Skip to main content

Chaperone-Mediated Autophagy

  • Chapter
Lysosomes

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 1836 Accesses

Abstract

Many lysosomal and nonlysosomal pathways degrade intracellular proteins and this variety allows all cell proteins to be proteolysed at various speeds in response to different stimuli. Lysosomes, which are present in almost all eukaryotic cells, are major sites of intracellular proteolysis. They are quite heterogeneous and participate in protein catabolism by several mechanisms. By chaperone-mediated autophagy, lysosomes selectively degrade proteins with KFERQ-like sequences (about 25–30% of all cell proteins) by a mechanism which resembles the transport of proteins into mitochondria and other organelles since it requires (a) protein receptor(s), cytosolic and lysosomal chaperones and ATP-Mg++. This pathway appears to be only active in certain cells under specific conditions, but its quantitative importance in protein turnover, in comparison to other lysosomal and nonlysosomal pathways, is still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doherty FJ, Dawson S, Mayer RJ. The ubiquitin-proteasome pathway of intracellular proteolysis. Essays Biochem 2002; 38:51–63.

    PubMed  CAS  Google Scholar 

  2. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiol Rev 2002; 82:373–428.

    PubMed  CAS  Google Scholar 

  3. Coffino P. Degradation of ornithine decarboxylase. In: Peters J-M, Robins JR, Finley D, eds. Ubiquitin and the Biology of the Cell. New York: Plenum Press, 1998:411–428.

    Google Scholar 

  4. Sheaff RJ, Singer JD, Swanger J et al. Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol Cell 2000; 5:403–410.

    Article  PubMed  CAS  Google Scholar 

  5. Bossi G, Ferrara P, Acquaviva C et al. C-Fos proto-oncoprotein is degraded by the proteasome independently of its own ubiquitinylation in vivo. Mol Cell Biol 2003; 23:7425–7436.

    Article  Google Scholar 

  6. In: Klionsky DJ, ed. Autophagy. Austin: RG Landes Co., 2003.

    Google Scholar 

  7. Thumm M. Structure and function of the yeast vacuole and its role in autophagy. Microsc Res Tech 2000; 51:563–572.

    Article  PubMed  CAS  Google Scholar 

  8. Ohsumi Y. Molecular dissection of autophagy: Two ubiquitin-like systems. Nat Rev Mol Cell Biol 2001; 2:211–216.

    Article  PubMed  CAS  Google Scholar 

  9. Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryotic Cell 2002; 1:11–21.

    Article  PubMed  CAS  Google Scholar 

  10. Dunn Jr WA. Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol 1994; 4:139–143.

    Article  PubMed  CAS  Google Scholar 

  11. Knecht E, Martfn de Llano JJ, Andreu EJ et al. Pathways for the degradation of intracellular proteins within lysosomes in higher eukaryotes. In: Bittar EE, Rivett AJ, eds. Advances in Molecular and Cell Biology. Stamford: Jai Press Inc., 1998:201–234.

    Google Scholar 

  12. Marzella L, Glaumann H. Autophagy, microautophagy and crinophagy as mechanisms for protein degradation. In: Glaumann H, Ballard FJ, eds. Lysosomes: Their Role in Protein Breakdown. London: Academic Press, 1987:319–367.

    Google Scholar 

  13. Hutchins MU, Veenhuis M, Klionsky DJ. Peroxisome degradation in Saccharomyces cerevisiae is dependent on machinery of macroautophagy and the Cvt pathway. J Cell Sci 1999; 112:4079–4087.

    PubMed  CAS  Google Scholar 

  14. Fuertes G, Martín de Llano JJ, Villarroya A et al. Changes in the proteolytic activities of proteasomes and lysosomes in human fibroblasts produced by serum withdrawal, amino acid deprivation and confluent conditions. Biochem J 2003; 375:75–86.

