Skip to main content

Preembedding Immunoelectron Microscopy: Applications for Studies of the Nervous System

  • Chapter
Book cover Neuroanatomical Tract-Tracing 3

Abstract

This chapter addresses the basic applications of tract-tracing and preembedding immunoperoxidase and immunogold-silver labeling for transmission electron microscopy, focusing primarily on identifying the cellular and subcellular localization of proteins of relevance to neurotransmission and on defining synaptic connectivity within neuronal circuits. Information is provided regarding the use of preembedding immunoperoxidase and immunogold techniques to identify the cellular and subcellular localization of neuronal receptors and transporters. The chapter also describes in detail a triple-labeling approach designed by our laboratory for identifying synaptic inputs to neuronal cell populations defined both by their projection targets and by their transmitter phenotype. Protocols presented in the Appendix are designed to enable researchers trained in small animal surgery, immunocytochemistry, electron microscopy, and appropriate laboratory safety procedures to perform ultrastructural investigations similar to those described here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alheid, G. F., Edwards, S. B., Kitai, S. T., Park, M. R., and Switzer, R. C. I., 1981, Methods for delivering tracers, In: Heimer, L., and RoBards, M. J. (eds.), Neuroanatomical Tract-Tracing Methods, New York: Plenum Press, pp. 91–116.

    Google Scholar 

  • Aoki, C., Miko, I., Oviedo, H., Mikeladze-Dvali, T., Alexandre, L., Sweeney, N., and Bredt, D. S., 2001, Electron microscopic immunocytochemical detection of PSD-95, PSD-93, SAP-102, and SAP-97 at postsynaptic, presynaptic, and nonsynaptic sites of adult and neonatal rat visual cortex, Synapse 40:239–257.

    PubMed  CAS  Google Scholar 

  • Arai, R., Kojima, Y., Geffard, M., Kitahama, K., and Maeda T., 1992, Combined use of silver staining of the retrograde tracer WGAapoHRP-Au and pre-embedding immunocytochemistry for electron microscopy: demonstration of dopaminergic terminals in synaptic contact with striatal neurons projecting to the substantia nigra in the rat, J. Histochem. Cytochem. 40:889–892.

    PubMed  CAS  Google Scholar 

  • Arluison, M., Brochier, G., Vankova, M., Leviel, V., Villalobos, J., and Tramu G., 1994, Demonstration of peptidergic afferents to the bed nucleus of the stria terminalis using local injections of colchicine. A combined immunohistochemical and retrograde tracing study, Brain Res. Bull. 34:319–337.

    PubMed  CAS  Google Scholar 

  • Aston-Jones, G., and Card, J. P., 2000, Use of pseudorabies virus to delineate multisynaptic circuits in brain: opportunities and limitations, J. Neurosci. Methods 103:51–61.

    PubMed  CAS  Google Scholar 

  • Baude, A., Nusser, Z., Molnár, E., McIlhinney, R. A. J., and Somogyi, P., 1995, High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and nonsynaptic sites in rat hippocampus, Neuroscience 69:1031–1055.

    PubMed  CAS  Google Scholar 

  • Beaulieu, C., Campistron, G., and Crevier, C., 1994, Quantitative aspects of the GABA circuitry in the primary visual cortex of the adult rat, J. Comp. Neurol. 339:559–572.

    PubMed  CAS  Google Scholar 

  • Bernard, V., Somogyi, P., and Bolam, J. P., 1997, Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat, J. Neurosci. 17:819–833.

    PubMed  CAS  Google Scholar 

  • Bloch, B., Bernard, V., and Dumartin, B., 2003, “In vivo” intraneuronal trafficking of G protein coupled receptors in the striatum: regulation by dopaminergic and cholinergic environment, Biol. Cell 95:477–488.

    PubMed  CAS  Google Scholar 

  • Brandt, H. M., and Apkarian, A. V., 1992, Biotin-dextran: a sensitive anterograde tracer for neuroanatomic studies in rat and monkey, J. Neurosci. Methods 45:35–40.

    PubMed  CAS  Google Scholar 

  • Bruce, K., and Grofova, I., 1992, Notes on a light and electron microscopic double-labeling method combining anterograde tracing with Phaseolus vulgaris leucoagglutinin and retrograde tracing with cholera toxin subunit B, J. Neurosci. Methods 45:23–33.

    PubMed  CAS  Google Scholar 

  • Card, J. P., and Enquist, L. W., 1994, Use of pseudorabies virus for definition of synaptically linked populations of neurons, In: Adolph, K. W. (ed.), Methods in Molecular Genetics, New York: Academic Press, pp. 363–382.

