair from homologous recombination to SOS mutagenesis. Mol Microbiol 1993; 10:963–971.

    Article  PubMed  CAS  Google Scholar 

  13. Cox MM. Recombinational DNA repair in bacteria and the RecA protein. Prog Nucleic Acid Res MolBiol 1999; 63:311–366.

    Article  CAS  Google Scholar 

  14. Eisen JA. The RecA protein as a model molecule for molecular systematic studies of bacteria: Comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 1995; 41:1105–1123.

    Article  PubMed  CAS  Google Scholar 

  15. Sato S, Kobayashi T, Hotta Y et al. Characterization of a mouse recA-like gene specifically expressed in testis. DNA Res 1995; 2:147–150.

    Article  PubMed  CAS  Google Scholar 

  16. Sato S, Hotta Y, Tabata S. Structural analysis of a recA-like gene in the genome of Arabidopsis thaliana. DNA Res 1995; 2:89–93.

    Article  PubMed  CAS  Google Scholar 

  17. Yoshida K, Kondoh G, Matsuda Y et al. The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell 1998; 1:707–718.

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi E, Matsuda Y, Hori T et al. Chromosome mapping of the human (RECA) and mouse (Reca) homologs of the yeast RAD51 and Escherichia coli recA genes to human (15q15.1) and mouse (2F1) chromosomes by direct R-banding fluorescence in situ hybridization. Genomics 1994; 19:376–378.

    Article  PubMed  CAS  Google Scholar 

  19. Brendel V, Brocchieri L, Sandier SJ et al. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J Mol Evol 1997; 44:528–541.

    Article  PubMed  CAS  Google Scholar 

  20. McKee BD, Ren X, Hong C. A recA-like gene in Drosophila melanogaster that is expressed at high levels in female but not male meiotic tissues. Chromosoma 1996; 104:479–488.

    PubMed  CAS  Google Scholar 

  21. Pittman DL, Weinberg LR, Schimenti JC. Identification, characterization, and genetic mapping of Rad51d, a new mouse and human RAD51/RecA-related gene. Genomics 1998; 49:103–111.

    Article  PubMed  CAS  Google Scholar 

  22. Terasawa M, Shinohara A, Hotta Y et al. Localization of RecA-like recombination proteins on chromosomes of the lily at various meiotic stages. Genes Dev 1995; 9:925–934.

    Article  PubMed  CAS  Google Scholar 

  23. Yoshimura Y, Morita T, Yamamoto A et al. Cloning and sequence of the human RecA-like gene cDNA. Nucleic Acids Res 1993; 21:1665.

    Article  PubMed  CAS  Google Scholar 

  24. Morita T, Yoshimura Y, Yamamoto A et al. A mouse homolog of the Escherichia coli recA and Saccharomyces cerevisiae RAD51 genes. Proc Natl Acad Sci USA 1993; 90:6577–6580.

    Article  PubMed  CAS  Google Scholar 

  25. Aihara H, Ito Y, Kurumizaka H et al. An interaction between a specified surface of the C-terminal domain of RecA protein and double-stranded DNA for homologous pairing. J Mol Biol 1997; 274:213–221.

    Article  PubMed  CAS  Google Scholar 

  26. Yang S, VanLoock MS, Yu X et al. Comparison of bacteriophage T4 UvsX and human Rad51 filaments suggests that RecA-like polymers may have evolved independently. J Mol Biol 2001; 312:999–1009.

    Article  PubMed  CAS  Google Scholar 

  27. Angulo JF, Moreau PL, Maunoury R et al. KIN, a mammalian nuclear protein immunologically related to E. coli RecA protein. Mutat Res 1989; 217:123–134.

    PubMed  CAS  Google Scholar 

  28. Higashitani A, Tabata S, Ogawa T et al. ATP-independent strand transfer protein from murine spermatocytes, spermatids, and spermatozoa. Exp Cell Res 1990; 186:317–323.

    Article  PubMed  CAS  Google Scholar 

  29. Bashkirov VI, Loseva EF, Savchenko GV et al. Antibodies against Escherichia coli RecA protein reveal two nuclear proteins in bovine spermatocytes which interact with synaptonemal complex structures of meiotic chromosomes of various eukaryotic organisms. Genetika 1993; 29:1953–1968.

