Skip to main content

Adaptor Proteins in Lysosomal Biogenesis

  • Chapter
Lysosomes

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 1827 Accesses

Abstract

Lysosomal membrane proteins and soluble lysosomal proteins are transported from the trans-Golgi network (TGN) to endosomes and lysosomes via coated-vesicles which bud from the donor compartment and are transported to and fuse with the proper acceptor compartment. The proteins forming the vesicle-coat bind to the cytoplasmic domains of the cargo proteins and recruit additional proteins like clathrin to the site of vesicle formation. These proteins are hence called adaptor proteins or adaptor-protein complexes and their subunits are called adaptins. The family of heterotetrameric adaptor-protein complexes consists of AP-1, AP-2, AP-3 and AP-4 and all four are required for lysosome biogenesis. They are ubiquitously expressed in mammals and many of the adaptins also exist as tissue-specific isoforms encoded by different genes or generated by alternative splicing. Adaptor-protein complexes are compartment specific proteins and recruit their specific accessory proteins to the site of vesicle formation, which is believed to regulate vesicle budding and fission and vesicle transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boehm M, Bonifacino JS. Adaptins: The final recount. Mol Biol Cell 2001; 12(10):2907–2920.

    PubMed  CAS  Google Scholar 

  2. Collins BM, McCoy AJ, Kent HM et al. Molecular architecture and functional model of the endocytic AP2 complex. Cell 2002; 109(4):523–535.

    Article  PubMed  CAS  Google Scholar 

  3. Heldwein EE, Macia E, Wang J et al. Crystal structure of the clathrin adaptor protein 1 core. Proc Natl Acad Sci USA 2004; 101(39):14108–14113.

    Article  PubMed  CAS  Google Scholar 

  4. Meyer C, Zizioli D, Lausmann S et al. μ1A adaptin-deficient mice: Lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J 2000; 19:2193–2203.

    Article  PubMed  CAS  Google Scholar 

  5. Hirst J, Robinson M. Clathrin and adaptors. Biochim Biophys Acta 1998; 1404:173–193.

    Article  PubMed  CAS  Google Scholar 

  6. Kirchhausen T. Clathrin. Annu Rev Biochem 2000; 69:699–727.

    Article  PubMed  CAS  Google Scholar 

  7. Kirchhausen T. Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Biol 1999; 15:705–732.

    Article  PubMed  CAS  Google Scholar 

  8. Ybe JA, Greene B, Liu SH et al. Clathrin self-assembly is regulated by three light-chain residues controlling the formation of critical salt bridges. EMBO J 1998; 17(5):1297–1303.

    Article  PubMed  CAS  Google Scholar 

  9. Peden AA, Rudge RE, Lui W et al. Assembly and function of AP-3 complexes in cells expressing mutant subunits. J Cell Biol 2002; 156(2):327–336.

    Article  PubMed  CAS  Google Scholar 

  10. Ungewickell E, Ungewickell H, Holstein SE et al. Role of auxilin in uncoating clathrin-coated vesicles. Nature 1995; 378:632–635.

    Article  PubMed  CAS  Google Scholar 

  11. Holstein SE, Ungewickell H, Ungewickell E. Mechanism of clathrin basket dissociation: Separate functions of protein domains of the DnaJ homologue auxilin. J Cell Biol 1996; 135(4):925–937.

    Article  PubMed  CAS  Google Scholar 

  12. Hannan LA, Newmyer SL, Schmid SL. ATP-and cytosol-dependent release of adaptor proteins from clathrin-coated vesicles: A dual role for Hsc70. Mol Biol Cell 1998; 9(8):2217–2229.

    PubMed  CAS  Google Scholar 

  13. Umeda A, Meyerholz A, Ungewickell E. Identification of the universal cofactor (auxilin 2) in clathrin coat dissociation. Eur J Cell Biol 2000; 79(5):336–342.

    Article  PubMed  CAS  Google Scholar 

  14. Fotin A, Cheng Y, Grigorief TN et al. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature 2004.

    Google Scholar 

  15. Ohno H, Tomemori T, Nakatsu F et al. μ1B, a novel adaptor medium chain expressed in polarized epithelial cells. FEBS Letters 1999; 449(2–3):215–220.