    Google Scholar 

  • Card, J. P., Enquist, L. W., and Moore, R. Y., 1999, Neuroinvasiveness of pseudorabies virus injected intracerebrally is dependent on viral concentration and terminal field density, J. Comp. Neurol. 407:438–452.

    PubMed  CAS  Google Scholar 

  • Card, J. P., Rinaman, L., Lynn, R. B., Lee, B.-H., Meade, R. P., Miselis, R. R., and Enquist, L. W., 1993, Pseudorabies virus infection of the rat central nervous system: ultrastructural characterization of viral replication, transport, and pathogenesis, J. Neurosci. 13:2515–2539.

    PubMed  CAS  Google Scholar 

  • Card, J. P., Rinaman, L., Schwaber, J. S., Miselis, R. R., Whealy, M. E., Robbins, A. K., and Enquist, L. W., 1990, Neurotropic properties of pseudorabies virus: uptake and transneuronal passage in the rat central nervous system, J. Neurosci. 10:1974–1994.

    PubMed  CAS  Google Scholar 

  • Card, J. P., Whealy, M. E., Robbins, A. K., Moore, R. Y., and Enquist, L. W., 1991, Two α-herpesvirus strains are transported differently in the rodent visual system, Neuron 6:957–969.

    PubMed  CAS  Google Scholar 

  • Carr, D. B., O’Donnell, P., Card, J. P., and Sesack, S. R., 1999, Dopamine terminals in the rat prefrontal cortex synapse on pyramidal cells that project to the nucleus accumbens, J. Neurosci. 19:11049–11060.

    PubMed  CAS  Google Scholar 

  • Carr, D. B., and Sesack, S. R., 2000a, Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons, J. Neurosci. 20:3864–3873.

    PubMed  CAS  Google Scholar 

  • Carr, D. B., and Sesack, S. R., 2000b, GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex, Synapse 38:114–123.

    PubMed  CAS  Google Scholar 

  • Chagnaud, J. L., Mons, N., Tuffet, S., Grandier-Vazeilles, X., and Geffard, M., 1987, Monoclonal antibodies against glutaraldehyde-conjugated dopamine, J. Neurochem. 49:487–494.

    PubMed  CAS  Google Scholar 

  • Chan, J., Aoki, C., and Pickel, V. M., 1990, Optimization of differential immunogold-silver and peroxidase labeling with maintenance of ultrastructure in brain sections before plastic embedding, J. Neurosci. Methods 33:113–127.

    PubMed  CAS  Google Scholar 

  • Chang, H. T., Kuo, H., Whittaker, J. A., and Cooper, N. G. F., 1990, Light and electron microscopic analysis of projection neurons retrogradely labeled with Fluoro-Gold: notes on the application of antibodies to Fluoro-Gold, J. Neurosci. Methods 35:31–37.

    PubMed  CAS  Google Scholar 

  • Charara, A., Smith, Y., and Parent, A., 1996, Glutamatergic inputs from the pedunculopontine nucleus to midbrain dopaminergic neurons in primates: Phaseolus vulgaris leucoagglutinin anterograde labeling combined with postembedding glutamate and GABA immunohistochemistry, J. Comp. Neurol. 364:254–266.

    PubMed  CAS  Google Scholar 

  • Chen, S., and Aston-Jones, G., 1998, Axonal collateral-collateral transport of tract tracers in brain neurons: false anterograde labelling and useful tool, Neuroscience 82:1151–1163.

    PubMed  CAS  Google Scholar 

  • Chen, L., Boyes, J., Yung, W. H., and Bolam, J. P., 2004, Subcellular localization of GABAB receptor subunits in rat globus pallidus, J. Comp. Neurol. 474:340–352.

    PubMed  CAS  Google Scholar 

  • Chen, S., Yang, M., Miselis, R. R., and Aston-Jones, G., 1999, Characterization of transsynaptic tracing with central application of pseudorabies virus, Brain Res. 838:171–183.

    PubMed  CAS  Google Scholar 

  • Conradi, N. G., 1981, Endogenous peroxidatic activity in the cerebral and cerebellar cortex of normal adult rats, Acta Neuropathol. S7:3–6.

    Google Scholar 

  • Cornea-Hebert, V., Riad, M., Wu, C., Singh, S. K., and Descarries, L., 1999, Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of the adult rat, J. Comp. Neurol. 409:187–209.

