Skip to main content

Repression of Transcription by Curved DNA and Nucleoid Protein H-NS

A Mode of Bacterial Gene Regulation

  • Chapter
DNA Conformation and Transcription

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Nucleoid-associated protein H-NS has emerged as one of the most intriguing and versatile global regulators of enterobacterial gene expression acting primarily yet not exclusively at the transcriptional level where it generally acts as a repressor. H-NS is also believed to contribute to the architectural organization of the nucleoid by causing DNA compaction, although the evidence for such a role is not overwhelming. H-NS binds preferentially to DNA elements displaying intrinsic curvatures and can induce DNA bending. These functions are determined by its quaternary tetrameric structure. In turn, the existence of an intrinsic DNA curvature separating two or more H-NS binding sites seems to be characteristic of the H-NS-sensitive promoters and a prerequisite for the transcriptional repressor activity of this protein. In some cases, like that of the virF promoter, the temperature-sensitivity of the DNA curvature represents a key element in the thermo-regulation of pathogenicity gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lammi M, Paci M, Pon C et al. Proteins from the prokaryotic nucleoid. Biochemical and 1H-NMR studies on three bacterial histone-like proteins. In: Hubscher H, Spadari S, eds. Proteins Involved in DNA Replication. New York: Plenum Publishing Co., 1984:467–477.

    Google Scholar 

  2. Spassky A, Rimsky S, Garreau H et al. H1a, an E. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro. Nucleic Acids Res 1984; 12:5321–5340.

    Article  PubMed  CAS  Google Scholar 

  3. Jacquet M, Cukier-Kahn R, Pla J et al. A thermostable protein factor acting on in vitro DNA transcription. Biochem Biophys Res Commun 1971; 45:1597–1607.

    Article  PubMed  CAS  Google Scholar 

  4. Cukier-Kahn R, Jacquet M, Gros F. Two heat-resistant, low molecular weight proteins from Escherichia coli that stimulate DNA-directed RNA synthesis. Proc Natl Acad Sci USA 1972; 69:3643–3647.

    Article  PubMed  CAS  Google Scholar 

  5. Ussery DW, Hinton JC, Jordi BJ et al. The chromatin-associated protein H-NS. Biochimie 1994; 76:968–980.

    Article  PubMed  CAS  Google Scholar 

  6. Atlung T, Ingmer H. H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 1997; 24:7–17.

    Article  PubMed  CAS  Google Scholar 

  7. Schroeder O, Wagner R. The bacterial regulatory protein H-NS — a versatile modulator of nucleic acid structures. Biol Chem 2002; 383:945–960.

    Article  Google Scholar 

  8. Tippner D, Afflerbach H, Bradaczek C et al. Evidence for a regulatory function of the histone-like Escherichia coli protein H-NS in ribosomal RNA synthesis. Mol Microbiol 1994; 11:589–604.

    Article  PubMed  CAS  Google Scholar 

  9. Falconi M, Gualtieri MT, La Teana A et al. Proteins from the prokaryotic nucleoid: primary and quaternary structure of the 15-kD Escherichia coli DNA binding protein H-NS. Mol Microbiol 1988; 2:323–329.

    Article  PubMed  CAS  Google Scholar 

  10. Ueguchi C, Suzuki T, Yoshida T et al. Systematic mutational analysis revealing the functional domain organization of Escherichia coli nucleoid protein H-NS. J Mol Biol 1996; 263:149–162.

    Article  PubMed  CAS  Google Scholar 

  11. Spurio R, Falconi M, Brandi A et al. The oligomeric structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved DNA and for DNA bending. EMBO J 1997; 16:1795–1805.

    Article  PubMed  CAS  Google Scholar 

  12. Pon CL, Calogero R, Gualerzi CO. Identification, cloning, nucleotide sequence and chromosomal map location of hns, the structural gene for Escherichia coli DNA-binding protein H-NS. Mol Gen Genet 1988; 212:199–202.

