Skip to main content

Functional Connectivity of the Brain: Reconstruction from Static and Dynamic Data

  • Chapter
  • 1403 Accesses

Abstract

The central nervous system is a single complex network connecting each neuron through a number of synaptic connections. However, only a small fraction of the total connections functionally link neurons together. If the smallest multineuronal architecture within which functional links are established constitutes circuitry, then what are the basic operating principles of these circuitries from which we can understand both the composition and the dynamics of the larger networks? We argue that a finite class of circuitries, the “basic circuitries,” can be identified as repeating structural motifs tightly associated with specific dynamics. Functional circuitries, however, cannot be derived from the static architecture simply because they do not obey structural borders. Fortunately, since the constituent neurons do act in synergy, we can infer from the dynamics the minimal structural conditions that constitute a circuitry. In this chapter, instead of giving a precise definition of the “basic circuitry,” we outline a set of methods that may elucidate such a definition. We argue that since the concept of circuitry incorporates both dynamic and static features, understanding can be achieved through combining the structural and dynamic aspects of the available data. We review methods of extracting functional information from static data first. Next, we review methods of extracting structural information from dynamic data. Ideally, these two approaches should converge and define circuitry based on the fragile concept of functional connectivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, M., and Gat, I., 2001, Detecting precise firing sequences in experimental data, J. Neurosci. Methods 107(1–2):141–154; Erratum in J. Neurosci. Methods 112(2):203.

    Article  PubMed  CAS  Google Scholar 

  • Abeles, M., and Gerstein, G. L., 1988, Detecting spatiotemporal firing patterns among simultaneously recorded single neurons, J. Neurophysiol. 60(3):909–924.

    PubMed  CAS  Google Scholar 

  • Abeles, M., and Goldstein, M. 1977, Multispike train analysis, Proc. IEEE 65:762–773.

    Article  Google Scholar 

  • Aertsen, A. M., Gerstein, G. L., Habib, M. K., and Palm, G., 1989, Dynamics of neuronal firing correlation: modulation of “effective connectivity,” J. Neurophysiol. 61(5):900–917.

    PubMed  CAS  Google Scholar 

  • Aika, Y., Ren, J. Q., Kosaka, K., and Kosaka, T., 1994, Quantitative analysis of GABA-likeimmunoreactive and parvalbumin-containing neurons in the CA1 regions of the rat hippocampus using a stereological method, the dissector, Exp. Brain Res. 99:267–276.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J. M. 1998, Evolving Brains, New York: Scientific American Library, W. H. Freeman and Co.

    Google Scholar 

  • Alloway, K. D., Crist, J., Mutic, J. J., and Roy, S. A., 1999, Corticostriatal projections from rat barrel cortex have an anisotropic organization that correlates with vibrissal whisking behavior, J. Neurosci. 19(24):10908–10922.

    PubMed  CAS  Google Scholar 

  • Baker, S. N., Spinks, R., Jackson, A., and Lemon, R. N., 2001, Synchronization in monkey motor cortex during a precision grip task: I. Task-dependent modulation in single-unit synchrony, J. Neurophysiol. 85(2):869–885.

    PubMed  CAS  Google Scholar 

  • Barbas, H., and Rempel-Clower, N., 1997, Cortical structure predicts the pattern of corticocortical connections, Cereb. Cortex 7(7):635–646.

    Article  PubMed  CAS  Google Scholar 

  • Bartho, P., Hirase, H., Monconduit, L., Zugaro, M., Harris, K. D., and Buzsaki, G., 2004, Characterization of neocortical principal cells and interneurons by network interactions and extracellular features, J. Neurophysiol. 92(1):600–608.

    Article  PubMed  Google Scholar 

  • Binzegger, T., Douglas, R. J., and Martin, K. A. C., 2004, A quantitative map of the circuit of cat primary visual cortex, J. Neurosci. 24(39):8441–8453.

    Article  PubMed  CAS  Google Scholar 

  • Bower, J. M., and Beeman, D., 1998, The Book of GENESIS: Exploring Realistic Neural Models with the General Neural Simulation System, 2nd ed., New York: Springer-Verlag.

    Google Scholar 

  • Brecht, M., Fee, M. S., Garaschuk, O., Helmchen, F., Margrie, T. W., Svoboda, K., and Osten, P., 2004, Novel approaches to monitor and manipulate single neurons in vivo, J. Neurosci. 24:9223–9227.