    Article  PubMed  CAS  Google Scholar 

  15. Mizushima N, Yamamoto A, Hatano M et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001; 152:657–667.

    Article  PubMed  CAS  Google Scholar 

  16. Terlecky SR. Hsp70s and lysosomal proteolysis. Experientia 1994; 50:1021–1025.

    Article  PubMed  CAS  Google Scholar 

  17. Cuervo AM, Dice JF. Lysosomes, a meeting point of proteins, chaperones and proteases. J Mol Med 1998; 76:6–12.

    Article  PubMed  CAS  Google Scholar 

  18. Dice JF. Lysosomal pathways of protein degradation. Austin: RG Landes Co., 2000.

    Google Scholar 

  19. Huang WP, Klionsky DJ. Autophagy in yeast: A review of the molecular machinery. Cell Struct Funct 2002; 27:409–420.

    Article  PubMed  CAS  Google Scholar 

  20. Suzuki K, Kamada Y, Ohsumi Y. Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae. Dev Cell 2002; 3:815–824.

    Article  PubMed  CAS  Google Scholar 

  21. Neff NT, Bourret L, Miao P et al. Degradation of proteins microinjected into IMR-90 human diploid fibroblasts. J Cell Biol 1981; 91:184–194.

    Article  PubMed  CAS  Google Scholar 

  22. McElligott M, Miao P, Dice JF. Lysosomal degradation of ribonuclease A and ribonuclease S-protein microinjected into human fibroblasts. J Biol Chem 1985; 260:11986–11993.

    PubMed  CAS  Google Scholar 

  23. Backer JM, Bourret L, Dice JF. Regulation of catabolism of microinjected ribonuclease A requires the amino-terminal 20 amino acids. Proc Natl Acad Sci USA 1983; 80:2133–2170.

    Article  Google Scholar 

  24. Backer JM, Dice JF. Covalent linkage of ribonuclease S-peptide to microinjected proteins causes their intracellular degradation to be enhanced under serum withdrawal. Proc Natl Acad Sci USA 1986; 83:5830–5834.

    Article  PubMed  CAS  Google Scholar 

  25. Dice JF, Chiang H-L, Spencer E et al. Regulation of catabolism of microinjected ribonuclease A: Identification of residues 7–11 as the essential pentapeptide. J Biol Chem 1986; 261:6853–6859.

    PubMed  CAS  Google Scholar 

  26. Chiang H-L, Dice JF. Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 1988; 263:6797–6805.

    PubMed  CAS  Google Scholar 

  27. Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 1990; 15:305–309.

    Article  PubMed  CAS  Google Scholar 

  28. Gorinsky B, Laskowski RA, Lee DA et al. Conformational analysis of pentapeptide sequences matching a proposed recognition motif for lysosomal degradation. Biochim Biophys Acta 1996; 1293:243–253.

    PubMed  Google Scholar 

  29. Cuervo AM, Gomes AV, Barnes JA et al. Selective degradation of annexins by chaperone-mediated autophagy. J Biol Chem 2000; 275:33329–33335.

    Article  PubMed  CAS  Google Scholar 

  30. Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996; 273:501–503.

    Article  PubMed  CAS  Google Scholar 

  31. Wing SS, Chiang H-L, Goldberg AL et al. Proteins containing peptide sequences related to KFERQ are selectively depleted in liver and heart, but not skeletal muscle, of fasted rats. Biochem J 1991; 275:165–169.

    PubMed  CAS  Google Scholar 

  32. Cuervo AM, Knecht E, Terlecky SR et al. Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am J Physiol 1995; 269:C1200–C1208.

    PubMed  CAS  Google Scholar 

  33. Franch HA, Sooparb S, Du J. A mechanism regulating proteolysis of specific proteins during tubular cell growth. J Biol Chem 2001; 276:19126–19131.

    Article  PubMed  CAS  Google Scholar 

  34. Okada A, Dice JF. Altered degradation of intracellular proteins in aging human fibroblasts. Mech Ageing Dev 1984; 26:341–356.

    Article  PubMed  CAS  Google Scholar 

  35. Cuervo AM, Dice JF. Age-related decline in chaperone-mediated autophagy. J Biol Chem 2000; 275:31505–31513.

    Article  PubMed  CAS  Google Scholar 

  36. Chiang HL, Terlecky SR, Plant CP et al. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 1989; 246:382–385.

    Article  PubMed  CAS  Google Scholar 

  37. Terlecky SR, Chiang HL, Olson TS et al. Protein and peptide binding and stimulation of in vitro lysosomal proteolysis by the 73-kDa heat shock cognate protein. J Biol Chem 1992; 267:9202–9209.

