Skip to main content

Prediction by conditional simulation: models and algorithms

  • Chapter

Part of the book series: Lecture Notes in Statistics ((LNS,volume 183))

Abstract

Prediction here refers to the behavior of a regionalized variable: average ozone concentration in April 2004 in Paris, maximum lead concentration in an industrial site, recoverable reserves of an orebody, breakthrough time from a source of pollution to a target, etc. Dedicating a whole chapter of a book in honor to Georges Matheron to prediction by conditional simulation is somewhat paradoxical. Indeed performing simulations requires strong assumptions, whereas Matheron did his utmost to weaken the prerequisites for the prediction methods he developed. Accordingly, he never used them with the aim of predicting and they represented a marginal part of his activity. The turning bands method, for example, is presented very briefly in a technical report on the Radon transform to illustrate the one-to-one mapping between d-dimensional isotropic covariances and unidimensional covariances1 [44]. As for the technique of conditioning by kriging, it is nowhere to be found in Matheron’s entire published works, as he merely regarded it as an immediate consequence of the orthogonality of the kriging estimator and the kriging error.

Matheron submitted a paper on the turning bands method to the Advances in Applied Probability, which he later merged with another paper [46]. This project paper, available as [45], mainly focuses on the turning bands operator. It is worth noticing that Matérn [33] already had a similar attitude, presenting the principle of the turning bands in a few lines as an illustration of the relation between covariances in IR d and IR.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, M., Galli, A., Le Loc’h, G., Geffroy, F., Eschard, R.: Plurigaussian simulations in Geosciences. Springer, Berlin (2003)

    Google Scholar 

  2. Benito García-Morales, M.: Non stationnarité dans lesmodèles de type booléen: application à la simulation d’unités sédimentaires. PhD Thesis, Ecole des Mines de Paris (2003)

    Google Scholar 

  3. Benito García-Morales, M., Beucher, H.: Inference of the Boolean model on a non stationary case. In: 8th annual conference of the International Association for Mathematical Geology. Berlin (2002)

    Google Scholar 

  4. Bertino, L.: Assimilation de données pour la prédiction de paramètres hydrodynamiques et écologiques: cas de la lagune de l’Oder. PhD Thesis, Ecole des Mines de Paris (2001)

    Google Scholar 

  5. Bertino, L., Evensen, G., Wackernagel, H.: Combining geostatistics and Kalman filtering for data assimilation of an estuarine system. Inverse problems, 18-1, 1–23 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertino, L., Evensen, G., Wackernagel, H.: Sequential data assimilation techniques in oceanography. International Statistical Review, 71, 223–241 (2003)

    Article  MATH  Google Scholar 

  7. Besag, J., Green, P.J.: Spatial statistics and bayesian computation. J.R. Statist. Soc., 55-1, 25–37 (1993)

    MATH  MathSciNet  Google Scholar 

  8. Carter, D.S., Prenter, P.M.: Exponential spaces and counting processes. Zeit. für Wahr. und ver. Gebiete, 21, 1–19 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chilès, J.P.: On the contribution of hydrogeology to advances in geostatistics. In: Monestiez, P. et al GEOENV III — Geostatistics for environmental applications. Kluwer, Dordrecht (2001)

    Google Scholar 

  10. Chilès, J.P., Delfiner, P.: Geostatistics: modeling spatial uncertainty. Wiley, New York (1999)

    MATH  Google Scholar 

  11. Deutsch C.V., Journel A.G.: GSLIB: Geostatistical software library and user’s guide. Oxford University Press, New York (1998) (2nd edition)

    Google Scholar 

  12. Doob, J.L.: Stochastic processes. Wiley, New York (1953)

    MATH  Google Scholar 

  13. Emery, X.: Simulation conditionnelle de modèles isofactoriels. PhD Thesis, Ecole des Mines de Paris (2004)

    Google Scholar 

  14. Emery, X.: Private communication (2004)

    Google Scholar 

  15. Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophysical Research, 99-C11, 17905–17924 (1994)

    Google Scholar 

  16. Gómez-Hernàndez, J.J., Sahuquillo A., Capilla, J.: Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data. Journal of Hydrology, 203, 162–174 (1997)

    Article  Google Scholar 

  17. Hammersley, J.M., Nelder, J.A.: Sampling from an isotropic Gaussian process. Proc. Cambridge Phil. Soc., 51, 652–662 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  18. Handcock, M.S., Wallis, J.R.: An approach to statistical spatial-temporal modeling of meteorological fields. JASA, 89-426, 368–390 (1994)