    Article  PubMed  CAS  Google Scholar 

  • Brovelli, A., Ding, M., Ledberg, A., Chen, Y., Nakamura, R., and Bressler, S. L., 2004, Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality, Proc. Natl. Acad. Sci. U. S. A. 101(26):9849–9854.

    Article  PubMed  CAS  Google Scholar 

  • Budd, J. M., and Kisvarday, Z. F., 2001, Local lateral connectivity of inhibitory clutch cells in layer 4 of cat visual cortex (area 17), Exp. Brain Res. 140(2):245–250.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki, G., 2004, Large-scale recording of neuronal ensembles, Nat. Neurosci. 7(5):446–451.

    Article  PubMed  CAS  Google Scholar 

  • Buzsaki, G., Penttonen, M., Nadasdy, Z., and Bragin, A., 1996, Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo, Proc. Natl. Acad. Sci. U. S. A. 93(18):9921–9925.

    Article  PubMed  CAS  Google Scholar 

  • Chen-Bee, C. H., Polley, D. B., Brett-Green, B., Prakash, N., Kwon, M. C., and Frostig, R. D., 2000, Visualizing and quantifying evoked cortical activity assessed with intrinsic signal imaging, J. Neurosci. Methods 97(2):157–173.

    Article  PubMed  CAS  Google Scholar 

  • Chevalier, G., and Mana, S., 2000, Honeycomb-like structure of the intermediate layers of the rat superior colliculus, with additional observations in several other mammals: AChE patterning, J. Comp. Neurol. 419(2):137–153.

    Article  PubMed  CAS  Google Scholar 

  • Claverol, E., and Nadasdy, Z., 2004, Intersection of microwire electrodes with proximal CA1 stratum-pyramidal neurons at insertion for multiunit recordings predicted by a 3-D computer model, IEEE Trans. Biomed. Eng. 51(12):2211–2216.

    Article  Google Scholar 

  • Coogan, T. A., and Burkhalter, A., 1993, Hierarchical organization of areas in rat visual cortex, J. Neurosci. 13(9):3749–3772.

    PubMed  CAS  Google Scholar 

  • Csicsvari, J., Henze, D. A., Jamieson, B., Harris, K. D., Sirota, A., Bartho, P., Wise, K. D., and Buzsaki, G., 2003, Massively parallel recording of unit and local field potentials with siliconbased electrodes, J. Neurophysiol. 90(2):1314–1323.

    Article  PubMed  Google Scholar 

  • Das, A., and Gilbert, C. D., 1995, Long-range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex, Nature 375(6534):780–784.

    Article  PubMed  CAS  Google Scholar 

  • Das, A., and Gilbert, C. D., 1999, Topography of contextual modulations mediated by shortrange interactions in primary visual cortex, Nature 399(6737):655–661.

    Article  PubMed  CAS  Google Scholar 

  • Destexhe, A., and Babloyantz, A., 1993, A model of the inward current Ih and its possible role in thalamocortical oscillations, Neuroreport 4(2):223–226.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R., Martin, K., and Witteridge, D., 1989, A canonical microcircuit for neocortex. Neural. Comput. 1:480–488.

    Google Scholar 

  • Fee, M. S., Mitra, P. P., and Kleinfeld, D., 1996, Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability, J. Neurosci. Methods 69(2):175–188; Erratum in J. Neurosci. Methods 71(2):233.

    Article  PubMed  CAS  Google Scholar 

  • Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47.

    PubMed  CAS  Google Scholar 

  • Fiala, J. C., and Harris, K. M., 2001, Extending unbiased stereology of brain ultrastructure to three-dimensional volumes, J. Am. Med. Inform. Assoc. 8(1):1–16.

    PubMed  CAS  Google Scholar 

  • Földy, C., Dyhrfjeld-Johnsen, J., and Soltesz, I., 2005, Structure of cortical microcircuit theory, J. Physiol. 562.1:47–54.

    Google Scholar 

  • Freeman, W. J., 2000, Mesoscopic neurodynamics: from neuron to brain, J. Physiol. (Paris) 94(5–6):303–322.

    CAS  Google Scholar 

  • Freund, T. F., and Buzsaki, G., 1996, Interneurons of the hippocampus, Hippocampus 6(4):347–470.