    PubMed  CAS  Google Scholar 

  • Dado, R. J., Burstein, R., Cliffer, K. D., and Giesler, G. J., 1990, Evidence that Fluoro-Gold can be transported avidly through fibers of passage, Brain Res. 553:329–333.

    Google Scholar 

  • DeFalco, J., Tomishima, M., Liu, H., Zhao, C., Cai, X., Marth, J. D., Enquist, L., and Friedman, J. M., 2001, Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus, Science 291:2608–2613.

    PubMed  CAS  Google Scholar 

  • DeMey, J., and Moeremans, M., 1986, The preparation of colloidal gold probes and their use as a marker in electron microscopy, In: Koehler, J. K. (ed.), Advanced Techniques in Biological Electron Microscopy III, New York: Springer-Verlag, pp. 229–271.

    Google Scholar 

  • Dolleman-Van der Weel, M. J., Wouterlood, F. G., and Witter, M. P., 1994, Multiple anterograde tracing, combining Phaseolus vulgaris leucoagglutinin with rhodamine-and biotin-conjugated dextran amine, J. Neurosci. Methods 51:9–21.

    PubMed  CAS  Google Scholar 

  • Doly, S., Madeira, A., Fischer, J., Brisorgueil, M. J., Daval, G., Bernard, R., Verge, D., and Conrath, M., 2004, The 5-HT2A receptor is widely distributed in the rat spinal cord and mainly localized at the plasma membrane of postsynaptic neurons, J. Comp. Neurol. 472:496–511.

    PubMed  CAS  Google Scholar 

  • Dube, D., and Pelletier, G., 1979, Effect of colchicine on the immunohistochemical localization of somatostatin in the rat brain: light and electron microscopic studies, J. Histochem. Cytochem. 27:1577–1581.

    PubMed  CAS  Google Scholar 

  • Dumartin, B., Caillé, I., Gonon, F., and Bloch, B., 1998, Internalization of D1 dopamine receptor in striatal neurons in vivo as evidence of activation by dopamine agonists, J. Neurosci. 18:1650–1661.

    PubMed  CAS  Google Scholar 

  • Dumartin, B., Jaber, M., Gonon, F., Caron, M. G., Giros, B., and Bloch, B., 2000, Dopamine tone regulates D1 receptor trafficking and delivery in striatal neurons in dopamine transporterdeficit mice, Proc. Natl. Acad. Sci. 97:1879–1884.

    PubMed  CAS  Google Scholar 

  • Ericson, H., and Blomqvist, A., 1988, Tracing of neuronal connections with cholera toxin subunit B: light and electron microscopic immunohistochemistry using monoclonal antibodies, J. Neurosci. Methods 24:225–235.

    PubMed  CAS  Google Scholar 

  • Ferguson, S. M., Savchenko, V., Apparsundaram, S., Zwick, M., Wright, J., Heilman, C. J., Yi, H., Levey, A. I., and Blakely, R. D., 2003, Vesicular localization and activity-dependent trafficking of presynaptic choline transporters, J. Neurosci. 23:9697–9709.

    PubMed  CAS  Google Scholar 

  • Ford, B., Holmes, C. J., Mainville, L., and Jones, B. E., 1995, GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus, J. Comp. Neurol. 363:177–196.

    PubMed  CAS  Google Scholar 

  • French, S. J., and Totterdell, S., 2002, Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens, J. Comp. Neurol. 446:151–165.

    PubMed  Google Scholar 

  • French, S. J., and Totterdell, S., 2003, Individual nucleus accumbens-projection neurons receive both basolateral amygdala and ventral subicular afferents in rats, Neuroscience 119:19–31.

    PubMed  CAS  Google Scholar 

  • Friedrich, V. L., and Mugnaini, E., 1981, Preparation of neural tissues for electron microscopy, In: Heimer, L., and Robards, M. J. (eds.), Neuroanatomical Tact-Tacing Methods, New York: Plenum Press, pp. 345–375.

    Google Scholar 

  • Gallyas, F., 1982, Suppression of the argyrophil III reaction by mercapto compounds (a prerequisite for the intensification of certain histochemical reactions by physical developers), Acta Histochem. 70:99–105.

    PubMed  CAS  Google Scholar 

  • Garrett, W. T., McBride, R. L., Williams, J. K. J., and Feringa, E. R., 1991, Fluoro-Gold’s toxicity makes it inferior to True Blue for long-term studies of dorsal root ganglion neurons and motoneurons, Neurosci. Lett. 128:137–139.