    Article  PubMed  CAS  Google Scholar 

  16. Fölsch H, Ohno H, Bonifacino JS et al. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 1999; 99(2):189–198.

    Article  PubMed  Google Scholar 

  17. Fölsch H, Pypaert M, Schu P et al. Distribution and function of AP-1 clathrin adaptor complexes in polarized epithelial cells. J Cell Biol 2001; 152(3):595–606.

    Article  PubMed  Google Scholar 

  18. Fölsch H, Pypaert M, Maday S et al. The AP-1A and AP-1B clathrin adaptor complexes define biochemically and functionally distinct membrane domains. J Cell Biol 2003; 163(2):351–362.

    Article  PubMed  CAS  Google Scholar 

  19. Lewin DA, Sheff D, Ooi CE et al. Cloning, expression, and localization of a novel gamma-adaptin-like molecule. FEBS Lett 1998; 435:263–268.

    Article  PubMed  CAS  Google Scholar 

  20. Takatsu H, Sakurai M, Shin H-W et al. Identification and characterization of novel clathrin adaptor-related proteins. J Biol Chem 1998; 273(38):24693–24700.

    Article  PubMed  CAS  Google Scholar 

  21. Pevsner J, Volknandt W, Wong BR et al. Two rat homologs of clathrin-associated adaptor proteins. Gene 1994; 146:279–283.

    Article  PubMed  CAS  Google Scholar 

  22. Simpson F, Peden AA, Christopoulou L et al. Characterization of the adaptor-related protein complex, AP-3. J Cell Biol 1997; 137(4):835–845.

    Article  PubMed  CAS  Google Scholar 

  23. DelF’Angelica EC, Ohno H, Ooi CE et al. AP-3: An adaptor-like protein complex with ubiquitous expression. EMBO J 1997; 16(5):917–928.

    Article  Google Scholar 

  24. DeH’Angelica EC, Mullins C, Bonifacino JS. AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem 1999; 274(11):7278–7285.

    Article  Google Scholar 

  25. Hirst J, Bright NA, Rous B et al. Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 1999; 10(8):2787–2802.

    PubMed  CAS  Google Scholar 

  26. Ball CL, Hunt SP, Robinson MS. Expression and localization of α-adaptin isoforms. J Cell Sci 1995; 108:2865–2875.

    PubMed  CAS  Google Scholar 

  27. Kantheti P, Qiao X, Diaz ME et al. Mutation of the AP-3 delta subunit in the mocha mouse links endosomal cargo transport to storage deficiency in platelets, melanosomes, and neurotransmitter vesicles. Neuron 1998; 21:111–122.

    Article  PubMed  CAS  Google Scholar 

  28. Zizioli D, Meyer C, Guhde G et al. Early embryonic death of mice deficient in γ-adaptin. J Biol Chem 1999; 274(9):5385–5390.

    Article  PubMed  CAS  Google Scholar 

  29. Gaidarov I, Chen Q, Falck JR et al. A functional phosphatidylinositol 3,4,5-trisphosphate/phosphoinositide binding domain in the clathrin adaptor AP-2 alpha subunit. J Biol Chem 1996; 271(43):27188.

    Google Scholar 

  30. Rohde G, Wenzel D, Haucke V. A phosphatidylinositol (4,5)-bisphosphate binding site within μ2-adaptin regulates clathrin-mediated endocytosis. J Cell Biol 2002; 158(2):209–214.

    Article  PubMed  CAS  Google Scholar 

  31. Wang YJ, Wang J, Sun HQ et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 2003; 114(3):299–310.

    Article  PubMed  CAS  Google Scholar 

  32. De Matteis MA, Godi A. PI-loting membrane traffic. Nat Cell Biol 2004; 6(6):487–492.

    Article  PubMed  CAS  Google Scholar 

  33. Owen DJ, Vallis Y, Pearse BM et al. The structure and function of the beta 2-adaptin appendage domain. EMBO J 2000; 19(16):4216–4227.

    Article  PubMed  CAS  Google Scholar 

  34. Hirst J, Lindsay MR, Robinson MS. GGAs: Roles of the different domains and comparison with AP-1 and clathrin. Mol Biol Cell 2001; 12(11):3573–3588.

    PubMed  CAS  Google Scholar 

  35. Lundmark R, Carlsson SR. The beta-appendages of the four adaptor-protein (AP) complexes: Structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP-2. Biochem J 2002; 362 (Pt 3):597–607.