    PubMed  CAS  Google Scholar 

  30. Cerutti H, Osman M, Grandoni P et al. A homolog of Escherichia coli RecA protein in plastids of higher plants. Proc Natl Acad Sci USA 1992; 89:8068–8072.

    Article  PubMed  CAS  Google Scholar 

  31. Cerutti H, Ibrahim HZ, Jagendorf AT. Treatment of pea (Pisum sativum L.) protoplasts with DNA-damaging agents induces a 39-kilodalton chloroplast protein immunologically related to Escherichia coli RecA. Plant Physiol 1993; 102:155–163.

    Article  PubMed  CAS  Google Scholar 

  32. Tissier A, Kannouche P, Biard DS et al. The mouse Kin-17 gene codes for a new protein involved in DNA transactions and is akin to the bacterial RecA protein. Biochimie 1995; 77:854–860.

    Article  PubMed  CAS  Google Scholar 

  33. Anderson LK, Offenberg HH, Verkuijlen WM et al. RecA-like proteins are components of early meiotic nodules in lily. Proc Natl Acad Sci USA 1997; 94:6868–6873.

    Article  PubMed  CAS  Google Scholar 

  34. Martin B, Ruellan JM, Angulo JF et al. Identification of the recA gene of Streptococcus pneumoniae. Nucleic Acids Res. 1992; 20:6412.

    Article  PubMed  CAS  Google Scholar 

  35. Aigle B, Holl AC, Angulo JF et al. Characterization of two Streptomyces ambofaciens recA mutants: identification of the RecA protein by immunoblotting. FEMS Microbiol Lett 1997; 149:181–187.

    Article  PubMed  CAS  Google Scholar 

  36. Borchiellini P, Angulo J, Bertolotti R. Genes encoding mammalian recombinases: Cloning approach with anti-RecA antibodies. Biogenic Amines 1997; 13:195–215.

    CAS  Google Scholar 

  37. Angulo JF, Rouer E, Benarous R et al. Identification of a mouse cDNA fragment whose expressed polypeptide reacts with anti-recA antibodies. Biochimie 1991; 73:251–256.

    Article  PubMed  CAS  Google Scholar 

  38. Angulo JF, Rouer E, Mazin A et al. Identification and expression of the cDNA of KIN17, a zinc-finger gene located on mouse chromosome 2, encoding a new DNA-binding protein. Nucleic Acids Res 1991; 19:5117–5123.

    Article  PubMed  CAS  Google Scholar 

  39. Mazin A, Timchenko T, Menissier-de-Murcia J et al. Kin 17, a mouse nuclear zinc finger protein that binds preferentially to curved DNA. Nucleic Acids Res 1994; 22:4335–4341.

    Article  PubMed  CAS  Google Scholar 

  40. Araneda S, Angulo J, Devoret R et al. Identification of a Kin nuclear protein immunologically related to RecA protein in the rat CNS. C R Acad Sci III 1993; 316:593–597.

    PubMed  CAS  Google Scholar 

  41. Araneda S, Angulo J, Touret M et al. Preferential expression of kin, a nuclear protein binding to curved DNA, in the neurons of the adult rat. Brain Res 1997; 762:103–113.

    Article  PubMed  CAS  Google Scholar 

  42. Kannouche P, Mauffrey P, Pinon-Lataillade G et al. Molecular cloning and characterization of the human KIN 17 cDNA encoding a component of the UVC response that is conserved among metazoans. Carcinogenesis 2000; 21:1701–1710.

    Article  PubMed  CAS  Google Scholar 

  43. Biard DSF, Saintigny Y, Maratrat M et al. Enhanced expression of the kin 17 protein immediately after low doses of ionizing radiation. Radiat Res 1997; 147:442–450.

    Article  PubMed  CAS  Google Scholar 

  44. Biard DSF, Saintigny Y, Maratrat M et al. Differential expression of the Hskin 17 protein during differentiation of in vitro reconstructed human skin. Arch Dermatol Res 1997; 289:448–456.