    Article  PubMed  CAS  Google Scholar 

  • Frostig, R. D., Frostig, Z., and Harper, R. M., 1990, Recurring discharge patterns in multiple spike trains: I. Detection, Biol. Cybern. 62(6):487–493.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, T., and Kosaka, T., 2000, Gap junctions linking the dendritic network of GABAergic interneurons in the hippocampus, J. Neurosci. 20(4):1519–1528.

    PubMed  CAS  Google Scholar 

  • Gerfen, C. R., 1985, The neostriatal mosaic: I. Compartmental organization of projections from the striatum to the substantia nigra in the rat, J. Comp. Neurol. 236(4):454–476.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, J. R., Beierlein, M., and Connors, B. W., 1999, Two networks of electrically coupled inhibitory neurons in neocortex, Nature 402(6757):75–79.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, C. D., 1983, Microcircuitry of the visual cortex, Annu. Rev. Neurosci. 6:217–247.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, C. D., and Wiesel, T. N., 1983, Functional organization of the visual cortex. Prog. Brain Res. 58:209–218.

    PubMed  CAS  Google Scholar 

  • Goldman, P. S., and Nauta, W. J., 1977, Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey, Brain Res. 122(3):393–413.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. S., 1984, Modular organization of prefrontal cortex, Trends Neurosci. 7:419–429.

    Article  Google Scholar 

  • Granger, C. W. J., 1969, Investigating causal relations by econometric methods and crossspectral methods, Econometrica, 34:424–438.

    Article  Google Scholar 

  • Graybiel, A. M., and Ragsdale, C. W., Jr., 1978, Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining, Proc. Natl. Acad. Sci. U. S. A. 75(11):5723–5726.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., and Hildesheim, R., 2004, VSDI: a new era in functional imaging of cortical dynamics, Nat. Rev. Neurosci. 5(11):874–885.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, A., Wang, Y., and Markram, H., 2000, Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex, Science 287(5451):273–278.

    Article  PubMed  CAS  Google Scholar 

  • Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsaki, G., 2003, Organization of cell assemblies in the hippocampus, Nature 424(6948):552–556.

    Article  PubMed  CAS  Google Scholar 

  • Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., and Buzsaki, G., 2000, Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements, J. Neurophysiol. 84(1):401–414.

    PubMed  CAS  Google Scholar 

  • He, W., Hamilton, T. A., Cohen, A. R., Holmes, T. J., Pace, C., Szarowski, D. H., Turner, J. N., and Roysam, B., 2003, Automated three-dimensional tracing of neurons in confocal and brightfield images, Microsc. Microanal. 9(4):296–310.

    Article  PubMed  CAS  Google Scholar 

  • Hebb, D. O., 1949, Organization of Behavior, New York: Wiley.

    Google Scholar 

  • Henze, D. A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris, K. D., and Buzsaki, G., 2000, Intracellular features predicted by extracellular recordings in the hippocampus in vivo, J. Neurophysiol. 84(1):390–400.

    PubMed  CAS  Google Scholar 

  • Hines, M. L., and Carnevale, N.T., 1997, The NEURON simulation environment, Neural Comput. 9:1179–1209.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1959, Receptive fields of single neurones in the cat’s striate cortex, J. Physiol. 148:574–591.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey, J. Comp. Neurol. 146(4):421–450.

    Article  PubMed  CAS  Google Scholar 

  • Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., and Yuste, R., 2004, Synfire chains and cortical songs: temporal modules of cortical activity, Science 304(5670):559–564.

    Article  PubMed  CAS  Google Scholar 

  • Isseroff, A., Schwartz, M. L., Dekker, J. J., and Goldman-Rakic, P. S., 1984, Columnar organization of callosal and associational projections from rat frontal cortex, Brain Res. 293(2):213–223.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. R., and Burkhalter, A., 1997, A polysynaptic feedback circuit in rat visual cortex, J. Neurosci. 17(18):7129–7140.

    PubMed  CAS  Google Scholar 

  • Kalisman, N., Silberberg, G., and Markram, H., 2005, The neocortical microcircuit as a tabula rasa, Proc. Natl. Acad. Sci. U. S. A. 102(3):880–885.

    Article  PubMed  CAS  Google Scholar 

  • Kaminski, M., Ding, M., Truccolo, W. A., and Bressler, S. L., 2001, Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance, Biol. Cybern. 85(2):145–157.

