Skip to main content

The Role of Unusual DNA Structures in Chromatin Organization for Transcription

  • Chapter
DNA Conformation and Transcription

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The structural and mechanical properties of DNA influence nudeosome positioning and the manner in which DNA is organized in chromatin. Curved DNA structures, poly(dA·dT) sequences, and Z-DNA-forming sequences frequently occur near transcription start sites. Many reports have indicated that curved DNA structures play an important role in the formation, stability and positioning of nucleosomes, and consequently in DNA packaging in nuclei. Curved DNA structures and poly(dA·dT) sequences can increase the accessibility of target DNA elements of activators in chromatin to facilitate initiation of transcription. Z-DNA seems to be implicated in gene activation coupled with chromatin remodeling, and eukaryotes may use triplex DNA and cruciform structures to manipulate chromatin structure in a site-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Imhof A, Wolffe AP. Transcription: gene control by targeted histone acetylation. Curr Biol 1998; 8:R422–424.

    Article  PubMed  CAS  Google Scholar 

  2. Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 1998; 67:545–579.

    Article  PubMed  CAS  Google Scholar 

  3. Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 1999; 98:285–294.

    Article  PubMed  CAS  Google Scholar 

  4. Aalfs JD, Kingston RE. What does ‘chromatin remodeling’ mean? Trends Biochem Sci 2000; 25:548–555.

    Article  PubMed  CAS  Google Scholar 

  5. Turner BM. Histone acetylation and an epigenetic code. Bioessays 2000; 22:836–845.

    Article  PubMed  CAS  Google Scholar 

  6. Vignali M, Hassan AH, Neely KE et al. ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 2000; 20:1899–1910.

    Article  PubMed  CAS  Google Scholar 

  7. Wu J, Grunstein M. 25 years after the nucleosome model: chromatin modifications. Trends Biochem Sci 2000; 25:619–623.

    Article  PubMed  CAS  Google Scholar 

  8. Jenuwein T. Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol 2001; 11:266–273.

    Article  PubMed  CAS  Google Scholar 

  9. Becker PB, Hörz W. ATP-dependent nucleosome remodeling. Annu Rev Biochem 2002; 271:247–273.

    Article  CAS  Google Scholar 

  10. Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J Cell Biochem 2002; 87:117–125.

    Article  PubMed  CAS  Google Scholar 

  11. Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell 2002; 108:475–487.

    Article  PubMed  CAS  Google Scholar 

  12. Turner BM. Cellular memory and the histone code. Cell 2002;111:285–291.

    Article  PubMed  CAS  Google Scholar 

  13. Carrozza MJ, Utley RT, Workman JL et al. The diverse functions of histone acetyltransferase complexes. Trends Genet 2003; 19:321–329.

    Article  PubMed  CAS  Google Scholar 

  14. Lusser A, Kadonaga JT. Chromatin remodeling by ATP-dependent molecular machines. Bioessays 2003; 25:1192–1200.

    Article  PubMed  CAS  Google Scholar 

  15. Aimer A, Rudolph H, Hinnen A et al. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J 1986; 5:2689–2696.

    Google Scholar 

  16. Archer TK, Cordingley MG, Wolford RG et al. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol Cell Biol 1991;11:688–698.

    PubMed  CAS  Google Scholar 

  17. Zhu Z, Thiele DJ. A specialized nucleosome modulates transcription factor access to a C. glabrata metal responsive promoter. Cell 1996; 87:459–470.

    Article  PubMed  CAS  Google Scholar 

  18. Wolffe AP. Chromatin: Structure and Function. 3rd ed. London: Academic press, 1998.

    Google Scholar 

  19. Onishi Y, Kiyama R. Interaction of NF-E2 in the human (β-globin locus control region before chromatin remodeling. J Biol Chem 2003; 278:8163–8171.

    Article  PubMed  CAS  Google Scholar 

  20. Zhurkin VB, Lysov YP, Ivanov VI. Anisotropic flexibility of DNA and the nucleosomal structure. Nucleic Acids Res 1979; 6:1081–1096.