    Article  PubMed  CAS  Google Scholar 

  36. Nogi T, Shiba Y, Kawasaki M et al. Structural basis for the accessory protein recruitment by the gamma-adaptin ear domain. Nat Struct Biol 2002; 9(7):527–531.

    PubMed  CAS  Google Scholar 

  37. Lui WWY, Collins BM, Hirst J et al. Binding partners for the COOH-terminal appendage domains of the GGAs and γl-Adaptin. Mol Biol Cell 2003; 14:2385–2398.

    Article  PubMed  CAS  Google Scholar 

  38. Collins BM, Praefcke GJ, Robinson MS et al. Structural basis for binding of accessory proteins by the appendage domain of GGAs. Nat Struct Biol 2003; 10(8):607–613.

    Article  PubMed  CAS  Google Scholar 

  39. Mattera R, Puertollano R, Smith WJ et al. The trihelical bundle subdomain of the GGA proteins interacts with multiple partners through overlapping but distinct sites. J Biol Chem 2004; 279(30):31409–31418.

    Article  PubMed  CAS  Google Scholar 

  40. Praefcke GJ, Ford MG, Schmid EM et al. Evolving nature of the AP2 alpha-appendage hub during clathrin-coated vesicle endocytosis. Embo J 2004; 23(22):4371–4383.

    Article  PubMed  CAS  Google Scholar 

  41. Nakagawa T, Setou M, Seog D et al. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex. Cell 2000; 103(4):569–581.

    Article  PubMed  CAS  Google Scholar 

  42. Boehm M, Aguilar RC, Bonifacino JS. Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs). Embo J 2001; 20(22):6265–6276.

    Article  PubMed  CAS  Google Scholar 

  43. Austin C, Boehm M, Tooze SA. Site-specific cross-linking reveals a differential direct interaction of class 1, 2, and 3 ADP-ribosylation factors with adaptor protein complexes 1 and 3. Biochemistry 2002; 41(14):4669–4677.

    Article  PubMed  CAS  Google Scholar 

  44. Rapoport I, Chen CY, Cupers P et al. Dileucine-based sorting signals bind to the P chain of AP-1 at a site distinct and regulated differently from the tyrosine-based motif-binding site. EMBO J 1998; 17(8):2148–2155.

    Article  PubMed  CAS  Google Scholar 

  45. Bonifacino JS, DeH’Angelica EC. Molecular bases for the recognition of tyrosine-based sorting signals. J Cell Biol 1999; 145(5):923–926.

    Article  PubMed  CAS  Google Scholar 

  46. Janvier K, Kato Y, Boehm M et al. Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 gamma-sigmal and AP-3 delta-sigma3 hemicomplexes. J Cell Biol 2003; 163(6):1281–1290.

    Article  PubMed  CAS  Google Scholar 

  47. Owen DJ, Evans PR. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 1998; 282:1327–1332.

    Article  PubMed  CAS  Google Scholar 

  48. Owen DJ, Setiadi H, Evans PR et al. A third specificity-determining site in μ2 adaptin for sequences upstream of Yxxq sorting motifs. Traffic 2001; 2(2):105–110.

    Article  PubMed  CAS  Google Scholar 

  49. Ghosh P, Kornfeld S. AP-1 binding to sorting signals and release from clathrin-coated vesicles is regulated by phosphorylation. J Cell Biol 2003; 160(5):699–708.

    Article  PubMed  CAS  Google Scholar 

  50. Wilde A, Brodsky FM. In vivo phosphorylation of adaptors regulates their interaction with clathrin. J Cell Biol 1996; 135(3):635–645.

    Article  PubMed  CAS  Google Scholar 

  51. Conner SD, Schmid SL. Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J Cell Biol 2002; 156(5):921–929.

    Article  PubMed  CAS  Google Scholar 

  52. Ricotta D, Conner SD, Schmid SL et al. Phosphorylation of the AP2 μ subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J Cell Biol 2002; 156(5):791–795.

    Article  PubMed  CAS  Google Scholar 

  53. Dittmer F, Ulbrich EJ, Hafner A et al. Alternate mechanisms for trafficking of lysosomal enzymes in mannose 6-phosphate receptor deficient mice are cell type specific. J Cell Sci 1999; 112:1591–1597.

    PubMed  CAS  Google Scholar 

  54. Braun M, Waheed A, von Figura K. Lysosomal acid phosphatase is transported to lysosomes via the cell surface. EMBO J 1989; 8(12):3633–3640.