    Article  PubMed  CAS  Google Scholar 

  45. Kyrpides NC, Woese CR, Ouzounis CA. KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins. Trends Biochem Sci 1996; 21:425–426.

    Article  PubMed  CAS  Google Scholar 

  46. Ponting CP. Novel domains and orthologues of eukaryotic transcription elongation factors. Nucleic Acids Res 2002; 30:3643–3652.

    Article  PubMed  CAS  Google Scholar 

  47. Kazianis S, Gan L, Delia Coletta L et al. Cloning and comparative sequence analysis of TP53 in Xiphophorus fish hybrid melanoma models. Gene 1998; 212:31–38.

    Article  PubMed  CAS  Google Scholar 

  48. de Murcia G, Menissier de Murcia J. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 1994; 19:172–176.

    Article  PubMed  Google Scholar 

  49. Yu X, Egelman EH. Removal of the RecA C-terminus results in a conformational change in the RecA-DNA filament. J Struct Biol 1991; 106:243–254.

    Article  PubMed  CAS  Google Scholar 

  50. Eggler AL, Lusetti SL, Cox MM. The C terminus of the Escherichia coli RecA protein modulates the DNA binding competition with single-stranded DNA-binding protein. J Biol Chem 2003; 278:16389–16396.

    Article  PubMed  CAS  Google Scholar 

  51. Story RM, Steitz TA. Structure of the recA protein-ADP complex. Nature 1992; 355:374–376.

    Article  PubMed  CAS  Google Scholar 

  52. Story RM, Weber IT, Steitz TA. The structure of the E. coli recA protein monomer and polymer. Nature 1992; 355:318–325.

    Article  PubMed  CAS  Google Scholar 

  53. VanLoock MS, Yu X, Yang S et al. ATP-mediated conformational changes in the RecA filament. Structure (Camb) 2003; 11:187–196.

    Article  PubMed  CAS  Google Scholar 

  54. Yu X, Jacobs SA, West SC et al. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc Natl Acad Sci USA 2001; 98:8419–8424.

    Article  PubMed  CAS  Google Scholar 

  55. Krivi GG, Bittner ML, Rowold E, Jr. et al. Purification of recA-based fusion proteins by immunoadsorbent chromatography. Characterization of a major antigenic determinant of Escherichia coli recA protein. J Biol Chem 1985; 260:10263–10267.

    PubMed  CAS  Google Scholar 

  56. Benedict RC, Kowalczykowski SC. Increase of the DNA strand assimilation activity of recA protein by removal of the C terminus and structure-function studies of the resulting protein fragment. J Biol Chem 1988; 263:15513–15520.

    PubMed  CAS  Google Scholar 

  57. Tateishi S, Horii T, Ogawa T et al. C-terminal truncated Escherichia coli RecA protein RecA 5327 has enhanced binding affinities to single-and double-stranded DNAs. J Mol Biol 1992; 223:115–129.

    Article  PubMed  CAS  Google Scholar 

  58. Larminat F, Defais M. Modulation of the SOS response by truncated RecA proteins. Mol Gen Genet 1989; 216:106–112.

    Article  PubMed  CAS  Google Scholar 

  59. Sedgwick SG, Yarranton GT. Cloned truncated recA genes in E. coli. I. Effect on radiosensitivity and recA+ dependent processes. Mol Gen Genet 1982; 185:93–98.

    Article  PubMed  CAS  Google Scholar 

  60. Yarranton GT, Sedgwick SG. Cloned truncated recA genes in E. coli II. Effects of truncated gene. Mol Gen Genet 1982; 185:99–104.

    Article  PubMed  CAS  Google Scholar 

  61. Lusetti SL, Wood EA, Fleming CD et al. C-terminal Deletions of the Escherichia coli RecA Protein. Characterisation of in vivo and in vitro effects. J Biol Chem 2003; 278:16372–16380.

    Article  PubMed  CAS  Google Scholar 

  62. Kannouche P, Pinon-Lataillade G, Mauffrey P et al. Overexpression of kin 17 protein forms intranuclear foci in mammalian cells. Biochimie 1997; 79:599–606.