    Article  PubMed  CAS  Google Scholar 

  21. Trifonov EN, Sussman JL. The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc Natl Acad Sci USA 1980; 77:3816–3820.

    Article  PubMed  CAS  Google Scholar 

  22. Dickerson RE, Kopka ML, Pjura P. A random-walk model for helix bending in B-DNA. Proc Natl Acad Sci USA 1983; 80:7099–7103.

    Article  PubMed  CAS  Google Scholar 

  23. Drew HR, Travers AA. DNA bending and its relation to nucleosome positioning. J Mol Biol 1985; 186:773–790.

    Article  PubMed  CAS  Google Scholar 

  24. Zhurkin VB. Sequence-dependent bending of DNA and phasing of nucleosomes. J Biomol Struct Dyn 1985; 2:785–804.

    PubMed  CAS  Google Scholar 

  25. Satchwell SC, Drew HR, Travers AA. Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 1986; 191:659–675.

    Article  PubMed  CAS  Google Scholar 

  26. Pennings S, Muyldermans S, Meersseman G et al. Formation, stability and core histone positioning of nucleosomes reassembled on bent and other nucleosome-derived DNA. J Mol Biol 1989; 207:183–192.

    Article  PubMed  CAS  Google Scholar 

  27. Shrader TE, Crothers DM. Artificial nucleosome positioning sequences. Proc Natl Acad Sci USA 1989; 86:7418–7422.

    Article  PubMed  CAS  Google Scholar 

  28. Wolffe AP, Drew HR. Initiation of transcription on nucleosomal templates. Proc Natl Acad Sci USA 1989; 86:9817–9821.

    Article  PubMed  CAS  Google Scholar 

  29. Costanzo G, di Mauro E, Salina G et al. Attraction, phasing and neighbour effects of histone octamers on curved DNA. J Mol Biol 1990; 216:363–374.

    Article  PubMed  CAS  Google Scholar 

  30. Shrader TE, Crothers DM. Effects of DNA sequence and histone-histone interactions on nucleosome placement. J Mol Biol 1990; 216:69–84.

    Article  PubMed  CAS  Google Scholar 

  31. Ioshikhes I, Bolshoy A, Trifonov EN. Preferred positions of AA and TT dinucleotides in aligned nucleosomal DNA sequences. J Biomol Struct Dyn 1992; 9:1111–1117.

    PubMed  CAS  Google Scholar 

  32. Patterton H-G, Simpson RT. Modified curved DNA that could allow local DNA underwinding at the nucleosomal pseudodyad fails to position a nudeosome in vivo. Nucleic Acids Res 1995; 23:4170–4179.

    Article  PubMed  CAS  Google Scholar 

  33. Sivolob AV, Khrapunov SN. Translational positioning of nucleosomes on DNA: the role of sequence-dependent isotropic DNA bending stiffness. J Mol Biol 1995; 247:918–931.

    Article  PubMed  CAS  Google Scholar 

  34. Baldi P, Brunak S, Chauvin Y et al. Naturally occurring nucleosome positioning signals in human exons and introns. J Mol Biol 1996; 263:503–510.

    Article  PubMed  CAS  Google Scholar 

  35. De Santis P, Kropp B, Leoni L et al. Influence of DNA superstructural features and histones aminoterminal domains on mononucleosome and dinucleosome positioning. Biophys Chem 1996; 62:47–61.

    Article  PubMed  Google Scholar 

  36. Ioshikhes I, Bolshoy A, Derenshteyn K et al. Nucleosome DNA sequence pattern revealed by multiple alignment of experimentally mapped sequences. J Mol Biol 1996; 262:129–139.

    Article  PubMed  CAS  Google Scholar 

  37. Widlund HR, Cao H, Simonsson S et al. Identification and characterization of genomic nucleosome-positioning sequences. J Mol Biol 1997; 267:807–817.

    Article  PubMed  CAS  Google Scholar 

  38. Fitzgerald DJ, Anderson JN. Unique translational positioning of nucleosomes on synthetic DNAs. Nucleic Acids Res 1998; 26:2526–2535.