    MATH  MathSciNet  Google Scholar 

  19. Hu, L.Y.: Gradual deformation and iterative calibration of gaussian-related stochastic models. Math. Geol., 32-1, 87–108 (2000)

    Article  Google Scholar 

  20. Hu, L.Y.: Gradual deformation of non-gaussian stochastic simulations. In: Kleingeld, W.J., Krige, D.G. (eds) Geostatistics 2000. Cape Town (2000)

    Google Scholar 

  21. Iooss, B., Geraets, D., Mukerji, T., Samualides, Y., Touati, M., Galli, A.: Inferring the statistical distribution of velocity heterogeneities by statistical traveltime tomography. Geophysics, 68-5, 1714–1730 (2003)

    Article  Google Scholar 

  22. Jacod, J., Joathon, P.: Use of random-genetic models in the study of sedimentary processes. Math. Geol., 3-3, 219–233 (1971)

    Google Scholar 

  23. Jacod, J., Joathon, P.: Conditional simulation of sedimentary in three dimensions. In: Merriam, D.F. (ed) Proceedings of the International Sedimentary Congress. Plenum Press (1972)

    Google Scholar 

  24. Jeulin, D.: Dead leaves model: from space tessellation to random functions. In: Jeulin, D. (ed.) Advances and applications of random sets. World Scientific, Singapore (1997)

    Google Scholar 

  25. Jeulin, D., Jeulin, P.: Synthesis of rough surfaces of random morphological functions. Stereo. Iugosl., 3-1, 239–246 (1981)

    Google Scholar 

  26. Kendall, D.G.: Foundations of a theory of random sets. In: Harding, E.F. and Kendall, D.G. (eds) Stochastic geometry. Wiley, London (1974)

    Google Scholar 

  27. Kendall, W.S., Thönnes, E.: Perfect simulation in stochastic geometry. Pattern Recognition, 32, 1569–1586 (1999)

    Article  Google Scholar 

  28. Kendall, W.S., Møller, J.: Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes. Adv. Appl. Prob., 32, 844–865 (2000)

    Article  MATH  Google Scholar 

  29. Lantuéjoul, C.: Conditional simulation of object-based models. In: Jeulin, D. (ed.) Advances and applications of random sets. World Scientific, Singapore (1997)

    Google Scholar 

  30. Lantuéjoul, C.: Geostatistical simulation: models and algorithms. Springer, Berlin (2002)

    MATH  Google Scholar 

  31. LaVenue, A.M., RamaRao, B.S., Marsily, G. de, Marietta, M.G.: Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields. Water Resources Research, 31-3, 495–516 (1995)

    Article  Google Scholar 

  32. Lopez, S.: Modélisation de réservoirs chenalisés méandriformes; approche génétique et stochastique. PhD Thesis, Ecole des Mines de Paris (2003)

    Google Scholar 

  33. Matérn, B.: Spatial variations. Stochastic models and their applications to some problems in forest surveys and other sampling investigations. Meddelanden från Statens Skogsforskningsinstitut, 49-5, Almaenna Foerlaget, Stockholm (1960). Lecture Notes in Statistics, 36, Springer, Berlin (1986) (2nd edition)

    Google Scholar 

  34. Matheron, G.: Les variables régionalisées et leur estimation. Masson, Paris (1965)

    Google Scholar 

  35. Matheron, G.: Ensembles et partitions aléatoires. Technical Report N-73. Centre de Morphologie Mathématique, Ecole des Mines de Paris (1967)

    Google Scholar 

  36. Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)

    Google Scholar 

  37. Matheron, G.: Mesures et capacités aléatoires. Technical Report N-75. Centre de Morphologie Mathématique, Ecole des Mines de Paris (1968)

    Google Scholar 

  38. Matheron, G.: Filtres et topologies aléatoires. Technical Report N-77. Centre de Morphologie Mathématique, Ecole des Mines de Paris (1968)

    Google Scholar 

  39. Matheron, G.: Schéma booléen séquentiel de partition aléatoire. Technical Report N-83. Centre de Morphologie Mathématique, Ecole des Mines de Paris (1968)