    PubMed  CAS  Google Scholar 

  • Garzón, M., Vaughan, R. A., Uhl, G. R., Kuhar, M. J., and Pickel, V. M., 1999, Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter, J. Comp. Neurol. 410:197–210.

    PubMed  Google Scholar 

  • Gerfen, C. R., and Sawchenko, P. E., 1984, An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L), Brain Res. 290:219–238.

    PubMed  CAS  Google Scholar 

  • Gerfen, C. R., Sawchenko, P. E., and Carlsen, J., 1989, The PHA-L anterograde axonal tracing method, In: Heimer, L., and Zaborszky, L. (eds.), Neuroanatomical Tract-Tracing Methods 2: Recent Progress, New York: Plenum Press, pp. 19–47.

    Google Scholar 

  • Glass, M. J., Kruzich, P. J., Kreek, M. J., and Pickel, V. M., 2004, Decreased plasma membrane targeting of NMDA-NR1 receptor subunit in dendrites of medial nucleus tractus solitarius neurons in rat self-administering morphine, Synapse 53:191–201.

    PubMed  CAS  Google Scholar 

  • Graybiel, A. M., and Chesselet, M. F., 1984, Compartmental distribution of striatal cell bodies expressing [Met]enkephalin-like immunoreactivity, Proc. Natl. Acad. Sci. 81:7980–7984.

    PubMed  CAS  Google Scholar 

  • Hajszan, T., and Zaborszky, L., 2002, Direct catecholaminergic-cholinergic interactions in the basal forebrain. III. Adrenergic innervation of choline acetyltransferase-containing neurons in the rat, J. Comp. Neurol. 449:141–157.

    PubMed  Google Scholar 

  • Hallanger, A. E., and Wainer, B. H., 1988, Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat, J. Comp. Neurol. 274:483–515.

    PubMed  CAS  Google Scholar 

  • Hanson, J. E., and Smith, Y., 1999, Group I metabotropic glutamate receptors at GABAergic synapses in monkeys, J. Neurosci. 19:6488–6496.

    PubMed  CAS  Google Scholar 

  • Heimer, L., and Robarts, M., 1981, Neuroanatomical Tract-Tracing Methods, New York: Plenum Press, p. 567.

    Google Scholar 

  • Heimer, L., and Zaborszky, L., 1989, Neuroanatomical Tract-Tracing Methods 2. Recent Progress, New York: Plenum Press, p. 408.

    Google Scholar 

  • Hemming, F. J., Mesguich, P., Morel, G., and Dubois, P. M., 1983, Cryoultramicrotomy versus plastic embedding: comparative immunocytochemistry of rat anterior pituitary cells, J. Microsc. 131:25–34.

    PubMed  CAS  Google Scholar 

  • Hillman, H., and Deutsch, K., 1978, Area changes in slices of rat brain during preparation for histology or electron microscopy, J. Microsc. 114:77–84.

    PubMed  CAS  Google Scholar 

  • Howard, V., 1990, Stereological techniques in biological electron microscopy, In: Hawkes, P.W., and Valdrè, U. (eds.), Biophysical Electron Microscopy. Basic Concepts and Modern Techniques. Bologna, Italy: Academic Press, pp. 479–508.

    Google Scholar 

  • Hsu, S.-M., Raine, L., and Fanger, H., 1981, Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures, J. Histochem. Cytochem. 29:577–580.

    PubMed  CAS  Google Scholar 

  • Huang, J., and Pickel, V. M., 2002, Serotonin transporters (SERTs) within the rat nucleus of the solitary tract: subcellular distribution and relation to 5HT2A receptors, J. Neurocytol. 31:667–679.

    PubMed  CAS  Google Scholar 

  • Irwin, S. A., Idupulapati, M., Gilbert, M. E., Harris, J. B., Chakravarti, A. B., Rogers, E. J., Crisostomo, R. A., Larsen, B. P., Mehta, A., Alcantara, C. J., Patel, B., Swain, R. A., Weiler, I. J., Oostra, B. A., and Greenough, W. T., 2002, Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice, Am. J. Med. Genet. 111:140–146.

    PubMed  Google Scholar 

  • Jiang, X., Johnson, R. R., and Burkhalter, A., 1993, Visualization of dendritic morphology of cortical projection neurons by retrograde axonal labeling, J. Neurosci. Methods 50:45–60.

    PubMed  CAS  Google Scholar 

  • Johansson, O., and Backman, J., 1983, Enhancement of immunoperoxidase staining using osmium tetroxide, J. Neurosci. Methods 7:185–193.