    Article  PubMed  CAS  Google Scholar 

  • Kaminski, M. J., and Blinowska, K. J., 1991, A new method of the description of the information flow in the brain structures, Biol. Cybern. 65:203–210.

    Article  PubMed  CAS  Google Scholar 

  • Kemere, C., Shenoy, K. V., and Meng, T. H., 2004, Model-based neural decoding of reaching movements: a maximum likelihood approach, IEEE Trans. Biomed. Eng. 51(6):925–932.

    Article  PubMed  Google Scholar 

  • Kisvarday, Z. F., Ferecsko, A. S., Kovacs, K., Buzas, P., Budd, J. M., and Eysel, U. T., 2002, One axon-multiple functions: specificity of lateral inhibitory connections by large basket cells, J. Neurocytol. 31(3–5):255–264.

    Article  PubMed  Google Scholar 

  • Koralek, K. A., Olavarria, J., and Killackey, H. P., 1990, Areal and laminar organization of corticocortical projections in the rat somatosensory cortex, J. Comp. Neurol. 299(2):133–150.

    Article  PubMed  CAS  Google Scholar 

  • Kötter, R., Hilgetag, C. C., and Stephan, K. E., 2001, Connectional characteristics of areas in Walker’s map of prefrontal cortex, Neurocomputing 38–40:741–746.

    Article  Google Scholar 

  • Lee, A. K., and Wilson, M. A., 2002, Memory of sequential experience in the hippocampus during slow wave sleep, Neuron 36(6):1183–1194.

    Article  PubMed  CAS  Google Scholar 

  • Leergaard, T. B., Alloway, K. D., Mutic, J. J., and Bjaalie, J. G., 2000, Three-dimensional topography of corticopontine projections from rat barrel cortex: correlations with corticostriatal organization, J. Neurosci. 20(22):8474–8484.

    PubMed  CAS  Google Scholar 

  • Leise, E. M. 1990, Modular construction of nervous system: a basic principle of design for invertebrates and vertebrates, Brain Res. Rev. 15:1–23.

    Article  PubMed  CAS  Google Scholar 

  • Lewicki, M. S., 1998, A review of methods for spike sorting: the detection and classification of neural action potentials, Network 9(4):R53–R78 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Li, W., and Gilbert, C. D., 2002, Global contour saliency and local collinear interactions, J. Neurophysiol. 88(5):2846–2856.

    Article  PubMed  Google Scholar 

  • Lubke, J., Egger, V., Sakmann, B., and Feldmeyer, D., 2000, Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex, J. Neurosci. 20(14):5300–5311.

    PubMed  CAS  Google Scholar 

  • Maccaferri, G., and Lacaille, J. C., 2003, Interneuron diversity series: hippocampal interneuron classifications—making things as simple as possible, not simpler, Trends Neurosci. 26:564–571.

    Article  PubMed  CAS  Google Scholar 

  • Malach, R., 1994, Cortical columns as devices for maximizing neuronal diversity, Trends Neurosci. 17(3):101–104 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Malmierca, M. S., Leergaard, T. B., Bajo, V. M., Bjaalie, J. G., and Merchan, M. A., 1998, Anatomic evidence of a three-dimensional mosaic pattern of tonotopic organization in the ventral complex of the lateral lemniscus in cat, J. Neurosci. 18(24):10603–10618.

    PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., 1957, Modality and topographic properties of single neurons of cat’s somatic sensory cortex, J. Neurophysiol. 20(4):408–434.

    PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., 1998, Perceptual Neuroscience: The Cerebral Cortex, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Musallam, S., Corneil, B. D., Greger, B., Scherberger, H., and Andersen, R. A., 2004, Cognitive control signals for neural prosthetics, Science, 305(5681):258–262.

    Article  PubMed  CAS  Google Scholar 

  • Nadasdy, Z., 2000, Time sequences and their consequences, J. Physiol. (Paris) 94:505–524.

    Article  CAS  Google Scholar 

  • Nadasdy, Z., Csicsvari, J., Penttonen, M., Hetke, J., Wise, K., and Buzsáki, G., 1998, Extracellular recording and analysis of neuronal activity: from single cells to ensembles, In: Eichenbaum, H. B., and Davis, J. L. (eds.), Neuronal Ensembles: Strategies for Recording and Decoding, New York: Wiley.