    PubMed  CAS  Google Scholar 

  55. Obermuller S, Kiecke C, von Figura K et al. The tyrosine motifs of Lamp 1 and LAP determine their direct and indirect targetting to lysosomes. J Cell Sci 2002; 115 (Pt 1):185–194.

    PubMed  CAS  Google Scholar 

  56. Briken V, Jackman RM, Dasgupta S et al. Intracellular trafficking pathway of newly synthesized CD1 olecules. Embo J 2002; 21(4):825–834.

    Article  PubMed  CAS  Google Scholar 

  57. Ihrke G, Kyttala A, Russell MR et al. Differential use of two AP-3-mediated pathways by Lysoso-mal membrane proteins. Traffic 2004; 5(12):946–962.

    Article  PubMed  CAS  Google Scholar 

  58. Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: New twists in the tale. Nat Rev Mol Cell Biol 2003; 4(3):202–212.

    Article  PubMed  CAS  Google Scholar 

  59. Meyer C, Eskelinen EL, Guruprasad RM et al. µ1A-deficiency induces a profound increase of MPR300/IGF-II receptor internalization rate. J Cell Sci 2001; 114(24):4469–4476.

    PubMed  CAS  Google Scholar 

  60. Medigeshi GR, Schu P. Characterization of the in vitro retrograde transport of MPR46. Traffic 2003; 4:739–753.

    Article  Google Scholar 

  61. Saint-Pol A, Yelamos B, Mills I et al. EpsinR-a clathrin adaptor required for retrograde sorting on early endosomal membranes. Dev Cell 2004; in press.

    Google Scholar 

  62. Reusch U, Bernhard O, Koszinowski U et al. AP-1A and AP-3A lysosomal sorting functions. Traffic 2002; 3(10):752–761.

    Article  PubMed  CAS  Google Scholar 

  63. Reusch U, Muranyi W, Lucin P et al. A cytomegalovirus glycoprotein reroutes MHC class I complexes to lysosomes for degradation. EMBO J 1999; 18(4):1081–1091.

    Article  PubMed  CAS  Google Scholar 

  64. Peden AA, Oorschot V, Hesser BA et al. Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins. J Cell Biol 2004; 164(7):1065–1076.

    Article  PubMed  CAS  Google Scholar 

  65. Harter C, Mellman I. Transport of the lysosomal membrane glycoprotein lgp120 (lgp-A) to lysosomes does not require appearance on the plasma membrane. J Cell Biol 1992; 117(2):311–325.

    Article  PubMed  CAS  Google Scholar 

  66. Rous BA, Reaves BJ, Ihrke G et al. Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes. Mol Biol Cell 2002; 13(3):1071–1082.

    Article  PubMed  CAS  Google Scholar 

  67. Le Borgne R, Alconada A, Bauer U et al. The mammalian AP-3 adaptor-like complex mediates the intracellular transport of lysosomal membrane glycoproteins. J Biol Chem 1998; 273(45):29451–29461.

    Article  PubMed  Google Scholar 

  68. Dell’Angelica EC, Shotelersuk V, Aguilar RC et al. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell 1999; 3(1):11–21.

    Article  PubMed  CAS  Google Scholar 

  69. Akasaki K, Michihara A, Mibuka K et al. Biosynthetic transport of a major lysosomal membrane glycoprotein, lamp-1: Convergence of biosynthetic and endocytic pathways occurs at three distinctive points. Exp Cell Res 1995; 220(2):464–473.

    Article  PubMed  CAS  Google Scholar 

  70. Reaves BJ, Banting G, Luzio JP. Lumenal and transmembrane domains play a role in sorting type I membrane proteins on endocytic pathways. Mol Biol Cell 1998; 9(5):1107–1122.

    PubMed  CAS  Google Scholar 

  71. Cook NR, Row PE, Davidson HW. Lysosome associated membrane protein 1 (Lamp1) traffics directly from the TGN to early endosomes. Traffic 2004; 5(9):685–699.

    Article  PubMed  CAS  Google Scholar 

  72. Nakatsu F, Okada M, Mori F et al. Defective function of GABA-containing synaptic vesicles in mice lacking the AP-3B clathrin adaptor. J Cell Biol 2004; 167(2):293–302.

    Article  PubMed  CAS  Google Scholar 

  73. Swank RT, Novak EK, McGarry MP et al. Mouse models of Hermansky Pudlak syndrome: A review. Pigment Cell Res 1998; 11:60–80.