    Article  PubMed  CAS  Google Scholar 

  13. La Teana A, Falconi M, Scarlato V et al. Characterization of the structural genes for the DNA-binding protein H-NS in Enterobacteriaceae. FEBS Lett 1989; 244:34–38.

    Article  PubMed  Google Scholar 

  14. Higgins CF, Hinton JC, Hulton CS et al. Protein H1: a role for chromatin structure in the regulation of bacterial gene expression and virulence? Mol Microbiol 1990; 4:2007–2012.

    Article  PubMed  CAS  Google Scholar 

  15. Friedrich K, Gualerzi CO, Lammi M et al. Proteins from the prokaryotic nucleoid. Interaction of nucleic acids with the 15 kDa Escherichia coli histone-like protein H-NS. FEBS Lett 1989; 229:197–202.

    Article  Google Scholar 

  16. Bracco L, Kotlarz D, Kolb A et al. Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. EMBO J 1989; 8:4289–4296.

    PubMed  CAS  Google Scholar 

  17. Yamada H, Muramatsu S, Mizuno T. An Escherichia coli protein that preferentially binds to sharply curved DNA. J Biochem (Tokyo) 1990; 108:420–425.

    PubMed  CAS  Google Scholar 

  18. Yamada H, Yoshida T, Tanaka K et al. Molecular analysis of the Escherichia coli hns gene encoding a DNA binding protein, which preferentially recognizes curved DNA sequences. Mol Gen Genet 1991; 230:332–336.

    Article  PubMed  CAS  Google Scholar 

  19. Azam TA, Iwata A, Nishimura A et al. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 1999; 181:6361–6370.

    CAS  Google Scholar 

  20. Dürrenberger M, La Teana A, Citro G et al. Escherichia coli DNA-binding protein H-NS is localized in the nucleoid. Res Microbiol 1991; 142:373–380.

    Article  PubMed  Google Scholar 

  21. Marsh M, Hillyard DR. Nucleotide sequence of hns encoding the DNA-binding protein H-NS of Salmonella typhimurium. Nucleic Acids Res 1990; 18:3397.

    Article  PubMed  CAS  Google Scholar 

  22. Tendeng C, Krin E, Soutourina OA et al. A novel H-NS-like protein from an antarctic psychrophilic bacterium reveals a crucial role for the N-terminal domain in thermal stability. J Biol Chem 2003; 278:18754–18760.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang A, Belfort M. Nucleotide sequence of a newly-identified Escherichia coli gene, stpA, encoding an H-NS-like protein. Nucleic Acids Res 1992; 20:6735.

    Article  PubMed  CAS  Google Scholar 

  24. Dame RT, Wyman C, Goosen N. Structural basis for preferential binding of H-NS to curved DNA. Biochimie 2001; 83:231–234.

    Article  PubMed  CAS  Google Scholar 

  25. Falconi M, Higgins NP, Spurio R et al. Expression of the gene encoding the major bacterial nucleoid protein H-NS is subject to transcriptional auto-repression. Mol Microbiol 1993; 10:273–282.

    Article  PubMed  CAS  Google Scholar 

  26. Zuber F, Kotlarz D, Rimsky S et al. Modulated expression of promoters containing upstream curved DNA sequences by the Escherichia coli nucleoid protein H-NS. Mol Microbiol 1994; 12:231–240.

    Article  PubMed  CAS  Google Scholar 

  27. Rimsky S, Zuber F, Buckle M et al. A molecular mechanism for the repression of transcription by the H-NS protein. Mol Microbiol 2001; 42:1311–1323.

    Article  PubMed  CAS  Google Scholar 

  28. Jordi BJ, Fielder AE, Burns CM. DNA binding is not sufficient for H-NS-mediated repression of proU expression. J Biol Chem 1997; 272:12083–12090.

    Article  PubMed  CAS  Google Scholar 

  29. Shindo H, Iwaki T, Ieda R et al. Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli. FEBS Lett 1995; 360:125–131.