    Google Scholar 

  • Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J., and Buzsaki, G., 1999, Replay and time compression of recurring spike sequences in the hippocampus, J. Neurosci. 19(21):9497–9507.

    PubMed  CAS  Google Scholar 

  • Nadasdy, Z., and Zaborszky, L., 2001, Visualization of density relations in large-scale neural networks, Anat. Embryol. (Berl.) 204(4):303–317.

    Article  CAS  Google Scholar 

  • Nordhausen, C.T., Maynard, E. M., and Normann, R. A., 1996, Single unit recording capabilities of a 100 microelectrode array, Brain Res. 726(1–2):129–140.

    Article  PubMed  CAS  Google Scholar 

  • Ohki, K., Chung, S., Ch’ng Y. H., Kara, P., and Reid, R. C., 2005, Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex, Nature 433(7026):597–603.

    Article  PubMed  CAS  Google Scholar 

  • Palm, G., Aertsen, A. M., and Gerstein, G. L., 1988, On the significance of correlations among neuronal spike trains, Biol. Cybern. 59(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  • Paperna, T., and Malach, R., 1991, Patterns of sensory intermodality relationships in the cerebral cortex of the rat, J. Comp. Neurol. 308(3):432–456.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., and Feldman, M. L., 1976, The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex: I. General description, J. Neurocytol. 5:63–84.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., and Payne, B. R., 1993, Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex 3:69–78.

    PubMed  CAS  Google Scholar 

  • Pouille, F., and Scanziani, M., 2004, Routing of spike series by dynamic circuits in the hippocampus, Nature 429(6993):717–723.

    Article  PubMed  CAS  Google Scholar 

  • Prinz, A. A., Bucher, D., and Marder, E., 2004, Similar network activity from disparate circuit parameters, Nat. Neurosci. 7(12):1287–1288.

    Article  CAS  Google Scholar 

  • Pucak, M. L., Levitt, J. B., Lund, J. S., and Lewis, D. A., 1996, Patterns of intrinsic and associational circuitry in monkey prefrontal cortex, J. Comp. Neurol. 376(4):614–630.

    Article  PubMed  CAS  Google Scholar 

  • Quian-Quiroga, R., Nadasdy, Z., and Ben-Shaul, Y., 2004, Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering, Neural Comput. 16(8):1661–1687.

    Article  Google Scholar 

  • Rakic, P., 1995, Radial versus tangential migration of neuronal clones in the developing cerebral cortex, Proc. Natl. Acad. Sci. U. S. A. 92(25):11323–11327.

    Article  PubMed  CAS  Google Scholar 

  • Rempel-Clower, N. L., and Barbas, H., 2000, The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function, Cereb. Cortex 10(9):851–865.

    Article  PubMed  CAS  Google Scholar 

  • Rockland, K. S., 1998, Complex microstructures of sensory cortical connections, Curr. Opin. Neurobiol. 8(4):545–551 (Review).

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, A., Ehlenberger, D., Kelliher, K., Einstein, M., Henderson, S. C., Morrison, J. H., Hof, P. R., and Wearne, S. L., 2003, Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images, Methods 30(1):94–105.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., and Klausberger, T., 2005, Defined types of cortical interneurone structure space and spike timing in the hippocampus, J. Physiol. (London) 562:9–26.

    Article  CAS  Google Scholar 

  • Somogyi, P., Tamas, G., Lujan, R., and Buhl, E. H., 1998, Salient features of synaptic organisation in the cerebral cortex. Brain Res. Brain Res. Rev. 26(2–3):113–135.

    Article  PubMed  CAS  Google Scholar 

  • Sporns, O., and Kötter, R., 2004, Motifs in brain networks, PLoS Biol. 2(11):e369.

    Article  PubMed  CAS  Google Scholar 

  • Stepanyants, A., Hof, P. R., and Chklovskii, D. B., 2002, Geometry and structural plasticity of synaptic connectivity, Neuron 34(2):275–288.

    Article  PubMed  CAS  Google Scholar 

  • Stepanyants, A., Tamas, G., and Chklovskii, D. B., 2004, Class-specific features of neuronal wiring, Neuron 43(2):251–259.

    Article  PubMed  CAS  Google Scholar 

  • Szentagothai, J., 1978, The neuron network of the cerebral cortex: a functional interpretation. Proc. R. Soc. Lond. B. 201:219–248.