    Google Scholar 

  40. Matheron, G.: Les processus d’Ambarzoumian et leur application en géologie. Technical Report N-131. Centre de Morphologie Mathématique, Ecole des Mines de Paris (1969)

    Google Scholar 

  41. Matheron, G.: Théorie des ensembles aléatoires. Cahier du Centre de Morphologie Mathématique, Fasc. 4. Ecole des Mines de Paris (1969)

    Google Scholar 

  42. Matheron, G.: La théorie des variables régionalisées et ses applications. Cahiers du Centre de Morphologie Mathématique, Fascicule 5, Ecole des Mines de Paris (1970)

    Google Scholar 

  43. Matheron, G.: Ensembles fermés aléatoires, ensembles semi-markoviens et polyèdres poissonniens. Adv. App. Prob., 4-3, 508–541 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  44. Matheron, G.: Quelques aspects de la montée. Technical Report N-271. Centre de Morphologie Mathématique, Ecole des Mines de Paris (1972)

    Google Scholar 

  45. Matheron, G.: The turning bands: a method for simulating random functions in IR n. Technical Report N-303. Centre de Morphologie Mathématique, Ecole des Mines de Paris (1972)

    Google Scholar 

  46. Matheron, G.: The intrinsic random functions and their applications. Adv. Appl. Prob., 5, pp. 439–468 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  47. Matheron, G.: Random sets and integral geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  48. Matheron, G.: Compléments sur les modèles isofactoriels. Technical Report N-432. Centre de Géostatistique, Ecole des Mines de Paris (1975)

    Google Scholar 

  49. Matheron, G.: Remarque sur la fabrication des aléas. Technical Report N-653. Centre de Géostatistique, Ecole des Mines de Paris (1980)

    Google Scholar 

  50. Matheron, G.: Quatre familles discrètes. Technical Report N-703. Centre de Géostatistique, Ecole des Mines de Paris (1981)

    Google Scholar 

  51. Matheron, G.: Deux autres familles, non moins discrètes mais plus nombreuses. Technical Report N-717. Centre de Géostatistique, Ecole des Mines de Paris (1981)

    Google Scholar 

  52. Matheron, G.: The selectivity of the distributions and the second principle of geostatistics. In: Verly, G. et al. (eds) Geostatistics for natural ressources characterization. Reidel, Dordrecht (1984)

    Google Scholar 

  53. Matheron, G.: Isofactorial models and change of support. In: Verly, G. et al. (eds) Geostatistics for natural ressources characterization. Reidel, Dordrecht (1984)

    Google Scholar 

  54. Matheron, G.: Changement de support en modèle mosaïque. Sciences de la Terre, Série Informatique Géologique, 20, 435–454 (1984)

    Google Scholar 

  55. Matheron, G.: Change of support for diffusion-type random functions. Math. Geol., Série Informatique Géologique, 17-2, 137–165 (1985)

    MATH  MathSciNet  Google Scholar 

  56. Matheron, G.: Suffit il pour une covariance d’être de type positif? Sciences de la Terre, Série Informatique Géologique, 26, 51–66 (1987)

    Google Scholar 

  57. Matheron, G., Beucher, H., de Fouquet, C., Galli, A., Guérillot, D., Ravenne, C.: Conditional simulation of a fluvio-deltaic reservoir. SPE paper 16753. 62nd Annual Technical Conference and Exhibition of SPE, Dallas, 591–599 (1987)

    Google Scholar 

  58. Matheron, G.: (1988) Simulation de fonctions aléatoires admettant un variogramme concave donné. Sciences de la Terre, Série Informatique Géologique, 28, pp. 195–212

    Google Scholar 

  59. Matheron, G.: Estimating and choosing. Springer, Berlin (1989)

    MATH  Google Scholar 

  60. Matheron, G.: The internal consistency of models in geostatistics. In: Armstrong, M. (ed) Geostatistics. Kluwer (1989)

    Google Scholar 

  61. Matheron, G.: Two classes of isofactorial models. In: Armstrong, M. (ed.) Geostatistics. Kluwer, Dordrecht (1989)

    Google Scholar 

  62. Matheron, G.: Une conjecture sur la covariance d’un ensemble aléatoire. Cahiers de Géostatistique, Fasc. 3. Ecole des Mines de Paris, 107–113 (1993)

    Google Scholar 

  63. Matheron, G.: Treillis compacts et treillis coprimaires. Technical Report N-5/96/G, Centre de Géostatistique, Ecole des Mines de Paris (1996)