    PubMed  CAS  Google Scholar 

  38. Salvador N, Aguado C, Horst M et al. Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 2000; 275:27447–27456.

    PubMed  CAS  Google Scholar 

  39. Agarraberes FA, Dice JF. A molecular chaperone complex at the lysosomal membrane is required for protein translation. J Cell Sci 2001; 114:2491–2499.

    PubMed  CAS  Google Scholar 

  40. Agarraberes F, Terlecky SR, Dice JF. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 1997; 137:825–834.

    Article  PubMed  CAS  Google Scholar 

  41. Cuervo AM, Dice JF, Knecht E. A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem 1997; 272:5606–5615.

    Article  PubMed  CAS  Google Scholar 

  42. Terlecky SR, Dice JF. Polypeptide import and degradation by isolated lysosomes. J Biol Chem 1993; 268:23490–23495.

    PubMed  CAS  Google Scholar 

  43. Cuervo AM, Terlecky SR, Dice JF et al. Selective binding and uptake of ribonuclease A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes. J Biol Chem 1994; 269:26374–26380.

    PubMed  CAS  Google Scholar 

  44. Fukuda M. Lysosomal membrane glycoproteins. Structure, biosynthesis and intracellular trafficking. J Biol Chem 1991; 266:21327–21330.

    PubMed  CAS  Google Scholar 

  45. Peters C, von Figura K. Biogenesis of lysosomal membranes. FEBS Lett 1994; 346:108–114.

    Article  PubMed  CAS  Google Scholar 

  46. Eskelinen EL, Tanaka Y, Saftig P. At the acidic edge: Emerging functions for lysosomal membrane proteins. Trends Cell Biol 2003; 13:137–145.

    Article  PubMed  CAS  Google Scholar 

  47. Hatem CL, Gough NR, Fambrough DM. Multiple mRNAs encode the avian lysosomal membrane protein LAMP-2 resulting in alternative transmembrane and cytoplasmic domains. J Cell Sci 1995; 108:2093–2100.

    PubMed  CAS  Google Scholar 

  48. Konecki DS, Foetisch K, Zimmer KP et al. An alternative spliced form of the human lysosome associated membrane protein-2 gene is expressed in a tissue-specific manner. Biochem Biophys Res Commun 1995; 215:757–767.

    Article  PubMed  CAS  Google Scholar 

  49. Furuta K, Yang XL, Chen JS et al. Differential expression of the lysosome-associated membrane proteins in normal human tissues. Arch Biochem Biophys 1999; 365:75–82.

    Article  PubMed  CAS  Google Scholar 

  50. Cuervo AM, Dice JF. Regulation of LAMP2a levels in the lysosomal membrane. Traffic 2000; 1:570–583.

    Article  PubMed  CAS  Google Scholar 

  51. Cuervo AM, Dice JF. Unique properties of LAMP2a compared to other LAMP2 isoforms. J Cell Sci 2000; 113:4441–4450.

    PubMed  CAS  Google Scholar 

  52. Jadot M, Dubois F, Wattiaux-DeConinck S et al. Supramolecular assemblies from lysosomal membrane proteins and complex lipids. Eur J Biochem 1997; 249:862–869.

    Article  PubMed  CAS  Google Scholar 

  53. Cuervo AM, Mann L, Bonten EJ et al. Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J 2003; 22:47–59.

    Article  PubMed  CAS  Google Scholar 

  54. Tanaka Y, Guhde G, Suter A et al. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2 deficient mice. Nature 2000; 406:902–906.

    Article  PubMed  CAS  Google Scholar 

  55. Eskelinen EL, Illert AL, Tanaka Y et al. Role of LAMP-2 in lysosome biogenesis and autophagy. Mol Biol Cell 2002; 13:3355–3368.

    Article  PubMed  CAS  Google Scholar 

  56. Nishino I, Fu J, Tanji K et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000; 406:906–910.

    Article  PubMed  CAS  Google Scholar 

  57. Eskelinen EL, Schmidt CK, Neu S et al. Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell 2004; 15:3132–3145.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Knecht, E., Salvador, N. (2005). Chaperone-Mediated Autophagy. In: Lysosomes. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28957-7_15

Download citation

Publish with us

Policies and ethics