    Article  PubMed  CAS  Google Scholar 

  30. Shindo H, Ohnuki A, Ginba H et al. Identification of the DNA binding surface of H-NS protein from Escherichia coli by heteronuclear NMR spectroscopy. FEBS Lett 1999; 455:63–69.

    Article  PubMed  CAS  Google Scholar 

  31. Dorman CJ, Hinton JC, Free A. Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. Trends Microbiol 1999; 7:124–128.

    Article  PubMed  CAS  Google Scholar 

  32. Smyth CP, Lundback T, Renzoni D et al. Oligomerization of the chromatin-structuring protein H-NS. Mol Microbiol 2000; 36:962–972.

    Article  PubMed  CAS  Google Scholar 

  33. Renzoni D, Esposito D, Pfuhl M et al. Structural characterization of the N-terminal oligomerization domain of the bacterial chromatin-structuring protein, H-NS. J Mol Biol 2001; 306:1127–1137.

    Article  PubMed  CAS  Google Scholar 

  34. Esposito D, Petrovic A, Harris R et al. H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. J Mol Biol 2002; 324:841–850.

    Article  PubMed  CAS  Google Scholar 

  35. Bloch V, Yang Y, Margeat E et al. The H-NS dimerization domain defines a new fold contributing to DNA recognition. Nat Struct Biol 2003; 10:212–218.

    Article  PubMed  CAS  Google Scholar 

  36. Schroeder O, Tippner D, Wagner R. Toward the three-dimensional structure of the Escherichia coli DNA-binding protein H-NS: a CD and fluorescence study. Biochem Biophys Res Commun 2001; 282:219–227.

    Article  CAS  Google Scholar 

  37. Ceschini S, Lupidi G, Pon CL et al. Multimeric self-assembly equilibria involving the histone-like protein H-NS. J Biol Chem 2000; 275:729–734.

    Article  PubMed  CAS  Google Scholar 

  38. Williams RM, Rimsky S, Buc H. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives. J Bacteriol 1996; 178:4335–4343.

    PubMed  CAS  Google Scholar 

  39. Ueguchi C, Seto C, Suzuki T et al. Clarification of the dimerization domain and its functional significance for the Escherichia coli nucleoid protein H-NS. J Mol Biol 1997; 274:145–151.

    Article  PubMed  CAS  Google Scholar 

  40. Dame RT, Wyman C, Goosen N. H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acid Res 2000; 28:3304–3510.

    Google Scholar 

  41. Tippner D, Wagner R. Fluorescence analysis of the Escherichia coli transcription regulator H-NS reveals two distinguishable complexes dependent on binding to specific or nonspecific DNA sites. J Biol Chem 1995; 270:22243–22247.

    Article  PubMed  CAS  Google Scholar 

  42. Badaut C, Williams R, Arluison V et al. The degree of oligomerization of the H-NS nucleoid structuring protein is related to specific binding to DNA. J Biol Chem 2002; 277:41657–41666.

    Article  PubMed  CAS  Google Scholar 

  43. Rimsky S, Spassky A. Sequence determinants for H1 binding on Escherichia coli lac and gal promoters. Biochemistry 1990; 29:3765–3771.

    Article  PubMed  CAS  Google Scholar 

  44. Spurio R, Duerrenberger M, Falconi M et al. Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy. Mol Gen Genet 1992; 231:201–211.

    PubMed  CAS  Google Scholar 

  45. Johansson J, Eriksson S, Sonden B et al. Heteromeric interactions among nucleoid-associated bacterial proteins: localization of StpA-stabilizing regions in H-NS of Escherichia coli. J Bacteriol 2001; 183:2343–2347.

    Article  PubMed  CAS  Google Scholar 

  46. Free A, Porter ME, Deighan P et al. Requirement for the molecular adapter function of StpA at the Escherichia coli bgl promoter depends upon the level of truncated H-NS protein. Mol Microbiol 2001; 42:903–917.