    Article  PubMed  CAS  Google Scholar 

  39. Olson WK, Gorin AA, Lu XJ et al. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc Natl Acad Sci USA 1998; 95:11163–11168.

    Article  PubMed  CAS  Google Scholar 

  40. Anselmi C, Bocchinfuso G, De Santis P et al. Dual role of DNA intrinsic curvature and flexibility in determining nucleosome stability. J Mol Biol 1999; 286:1293–1301.

    Article  PubMed  CAS  Google Scholar 

  41. Widlund HR, Kuduvalli PN, Bengtsson M et al. Nucleosome structural features and intrinsic properties of the TATAAACGCC repeat sequence. J Biol Chem 1999; 274:31847–31852.

    Article  PubMed  CAS  Google Scholar 

  42. Roychoudhury M, Sitlani A, Lapham J et al. Global structure and mechanical properties of a 10-bp nucleosome positioning motif. Proc Natl Acad Sci USA 2000; 97:13608–13613.

    Article  PubMed  CAS  Google Scholar 

  43. Pedersen AG, Baldi P, Chauvin Y et al. DNA structure in human RNA polymerase II promoters. J Mol Biol 1998; 281:663–673.

    Article  PubMed  CAS  Google Scholar 

  44. Ohyama T. Intrinsic DNA bends: an organizer of local chromatin structure for transcription. Bioessays 2001; 23:708–715.

    Article  PubMed  CAS  Google Scholar 

  45. Kropp B, Leoni L, Sampaolese B et al. Influence of DNA superstructural features and histone amino-terminal domains on nucleosome positioning. FEBS Lett 1995; 364:17–22.

    Article  PubMed  CAS  Google Scholar 

  46. Widlund HR, Vitolo JM, Thiriet C et al. DNA sequence-dependent contributions of core histone tails to nucleosome stability: differential effects of acetylation and proteolytic tail removal. Biochemistry 2000; 39:3835–3841.

    Article  PubMed  CAS  Google Scholar 

  47. Radic MZ, Lundgren K, Hamkalo BA. Curvature of mouse satellite DNA and condensation of heterochromatin. Cell 1987; 50:1101–1108.

    Article  PubMed  CAS  Google Scholar 

  48. Benfante R, Landsberger N, Tubiello G et al. Sequence-directed curvature of repetitive Alul DNA in constitutive heterochromatin of Artemia franciscana. Nucleic Acids Res 1989; 17:8273–8282.

    Article  PubMed  CAS  Google Scholar 

  49. Martínez-Balbás A, Rodríguez-Campos A, García-Ramírez M et al. Satellite DNAs contain sequences that induce curvature. Biochemistry 1990; 29:2342–2348.

    Article  PubMed  Google Scholar 

  50. Pasero P, Sjakste N, Blettry C et al. Long-range organization and sequence-directed curvature of Xenopus laevis satellite 1 DNA. Nucleic Acids Res 1993; 21:4703–4710.

    Article  PubMed  CAS  Google Scholar 

  51. Fitzgerald DJ, Dryden GL, Bronson EC et al. Conserved patterns of bending in satellite and nucleosome positioning DNA. J Biol Chem 1994; 269:21303–21314.

    PubMed  CAS  Google Scholar 

  52. Kralovics R, Fajkus J, Kovarík A et al. DNA curvature of the tobacco GRS repetitive sequence family and its relation to nucleosome positioning. J Biomol Struct Dyn 1995; 12:1103–1119.

    PubMed  CAS  Google Scholar 

  53. John B, Miklos GLG. Functional aspects of satellite DNA and heterochromatin. Int Rev Cytol 1979; 58:1–114.

    Article  PubMed  CAS  Google Scholar 

  54. Singer MF. Highly repeated sequences in mammalian genomes. Int Rev Cytol 1982; 76:67–112.

    Article  PubMed  CAS  Google Scholar 

  55. Ohyama T, Tsujibayashi H, Tagashira H et al. Suppression of electrophoretic anomaly of bent DNA segments by the structural property that causes rapid migration. Nucleic Acids Res 1998; 26:4811–4817.