    Article  PubMed  CAS  Google Scholar 

  • Szentagothai, J., 1983, The modular architectonic principle of neural centers, Rev. Physiol. Biochem. Pharmacol. 98:11–61.

    PubMed  CAS  Google Scholar 

  • Tamas, G., Buhl, E. H., Lorincz, A., and Somogyi, P., 2000, Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons, Nat. Neurosci. 3(4):366–371.

    Article  PubMed  CAS  Google Scholar 

  • Tamas, G., Buhl, E. H., and Somogyi, P., 1997, Massive autaptic self-innervation of GABAergic neurons in cat visual cortex, J. Neurosci. 17(16):6352–6364.

    PubMed  CAS  Google Scholar 

  • Traub, R. D., Jefferys, J. G. R., and Whittington, M. A., 1999, Fast Oscillations in Cortical Circuits, Bradford Books, MIT Press, Cambridge, MA.

    Google Scholar 

  • Vetter, R. J., Williams, J. C., Hetke, J. F., Nunamaker, E. A., and Kipke, D. R., 2004, Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex, IEEE Trans. Biomed. Eng. 51(6):896–904.

    Article  PubMed  Google Scholar 

  • Vreeswijk, C. V., 1996, Partial synchronization in populations of pulse-coupled oscillators, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5):5522–5537.

    PubMed  Google Scholar 

  • Wang, X. J., and Rinzel, J., 1993, Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons, Neuroscience 53(4):899–904.

    Article  PubMed  CAS  Google Scholar 

  • Watts, J., and Thomson, A. M., 2005, Excitatory and inhibitory connections show selectivity in the neocortex, J. Physiol. (London) 562:89–97.

    Article  CAS  Google Scholar 

  • Wickelgren, W. A., 1999, Webs, cell assemblies, and chunking in neural nets: introduction, Can. J. Exp. Psychol. 53(1):118–131.

    PubMed  CAS  Google Scholar 

  • Yoshimura, Y., Dantzker, J. L., and Callaway, E. M., 2005, Excitatory cortical neurons form fine-scale functional networks, Nature 433(7028):868–873.

    Article  PubMed  CAS  Google Scholar 

  • Yuste, R., and Denk, W., 1995, Dendritic spines as basic functional units of neuronal integration, Nature 375(6533):682–684.

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky, L., 2002, The modular organization of brain systems. Basal forebrain: the last frontier, Prog. Brain Res. 136:359–372.

    Article  PubMed  Google Scholar 

  • Zaborszky, L., Buhl, D. L., Pobalashingham, S., Bjaalie, J. G., and Nadasdy, Z., 2005b, Three-dimensional chemoarchitecture of the basal forebrain: spatially specific association of cholinergic and calcium binding protein-containing neurons, Neuroscience, 136(3):697–713.

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky, L., Csordas, A., Buhl, D. L., Duque, A., Somogyi, J., and Nadasdy, Z., 2002, Computational anatomical analysis of the basal forebrain corticopetal system, In: Ascoli, G. A. (ed.), Computational Neuroanatomy: Principles and Methods, New Jersey: Humana Press.

    Google Scholar 

  • Zaborszky, L., Varsanyi, P., Mc Donnell, N. C., and Howell, F.W., 2005a, 3D cellular database of the rat brain: integrated anatomical data, Soc. Neurosci. Abstr. 31. Program No. 570.3. 2005 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, 2005.Online.

    Google Scholar 

  • Zaborszky, L., and Wolff, J. R., 1982, Distribution patterns and individual variations of callosal connections in the albino rat, Anat. Embryol. (Berlin) 165(2):213–232.

    Article  CAS  Google Scholar 

  • Zhang, K., Ginzburg, I., McNaughton, B. L., and Sejnowski, T. J., 1998, Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells, J. Neurophysiol. 79(2):1017–1044.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Nadasdy, Z., Buzsaki, G., Zaborszky, L. (2006). Functional Connectivity of the Brain: Reconstruction from Static and Dynamic Data. In: Zaborszky, L., Wouterlood, F.G., Lanciego, J.L. (eds) Neuroanatomical Tract-Tracing 3. Springer, Boston, MA . https://doi.org/10.1007/0-387-28942-9_20

Download citation

Publish with us

Policies and ethics