    Article  PubMed  CAS  Google Scholar 

  47. Ohta T, Ueguchi C, Mizuno T. rpoS function is essential for bgl silencing caused by C-terminally truncated H-NS in Escherichia coli. J Bacteriol 1999; 181:6278–6283.

    PubMed  CAS  Google Scholar 

  48. Brunetti R, Prosseda G, Beghetto E et al. The looped domain organization of the nucleoid in histone-like protein defective Escherichia coli strains. Biochimie 2001; 83:873–882

    Article  PubMed  CAS  Google Scholar 

  49. Dame RT, Goosen N. HU: promoting or counteracting DNA compaction? FEBS Lett 2002; 529:151–156.

    Article  PubMed  CAS  Google Scholar 

  50. Giangrossi M, Exley RM, Le Hegarat F et al. Different in vivo localization of the Escherichia coli proteins CspD and CspA. FEMS Microbiol Lett 2001; 202:171–176.

    Article  PubMed  CAS  Google Scholar 

  51. Amit R, Oppenheim AB, Stavans J. Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys J 2003; 84:2467–2473.

    Article  PubMed  CAS  Google Scholar 

  52. Bolshoy A, Nevo E. Ecologic genomics of DNA: upstream bending in prokaryotic promoters. Genome Res 2000; 10:1185–1193.

    Article  PubMed  CAS  Google Scholar 

  53. Ohyama T. Intrinsic DNA bends: an organizer of local chromatin structure for transcription. Bioessays 2001; 23:708–715.

    Article  PubMed  CAS  Google Scholar 

  54. Travers AA. DNA conformation and protein binding. Annu Rev Biochem 1989; 58:427–452.

    Article  PubMed  CAS  Google Scholar 

  55. Travers AA. Reading the minor groove. Nat Struct Biol 1995; 2:615–618.

    Article  PubMed  CAS  Google Scholar 

  56. Perez-Martin J, de Lorenzo V. Clues and consequences of DNA bending in transcription. Annu Rev Microbiol 1997; 51:593–628.

    Article  PubMed  CAS  Google Scholar 

  57. McLeod SM, Johnson RC. Control of transcription by nucleoid proteins. Curr Opin Microbiol 2001; 4:152–159.

    Article  PubMed  CAS  Google Scholar 

  58. Prosseda G, Falconi M, Nicoletti M et al. Histone-like proteins and the Shigella invasivity regulon. Res Microbiol 2002; 153:461–468.

    Article  PubMed  CAS  Google Scholar 

  59. Afflerbach H, Schroeder O, Wagner R. Conformational changes of the upstream DNA mediated by H-NS and FIS regulate E. coli rrnB P1 promoter activity. J Mol Biol 1999; 286:339–353.

    Article  PubMed  CAS  Google Scholar 

  60. Schroeder O, Wagner R. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex. J Mol Biol 2000; 298:737–748.

    Article  CAS  Google Scholar 

  61. Hommais F, Krin E, Laurent-Winter C et al. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 2001; 40:20–36.

    Article  PubMed  CAS  Google Scholar 

  62. De Biase D, Tramonti A, Bossa F et al. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 1999; 32:1198–1211.

    Article  PubMed  Google Scholar 

  63. Soutourina O, Kolb A, Krin E et al. Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 1999; 181:7500–7508.

    PubMed  CAS  Google Scholar 

  64. Soutourina OA, Krin E, Laurent-Winter C et al. Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein. Microbiology 2002; 148:1543–1551.

    PubMed  CAS  Google Scholar 

  65. Lejeune P, Bertin P, Walon C et al. A locus involved in kanamycin, chloramphenicol and L-serine resistance is located in the bglY-galU region of the Escherichia coli K12 chromosome. Mol Gen Genet 1989; 218:361–363.