    Article  PubMed  CAS  Google Scholar 

  63. Milot E, Belmaaza A, Wallenburg JC et al. Chromosomal illegitimate recombination in mammalian cells is associated with intrinsically bent DNA elements. EMBO J 1992; 11:5063–5070.

    PubMed  CAS  Google Scholar 

  64. Stary A, Sarasin A. Molecular analysis of DNA junctions produced by illegitimate recombination in human cells. Nucleic Acids Res 1992; 20:4269–4274.

    Article  PubMed  CAS  Google Scholar 

  65. Mazin A, Milot E, Devoret R et al. KIN 17, a mouse nuclear protein, binds to bent DNA fragments that are found at illegitimate recombination junctions in mammalian cells. Mol Gen Genet 1994; 244:435–438.

    Article  PubMed  CAS  Google Scholar 

  66. Timchenko T, Bailone A, Devoret R. Btcd, a mouse protein that binds to curved DNA, can substitute in Escherichia coli for H-NS, a bacterial nucleoid protein. EMBO J 1996; 15:3986–3992.

    PubMed  CAS  Google Scholar 

  67. Biard DS, Miccoli L, Despras E et al. Ionizing radiation triggers chromatin-bound kin 17 complex formation in human cells. J Biol Chem 2002; 277:19156–19165.

    Article  PubMed  CAS  Google Scholar 

  68. Kannouche P, Angulo JF. Overexpression of kin 17 protein disrupts nuclear morphology and inhibits the growth of mammalian cells. J Cell Sci 1999; 112:3215–3224.

    PubMed  CAS  Google Scholar 

  69. Biard DS, Kannouche P, Lannuzel-Drogou C et al. Ectopic expression of (Mm)Kin 17 protein inhibits cell proliferation of human tumor-derived cells. Exp Cell Res 1999; 250:499–509.

    Article  PubMed  CAS  Google Scholar 

  70. Despras E, Miccoli L, Creminon C et al. Depletion of KIN17, a human DNA replication protein, increases the radiosensitivity of RKO cells. Radiat Res 2003; 159:748–758.

    Article  PubMed  CAS  Google Scholar 

  71. Rappsilber J, Ryder U, Lamond AI et al. Large-scale proteomic analysis of the human spliceosome. Genome Res 2002; 12:1231–1245.

    Article  PubMed  CAS  Google Scholar 

  72. Pinon-Lataillade G, Masson C, Bernardino-Sgherri J et al. KIN17 encodes an RNA-binding protein and is expressed during mouse spermatogenesis. J Cell Sci 2004; 117:3691–3702.

    Article  PubMed  CAS  Google Scholar 

  73. Araneda S, Mermet N, Verjat T et al. Expression of Kin 17 and 8-OxoG DNA glycosylase in cells of rodent and quail central nervous system. Brain Res Bull 2001; 56:139–146.

    Article  PubMed  CAS  Google Scholar 

  74. Miccoli L, Biard DS, Frouin I et al. Selective interactions of human kinl7 and RPA proteins with chromatin and the nuclear matrix in a DNA damage-and cell cycle-regulated manner. Nucleic Acids Res 2003; 31:4162–4175.

    Article  PubMed  CAS  Google Scholar 

  75. Miccoli L, Biard DSF, Creminon C et al. Human kin 17 protein directly interacts with the SV40 large T antigen and inhibits DNA replication. Cancer Res 2002; 62:5425–5436.

    PubMed  CAS  Google Scholar 

  76. Puvion E, Duthu A, Harper F et al. Intranuclear distribution of SV40 large T-antigen and transformation-related protein p53 in abortively infected cells. Exp Cell Res 1988; 177:73–89.

    Article  PubMed  CAS  Google Scholar 

  77. Biard DS, Miccoli L, Despras E et al. Participation of kin 17 protein in replication factories and in other DNA transactions mediated by high molecular weight nuclear complexes. Mol Cancer Res 2003; 1:519–531.

    PubMed  CAS  Google Scholar 

  78. Kannouche P, Pinon-Lataillade G, Tissier A et al. The nuclear concentration of kin 17, a mouse protein that binds to curved DNA, increases during cell proliferation and after UV irradiation. Carcinogenesis 1998; 19:781–789.