    Google Scholar 

  64. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Amer. Stat. Assoc. 44, 335–341 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  65. Molchanov, I.: Early years of random sets. This volume

    Google Scholar 

  66. Mosegaard, K., Tarantola, A.: Probabilistic approach to inverse problems. In: Lee, W. (ed) International Handbook of Earthquake and Engineering Seismology, Academic Press, San Diego (2002)

    Google Scholar 

  67. Préteux, F., Schmitt, M.: Boolean texture analysis and synthesis. In Serra, J. (ed.) Image Analysis and Mathematical Morphology, Theoretical Advances. Academic Press, London (1988)

    Google Scholar 

  68. Propp, J.G., Wilson, D.B.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Rand. Struct. and Alg., 9, 223–252 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  69. RamaRao, B.S., LaVenue, A.M., Marsily, G. de, Marietta, M.G.: Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields. Water Resources Research, 31-3, 475–493 (1995)

    Article  Google Scholar 

  70. Roth, C., Chilès, J.P., Fouquet, C. de: Combining geostatistics and flow simulators to identify transmissivity. Advances in Water Resources, 21-7, 555–565 (1998)

    Article  Google Scholar 

  71. Roth, C., Fouquet, C. de, Chilès, J.P., Matheron, G.: Geostatistics applied to hydrogeology’s inverse problem: taking boundary conditions into account. In: Baafi, E.Y., Schofield, N.A., (eds.) Geostatistics Wollongong’ 96. Kluwer, Dordrecht (1997)

    Google Scholar 

  72. Schmitt, M.: Estimation of intensity and shape in a nonstationary Boolean model. In: Jeulin, D. (ed.) Advances and applications of random sets. World Scientific, Singapore (1997)

    Google Scholar 

  73. Sénégas, J.: Méthodes de Monte Carlo en vision stéréoscopique. Application à l’étude de modèles numériques de terrain. PhD Thesis, Ecole des Mines de Paris (2002)

    Google Scholar 

  74. Sénégas, J., Wackernagel, H., Rosenthal, W., Wolf, T.: Error covariance modeling in sequential data assimilation. Stoch. Env. Res. and Risk Ass., 15, 65–86 (2001)

    Article  MATH  Google Scholar 

  75. Shinozuka, M., Jan, C.M.: Digital simulation of random processes and its applications. J. of Sound and Vibr., 52-3, 591–611 (1972)

    Google Scholar 

  76. Serra, J.: Fonctions aléatoires de dilution. Technical Report C-12. Centre de Morphologie Mathématique, Ecole des Mines de Paris (1968)

    Google Scholar 

  77. Serra, J.: Boolean random functions. In Serra, J. (ed.) Image Analysis and Mathematical Morphology, Theoretical Advances. Academic Press, London (1988)

    Google Scholar 

  78. Stoyan, D., Mecke, K.R.: The Boolean model: Matheron till today. This volume

    Google Scholar 

  79. Switzer, P.: Inference for spatial autocorrelation functions. In: Verly, G., et al. (eds) Geostatistics for Natural Resources Characterization. Reidel, Dordrecht (1984)

    Google Scholar 

  80. Tarantola, A.: Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier Science Publishers B.V., Amsterdam (1987)

    MATH  Google Scholar 

  81. Verlaan, M., Heeminck, A.W.: Tidal flow forecasting using reduced rank square root filters. Stochastic Hydrology and Hydraulics, 11-5, 349–368 (1997)

    Article  MATH  Google Scholar 

  82. Wolf, T., Senegas, J., Bertino, L., Wackernagel, H.: Data assimilation to three-dimensional hydrodynamics: the case of the Odra lagoon. In: Monestiez, P. et al GEOENV III — Geostatistics for environmental applications. Kluwer, Dordrecht (2001)

    Google Scholar 

  83. Zinn, B., Harvey, C.F.: When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion and mass transfer in multigaussian and connected conductivity fields. Water Resources Research, 39-3, 1051 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Chilès, JP., Lantuéjoul, C. (2005). Prediction by conditional simulation: models and algorithms. In: Bilodeau, M., Meyer, F., Schmitt, M. (eds) Space, Structure and Randomness. Lecture Notes in Statistics, vol 183. Springer, New York, NY. https://doi.org/10.1007/0-387-29115-6_3

Download citation

Publish with us

Policies and ethics