    Article  PubMed  CAS  Google Scholar 

  56. Wada-Kiyama Y, Kiyama R. Periodicity of DNA bend sites in human ɛ-globin gene region. Possibility of sequence-directed nucleosome phasing. J Biol Chem 1994; 269:22238–22244.

    PubMed  CAS  Google Scholar 

  57. Wada-Kiyama Y, Kiyama R. Conservation and periodicity of DNA bend sites in the human β-globin gene locus. J Biol Chem 1995; 270:12439–12445.

    Article  PubMed  CAS  Google Scholar 

  58. Wada-Kiyama Y, Kiyama R. An intrachromosomal repeating unit based on DNA bending. Mol Cell Biol 1996; 16:5664–5673.

    PubMed  CAS  Google Scholar 

  59. Ohki R, Hirota M, Oishi M et al. Conservation and continuity of periodic bent DNA in genomic rearrangements between the c-myc and immunoglobulin heavy chain μ loci. Nucleic Acids Res 1998; 26:3026–3033.

    Article  PubMed  CAS  Google Scholar 

  60. Piña B, Brüggemeier U, Beato M. Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell 1990; 60:719–731.

    Article  PubMed  Google Scholar 

  61. Schild C, Claret F-X, Wahli W et al. A nucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin B1 promoter in vitro. EMBO J 1993; 12:423–433.

    PubMed  CAS  Google Scholar 

  62. Imbalzano AN, Kwon H, Green MR et al. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 1994; 370:481–485.

    Article  PubMed  CAS  Google Scholar 

  63. Godde JS, Nakatani Y, Wolffe AP. The amino-terminal tails of the core histones and the translational position of the TATA box determine TBP/TFIIA association with nucleosomal DNA. Nucleic Acids Res 1995; 23:4557–4564.

    Article  PubMed  CAS  Google Scholar 

  64. Wong J, Li Q, Levi B-Z et al. Structural and functional features of a specific nucleosome containing a recognition element for the thyroid hormone receptor. EMBO J 1997; 16:7130–7145.

    Article  PubMed  CAS  Google Scholar 

  65. Nishikawa J, Amano M, Fukue Y et al. Left-handedly curved DNA regulates accessibility to cis-DNA elements in chromatin. Nucleic Acids Res 2003; 31:6651–6662.

    Article  PubMed  CAS  Google Scholar 

  66. Piña B, Barettino D, Truss M et al. Structural features of a regulatory nucleosome. J Mol Biol 1990; 216:975–990.

    Article  PubMed  Google Scholar 

  67. Angermayr M, Oechsner U, Gregor K et al. Transcription initiation in vivo without classical transactivators: DNA kinks flanking the core promoter of the housekeeping yeast adenylate kinase gene, AKY2, position nucleosomes and constitutively activate transcription. Nucleic Acids Res 2002; 30:4199–4207.

    Article  PubMed  CAS  Google Scholar 

  68. Bash RC, Vargason JM, Cornejo S et al. Intrinsically bent DNA in the promoter regions of the yeast GAL1-10 and GAL80 genes. J Biol Chem 2001; 276:861–866.

    Article  PubMed  CAS  Google Scholar 

  69. Blomquist P, Belikov S, Wrange Ö. Increased nuclear factor 1 binding to its nucleosomal site mediated by sequence-dependent DNA structure. Nucleic Acids Res 1999; 27:517–525.

    Article  PubMed  CAS  Google Scholar 

  70. Alexeev DG, Lipanov AA, Skuratovskii IY. Poly(dA)·poly(dT) is a B-type double helix with a distinctively narrow minor groove. Nature 1987; 325:821–823.

    Article  PubMed  CAS  Google Scholar 

  71. Nelson HC, Finch JT, Luisi BF et al. The structure of an oligo(dA)·oligo(dT) tract and its biological implications. Nature 1987; 330:221–226.

    Article  PubMed  CAS  Google Scholar 

  72. Park HS, Arnott S, Chandrasekaran R et al. Structure of the α-form of poly[d(A)] ·poly[d(T)] and related polynudeotide duplexes. J Mol Biol 1987; 197:513–523.