    Article  PubMed  CAS  Google Scholar 

  79. Jensen KA, Smerdon MJ. DNA repair within nucleosome cores of UV-irradiated human cells. Biochemistry 1990; 29:4773–4782.

    Article  PubMed  CAS  Google Scholar 

  80. Dresler SL, Gowans BJ, Robinson-Hill RM et al. Involvement of DNA polymerase δ in DNA repair synthesis in human fibroblasts at late times after ultraviolet irradiation. Biochemistry 1988; 27:6379–6383.

    Article  PubMed  CAS  Google Scholar 

  81. Tornaletti S, Pfeifer GP. UV damage and repair mechanisms in mammalian cells. Bioessays 1996; 18:221–228.

    Article  PubMed  CAS  Google Scholar 

  82. Herrlich P, Blattner C, Knebel A et al. Nuclear and non-nuclear targets of genotoxic agents in the induction of gene expression. Shared principles in yeast, rodents, man and plants. Biol Chem 1997; 378:1217–1229.

    Article  PubMed  CAS  Google Scholar 

  83. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 1992; 258:607–614.

    Article  PubMed  CAS  Google Scholar 

  84. Maltzman W, Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 1984; 4:1689–1694.

    PubMed  CAS  Google Scholar 

  85. Smith ML, Fornace AJ, Jr. p53-mediated protective responses to UV irradiation. Proc Natl Acad Sci USA 1997; 94:12255–12257.

    Article  PubMed  CAS  Google Scholar 

  86. May P, May E. Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 1999; 18:7621–7636.

    Article  PubMed  CAS  Google Scholar 

  87. Blattner C, Kannouche P, Litfin M et al. UV-induced stabilization of c-fos and other short-lived mRNAs. Mol Cell Biol 2000; 20:3616–3625.

    Article  PubMed  CAS  Google Scholar 

  88. Masson C, Menaa F, Pinon-Lataillade G et al. Global genome repair is required to activate KIN17, a UVC-responsive gene involved in DNA replication. Proc Natl Acad Sci USA 2003; 100:616–621.

    Article  PubMed  CAS  Google Scholar 

  89. Weiss RS, Enoch T, Leder P. Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. Genes Dev 2000; 14:1886–1898.

    PubMed  CAS  Google Scholar 

  90. Sugasawa K, Ng JM, Masutani C et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol Cell 1998; 2:223–232.

    Article  PubMed  CAS  Google Scholar 

  91. Ng JM, Vermeulen W, Van Der Horst GT et al. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev 2003; 17:1630–1645.

    Article  PubMed  CAS  Google Scholar 

  92. Kirkpatrick DP, Rao BJ, Radding CM. RNA-DNA hybridization promoted by E. coli RecA protein. Nucleic Acids Res 1992; 20:4339–4346.

    Article  PubMed  CAS  Google Scholar 

  93. Zaitsev EN, Kowalczykowski SC. A novel pairing process promoted by Escherichia coli RecA protein: inverse DNA and RNA strand exchange. Genes Dev 2000; 14:740–749.

    PubMed  CAS  Google Scholar 

  94. Kasahara M, Clikeman JA, Bates DB et al. RecA protein-dependent R-loop formation in vitro. Genes Dev 2000; 14:360–365.

    PubMed  CAS  Google Scholar 

  95. Stenlund A. Initiation of DNA replication: Lessons from viral initiator proteins. Nat Rev Mol Cell Biol 2003; 4:777–785.

    PubMed  CAS  Google Scholar 

  96. Aravind L, Walker DR, Koonin EV. Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res 1999; 27:1223–1242.

    Article  PubMed  CAS  Google Scholar 

  97. Masson C, Menaa F, Pinon-Lataillade G et al. Identification of KIN (KIN17), a human gene encoding a nuclear DNA-binding protein, as a novel component of the TP53-independent response to ionizing radiation. Radiat Res 2001; 156:535–544.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Angulo, J.F., Mauffirey, P., Pinon-Lataillade, G., Miccoli, L., Biard, D.S.F. (2005). Putative Roles of kin17, a Mammalian Protein Binding Curved DNA, in Transcription. In: DNA Conformation and Transcription. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-29148-2_6

Download citation

Publish with us

Policies and ethics