    Article  PubMed  CAS  Google Scholar 

  66. Dersch P, Kneip S, Bremer E. The nucleoid-associated DNA-binding protein H-NS is required for the efficient adaptation of Escherichia coli K-12 to a cold environment. Mol Gen Genet 1994; 245:255–259.

    Article  PubMed  CAS  Google Scholar 

  67. La Teana A, Brandi A, Falconi M et al. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc Natl Acad Sci USA 1991; 88:10907–10911.

    Article  PubMed  Google Scholar 

  68. Tendeng C, Badaut C, Drin E et al. Isolation and characterization of vicH, encoding a new pleiotropic regulator in Vibrio cholerae. J Bacteriol 2000; 182:2026–2032.

    Article  PubMed  CAS  Google Scholar 

  69. Yamashino T, Ueguchi C, Mizuno T. Quantitative control of the stationary phase-specific sigma factor, σs, in Escherichia coli: involvement of the nucleoid protein H-NS. EMBO J 1995; 14:594–602.

    PubMed  CAS  Google Scholar 

  70. Deighan P, Free A, Dorman CJ. A role for the Escherichia coli H-NS-like protein StpA in OmpF porin expression through modulation of micF RNA stability. Mol Microbiol 2000; 38:126–139.

    Article  PubMed  CAS  Google Scholar 

  71. Goransson M, Sonden B, Nilsson P et al. Transcriptional silencing and thermoregulation of gene expression in Escherichia coli. Nature 1990; 344:682–685.

    Article  PubMed  CAS  Google Scholar 

  72. Ueguchi C, Mizuno T. The Escherichia coli nucleoid protein H-NS functions directly as a transcriptional repressor. EMBO J 1993; 12:1039–1046.

    PubMed  CAS  Google Scholar 

  73. Tupper AE, Owen-Hughes TA, Ussery DW et al. The chromatin-associated protein H-NS alters DNA topology in vitro. EMBO J 1994; 13:258–268.

    PubMed  CAS  Google Scholar 

  74. Falconi M, Brandi A, La Teana et al. Antagonistic involvement of FIS and H-NS proteins in the transcriptional control of hns expression. Mol Microbiol 1996; 19:965–975.

    Article  PubMed  CAS  Google Scholar 

  75. Dame RT, Wyman C, Wurm R et al. Structural basis for H-NS mediated trapping of RNA polymerase in the open initiation complex at the rrnB P1. J Biol Chem 2002; 277:2146–2150.

    Article  PubMed  CAS  Google Scholar 

  76. Ussery DW, Higgins CF, Bolshoy A. Environmental influences on DNA curvature. J Biomol Struct Dyn 1999; 16:811–823.

    PubMed  CAS  Google Scholar 

  77. Maurelli AT, Sansonetti PJ. Identification of a chromosomal gene controlling temperature regulated expression of Shigella virulence. Proc Natl Acad Sci USA 1988; 85:2820–2824.

    Article  PubMed  CAS  Google Scholar 

  78. Beloin C, Dorman CJ. An extended role of the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri. Mol Microbiol 2003; 47:825–838.

    Article  PubMed  CAS  Google Scholar 

  79. Madrid C, Nieto JM, Paytubi S et al. Temperature-and H-NS-dependent regulation of a plasmid-encoded virulence operon expressing Escherichia coli haemolysin. J Bacteriol 2002; 184:5058–5066.

    Article  PubMed  CAS  Google Scholar 

  80. Tobe T, Yoshikawa M, Mizuno T et al. Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by VirF and repression by H-NS. J Bacteriol 1993; 175:6142–6149.

    PubMed  CAS  Google Scholar 

  81. Falconi M, Colonna B, Prosseda G et al. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J 1998; 17:7033–7043.

    Article  PubMed  CAS  Google Scholar 

  82. Falconi M, Prosseda G, Giangrossi M et al. Involvement of FIS on the H-NS mediated regulation of the virF gene of Shigella and Escherichia coli EIEC. Mol Microbiol 2001; 42:439–452.