    Article  PubMed  CAS  Google Scholar 

  73. Dechering KJ, Cuelenaere K, Konings RN et al. Distinct frequency-distributions of homopolymeric DNA tracts in different genomes. Nucleic Acids Res 1998; 26:4056–4062.

    Article  PubMed  CAS  Google Scholar 

  74. Struhl K. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci USA 1985; 82:8419–8423.

    Article  PubMed  CAS  Google Scholar 

  75. Roy A, Exinger F, Losson R. cis-and trans-acting regulatory elements of the yeast URA3 promoter. Mol Cell Biol 1990; 10:5257–5270.

    PubMed  CAS  Google Scholar 

  76. Schlapp T, Rödel G. Transcription of two divergently transcribed yeast genes initiates at a common oligo(dA-dT) tract. Mol Gen Genet 1990; 223:438–442.

    Article  PubMed  CAS  Google Scholar 

  77. Thiry-Blaise LM, Loppes R. Deletion analysis of the ARG4 promoter of Saccharomyces cerevisiae: a poly(dAdT) stretch involved in gene transcription. Mol Gen Genet 1990; 223:474–480.

    Article  PubMed  CAS  Google Scholar 

  78. Verdone L, Camilloni G, Di Mauro E et al. Chromatin remodeling during Saccharomyces cerevisiae ADH2 gene activation. Mol Cell Biol 1996; 16:1978–1988.

    PubMed  CAS  Google Scholar 

  79. Simpson RT, Künzler P. Chromatin and core particles formed from the inner histones and synthetic polydeoxyribonucleotides of defined sequence. Nucleic Acids Res 1979; 6:1387–1415.

    Article  PubMed  CAS  Google Scholar 

  80. Rhodes D. Nucleosome cores reconstituted from poly (dA-dT) and the octamer of histones. Nucleic Acids Res 1979; 6:1805–1816.

    Article  PubMed  CAS  Google Scholar 

  81. Kunkel GR, Martinson HG. Nucleosomes will not form on double-stranded RNA or over poly(dA)·poly(dT) tracts in recombinant DNA. Nucleic Acids Res 1981; 9:6869–6888.

    Article  PubMed  CAS  Google Scholar 

  82. Englander EW, Howard BH. A naturally occurring T14A11 tract blocks nucleosome formation over the human neurofibromatosis type 1 (NF1)-Alu element. J Biol Chem 1996; 271:5819–5823.

    Article  PubMed  CAS  Google Scholar 

  83. Fox KR. Wrapping of genomic polydA·polydT tracts around nucleosome core particles. Nucleic Acids Res 1992; 20:1235–1242.

    Article  PubMed  CAS  Google Scholar 

  84. Brown PM, Fox KR. DNA triple-helix formation on nucleosome-bound poly(dA)·poly(dT) tracts. Biochem J 1998; 333:259–267.

    PubMed  CAS  Google Scholar 

  85. Losa R, Omari S, Thoma F. Poly(dA)·poly(dT) rich sequences are not sufficient to exclude nucleosome formation in a constitutive yeast promoter. Nucleic Acids Res 1990; 18:3495–3502.

    Article  PubMed  CAS  Google Scholar 

  86. Schieferstein U, Thoma F. Modulation of cyclobutane pyrimidine dimer formation in a positioned nucleosome containing poly(dA·dT) tracts. Biochemistry 1996; 35:7705–7714.

    Article  PubMed  CAS  Google Scholar 

  87. Puhl HL, Behe MJ. Poly(dA)·poly(dT) forms very stable nucleosomes at higher temperatures. J Mol Biol 1995; 245:559–567.

    Article  PubMed  CAS  Google Scholar 

  88. Lascaris RF, de Groot E, Hoen PB et al. Different roles for Abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene. Nucleic Acids Res 2000; 28:1390–1396.

    Article  PubMed  CAS  Google Scholar 

  89. Suter B, Schnappauf G, Thoma F. Poly(dA·dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo. Nucleic Acids Res 2000; 28:4083–4089.