    Article  PubMed  CAS  Google Scholar 

  74. Höning S, Sandoval IV, von Figura K. A di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J 1998; 17(5):1304–1314.

    Article  PubMed  Google Scholar 

  75. Calvo PA, Frank DW, Bieler BM et al. A cytoplasmic sequence in human tyrosinase defines a second class of di-leucine-based sorting signals for late endosomal and lysosomal delivery. J Biol Chem 1999; 274(18):12780–12789.

    Article  PubMed  CAS  Google Scholar 

  76. Simmen T, Schmidt A, Hunziker W et al. The tyrosinase tail mediates sorting to the lysosomal compartment in MDCK cells via a di-leucine and a tyrosine-based signal. J Cell Sci 1999; 112 (Pt 1):45–53.

    PubMed  CAS  Google Scholar 

  77. Fujita H, Sasano E, Yasunaga K et al. Evidence for distinct membrane traffic pathways to melanosomes and lysosomes in melanocytes. J Investig Dermatol Symp Proc 2001; 6(1):19–24.

    Article  PubMed  Google Scholar 

  78. Simmen T, Honing S, Icking A et al. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nat Cell Biol 2002; 4(2):154–159.

    Article  PubMed  CAS  Google Scholar 

  79. Yap CC, Murate M, Kishigami S et al. Adaptor protein complex-4 (AP-4) is expressed in the central nervous system neurons and interacts with glutamate receptor delta2. Mol Cell Neurosci 2003; 24(2):283–295.

    Article  PubMed  CAS  Google Scholar 

  80. Laporte SA, Oakley RH, Holt JA et al. The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem 2000; 275(30):23120–23126.

    Article  PubMed  CAS  Google Scholar 

  81. Tebar F, Bohlander SK, Sorkin A. Clathrin assembly lymphoid myeloid leukemia (CALM) protein: Localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol Biol Cell 1999; 10(8):2687–2702.

    PubMed  CAS  Google Scholar 

  82. Hao W, Luo Z, Zheng L et al. AP180 and AP-2 interact directly in a complex that cooperatively assembles clathrin. J Biol Chem 1999; 274(32):22785–22794.

    Article  PubMed  CAS  Google Scholar 

  83. Motley A, Bright NA, Seaman MN et al. Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol 2003; 162(5):909–918.

    Article  PubMed  CAS  Google Scholar 

  84. Conner SD, Schmid SL. Differential requirements for AP-2 in clathrin-mediated endocytosis. J Cell Biol 2003; 162(5):773–779.

    Article  PubMed  CAS  Google Scholar 

  85. Huang F, Khvorova A, Marshall W et al. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J Biol Chem 2004; 279(16):16657–16661.

    Article  PubMed  CAS  Google Scholar 

  86. Dell’Angelica EC, Puertollano R, Mullins C et al. GGAs: A family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 2000; 149(1):81–94.

    Article  PubMed  CAS  Google Scholar 

  87. Boman AL, Zhang CJ, Zhu X et al. A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol Biol Cell 2000; 11(4):1241–1255.

    PubMed  CAS  Google Scholar 

  88. Hirst J, Lui WW, Bright NA et al. A family of proteins with gamma-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J Cell Biol 2000; 149(1):67–80.

    Article  PubMed  CAS  Google Scholar 

  89. Ghosh P, Kornfeld S. The GGA proteins: Key players in protein sorting at the trans-Golgi network. Eur J Cell Biol 2004; 83(6):257–262.

    Article  PubMed  CAS  Google Scholar 

  90. Puertollano R, Bonifacino JS. Interactions of GGA3 with the ubiquitin sorting machinery. Nat Cell Biol 2004; 6(3):244–251.

    Article  PubMed  CAS  Google Scholar 

  91. Scott PM, Bilodeau PS, Zhdankina O et al. GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network. Nat Cell Biol 2004; 6(3):252–259.

    Article  PubMed  CAS  Google Scholar 

  92. Puertollano R, Randazzo PA, Presley JF et al. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell 2001; 105(1):93–102.

    Article  PubMed  CAS  Google Scholar 

  93. Doray B, Ghosh P, Griffith J et al. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 2002; 297(5587):1700–1703.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Schu, P. (2005). Adaptor Proteins in Lysosomal Biogenesis. In: Lysosomes. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28957-7_3

Download citation

Publish with us

Policies and ethics