    Article  PubMed  CAS  Google Scholar 

  83. Prosseda G, Falconi M, Giangrossi M et al. The virF promoter in Shigella: more than just a curved DNA stretch. Mol Microbiol 2004; 51:523–537.

    Article  PubMed  CAS  Google Scholar 

  84. White-Ziegler CA, Angus Hill ML, Braaten BA et al. Thermoregulation of Escherichia coli pap transcription: H-NS is a temperature-dependent DNA methylation blocking factor. Mol Microbiol 1998; 28:1121–1137.

    Article  PubMed  CAS  Google Scholar 

  85. Dorman CJ, Porter ME. The Shigella virulence gene regulatory cascade: a paradigm of bacterial gene control mechanisms. Mol Microbiol 1998; 29:677–684.

    Article  PubMed  CAS  Google Scholar 

  86. Sansonetti PJ. Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigellay making sense of prokaryote-eukaryote cross-talks. FEMS Microbiol Rev 2001; 25:3–14.

    PubMed  CAS  Google Scholar 

  87. Hurme R, Rhen M. Temperature sensing in bacterial gene regulation-what it all boils down to. Mol Microbiol 1998; 30:1–6.

    Article  PubMed  CAS  Google Scholar 

  88. Konkel ME, Tilly K. Temperature-regulated expression of bacterial virulence genes. Microbes In fect 2000; 2:157–166.

    Article  CAS  Google Scholar 

  89. Colonna B, Casalino M, Fradiani PA et al. H-NS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromo some. J Bacteriol 1995; 177:4703–4712.

    PubMed  CAS  Google Scholar 

  90. Durand JMB, Dagberg B, Uhlin BE et al. Transfer RNA modification, temperature and DNA superhelicity have a common target in the regulatory network of the virulence of Shigella flexneri: the expression of the virF gene. Mol Microbiol 2000; 35:924–935.

    Article  PubMed  CAS  Google Scholar 

  91. Agrawal GK, Asayama M, Shirai M. A novel bend of DNA CIT: changeable bending-center sites of an intrinsic curvature under temperature conditions. FEMS Microbiol Lett 1997; 147:139–145.

    Article  PubMed  CAS  Google Scholar 

  92. Asayama M, Kato H, Shibato J et al. The curved DNA structure in the 5′-upstream region of the light-responsive genes: its universality, binding factor and function for cyanobacterial psbA transcription. Nucleic Acid Res 2002; 30:4658–4666.

    Article  PubMed  CAS  Google Scholar 

  93. Dorman CJ, Deighan P. Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Genet Dev 2003; 13:179–184.

    Article  PubMed  CAS  Google Scholar 

  94. Rohde JR, Luan X, Rohde H et al. The Yersinia enterocolitica pYV virulence plasmid contains multiple intrinsic DNA bends which melt at 37°C. J Bacteriol 1999; 181:4198–4204.

    PubMed  CAS  Google Scholar 

  95. Drlica K, Perl-Rosenthal NR. DNA switches for thermal control of gene expression. Trends Microbiol 1999; 7:425–426.

    Article  PubMed  CAS  Google Scholar 

  96. Katayama S, Matsushita O, Jung C et al. Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner. EMBO J 1999; 18:3442–3450.

    Article  PubMed  CAS  Google Scholar 

  97. Giladi H, Goldenberg D, Koby S et al. Enhanced activity of the bacteriophage λP L promoter at low temperature. Proc Natl Acad Sci USA 1995; 92:2184–2188.

    Article  PubMed  CAS  Google Scholar 

  98. Cornelis GR, Sluiters C, Delor I et al. ymoA, a Yersinia enterocolitica chromosomal gene modulating the expression of virulence functions. Mol Microbiol 1991; 5:1023–1034.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Pon, C.L., Stella, S., Gualerzi, C.O. (2005). Repression of Transcription by Curved DNA and Nucleoid Protein H-NS. In: DNA Conformation and Transcription. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-29148-2_4

Download citation

Publish with us

Policies and ethics