    Article  PubMed  CAS  Google Scholar 

  90. Iyer V, Struhl K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J 1995; 14:2570–2579.

    PubMed  CAS  Google Scholar 

  91. Rubbi L, Camilloni G, Caserta M et al. Chromatin structure of the Saccharomyces cerevisiae DNA topoisomerase I promoter in different growth phases. Biochem J 1997; 328:401–407.

    PubMed  CAS  Google Scholar 

  92. Shimizu M, Mori T, Sakurai T et al. Destabilization of nucleosomes by an unusual DNA conformation adopted by poly(dA)·poly(dT) tracts in vivo. EMBO J 2000; 19:3358–3365.

    Article  PubMed  CAS  Google Scholar 

  93. Koch KA, Thiele DJ. Functional analysis of a homopolymeric (dA-dT) element that provides nucleosomal access to yeast and mammalian transcription factors. J Biol Chem 1999; 274:23752–23760.

    Article  PubMed  CAS  Google Scholar 

  94. Reeves R, Wolffe AP. Substrate structure influences binding of the non-histone protein HMG-I(Y) to free nucleosomal DNA. Biochemistry 1996; 35:5063–5074.

    Article  PubMed  CAS  Google Scholar 

  95. Liu LF, Wang JC. Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 1987; 84:7024–7027.

    Article  PubMed  CAS  Google Scholar 

  96. Hamada H, Kakunaga T. Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 1982; 298:396–398.

    Article  PubMed  CAS  Google Scholar 

  97. Schroth GP, Chou PJ, Ho PS. Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J Biol Chem 1992; 267:11846–11855.

    PubMed  CAS  Google Scholar 

  98. van Holde K, Zlatanova J. Unusual DNA structures, chromatin and transcription. Bioessays 1994; 16:59–68.

    Article  PubMed  Google Scholar 

  99. Liu R, Liu H, Chen X et al. Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell 2001; 106:309–318.

    Article  PubMed  CAS  Google Scholar 

  100. Westin L, Blomquist P, Milligan JF et al. Triple helix DNA alters nucleosomal histone-DNA interactions and acts as a nucleosome barrier. Nucleic Acids Res 1995; 23:2184–2191.

    Article  PubMed  CAS  Google Scholar 

  101. Espinás ML, Jiménez-García E, Martínez-Balbás Á et al. Formation of triple-stranded DNA at d(GA·TC)n sequences prevents nucleosome assembly and is hindered by nucleosomes. J Biol Chem 1996; 271:31807–31812.

    Article  PubMed  Google Scholar 

  102. Battistoni A, Leoni L, Sampaolese B et al. Kinetic persistence of cruciform structures in reconstituted minichromosomes. Biochim Biophys Acta 1988; 950:161–171.

    PubMed  CAS  Google Scholar 

  103. Nobile C, Nickol J, Martin RG. Nucleosome phasing on a DNA fragment from the replication origin of simian virus 40 and rephasing upon cruciform formation of the DNA. Mol Cell Biol 1986; 6:2916–2922.

    PubMed  CAS  Google Scholar 

  104. Kotani H, Kmiec EB. DNA cruciforms facilitate in vitro strand transfer on nucleosomal templates. Mol Gen Genet 1994; 243:681–690.

    PubMed  CAS  Google Scholar 

  105. Zlatanova J. Histone H1 and the regulation of transcription of eukaryotic genes. Trends Biochem Sci 1990; 15:273–276.

    Article  PubMed  CAS  Google Scholar 

  106. Alami R, Fan Y, Pack S et al. Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc Natl Acad Sci USA 2003; 100:5920–5925.

    Article  PubMed  CAS  Google Scholar 

  107. Yaneva J, Schroth GP, van Holde KE et al. High-affinity binding sites for histone H1 in plasmid DNA. Proc Natl Acad Sci USA 1995; 92:7060–7064.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Ohyama, T. (2005). The Role of Unusual DNA Structures in Chromatin Organization for Transcription. In: DNA Conformation and Transcription. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-29148-2_13

Download citation

Publish with us

Policies and ethics