    PubMed  CAS  Google Scholar 

  • Katona, I., Rancz, E. A., Acsady, L., Ledent, C., Mackie, K., Hajos, N., and Freund, T. F., 2001, Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission, J. Neurosci. 21:9506–9518.

    PubMed  CAS  Google Scholar 

  • Kelly, R. M., and Strick, P. L., 2000, Rabies as a transneuronal tracer of circuits in the central nervous system, J. Neurosci. Methods 103:63–71.

    PubMed  CAS  Google Scholar 

  • Kolb, B., Gorny, G., Li, Y., Samaha, A. N., and Robinson, T. E., 2003, Amphetamine or cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens, Proc. Natl. Acad. Sci. 100:10523–10528.

    PubMed  CAS  Google Scholar 

  • Kulik, Á., Vida, I., Luján, R., Haas, C. A., López-Bendito, G., Shigemoto, R., and Frotscher, M., 2003, Subcellular localization of metabotropic GABAB receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus, J. Neurosci. 23:11026–11035.

    PubMed  CAS  Google Scholar 

  • Leranth, C., and Pickel, V. M., 1989, Electron microscopic pre-embedding double immunostaining methods, In: Heimer, L., and Zaborsky, L. (eds.), Neuroanatomical Tract Tracing 2, New York: Plenum Press, pp. 129–172.

    Google Scholar 

  • Liposits, Z., Setalo, G., and Flerko, B., 1984, Application of the silver-gold intensified 3,3′-diaminobenzidine chromogen to the light and electron microscopic detection of the luteinizing hormone-releasing hormone system of the rat brain, Neuroscience 13:513–525.

    PubMed  CAS  Google Scholar 

  • Llewellyn-Smith, I. J., Minson, J. B., Wright, A. P., and Hodgson, A. J., 1990, Cholera toxin B-gold, a retrograde tracer that can be used in light and electron microscopic immunocytochemical studies, J. Comp. Neurol. 294:179–191.

    PubMed  CAS  Google Scholar 

  • Llewellyn-Smith, I. J., Pilowsky, P. M., and Minson, J. B., 1993, The tungstate-stabilized tetramethylbenzidine reaction for light and electron microscopic immunocytohemistry and for revealing biocytin filled neurons, J. Neurosci. Methods 46:27–40.

    PubMed  CAS  Google Scholar 

  • Luedtke, R. R., Griffin, S. A., Conroy, S. S., Jin, X., Pinto, A., and Sesack, S. R., 1999, Immunoblot and immunohistochemical comparison of murine monoclonal antibodies specific for the rat D1a and D1b dopamine receptor subtypes, J. Neuroimmunol. 101:170–187.

    PubMed  CAS  Google Scholar 

  • Marfurt, C. F., Turner, D. F., and Adams, C. E., 1988, Stabilization of tetramethylbenzidine (TMB) reaction product at the electron microscopic level by ammonium molybdate, J. Neurosci. Methods 25:215–223.

    PubMed  CAS  Google Scholar 

  • Masson, J., Riad, M., Chaudhry, F., Darmon, M., Aidouni, Z., Conrath, M., Giros, B., Hamon, M., Storm-Mathisen, J., Descarries, L., and El Mestikaw, S., 1999, Unexpected localization of the Na+-dependent-like orphan transporter, Rxt1, on synaptic vesicles in the rat central nervous system, Eur. J. Neurosci. 11:1349–1361.

    PubMed  CAS  Google Scholar 

  • Mayhew, T. M., 1992, A review of recent advances in stereology for quantifying neural structure, J. Neurocytol. 21:313–328.

    PubMed  CAS  Google Scholar 

  • McLean, J. H., Shipley, M. T., and Bernstein, D. I., 1989, Golgi-like, transneuronal retrograde labelling with CNS injections of herpes simplex virus type 1, Brain Res. Bull. 22:867–881.

    PubMed  CAS  Google Scholar 

  • Melchitzky, D. S., González-Burgos, B., Barrionuevo, G., and Lewis, D. A., 2001, Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex, J. Comp. Neurol. 430:209–221.

    PubMed  CAS  Google Scholar 

  • Mi, Z. P., Jiang, P., Weng, W. L. F. P., Narayanan, V., and Lagenaur, C. F., 2000, Expression of a synapse-associated membrane protein, P84/SHPS-1, and its ligand, IAP/CD47, in mouse retina, J. Comp. Neurol. 416:335–344.

    PubMed  CAS  Google Scholar 

  • Miner, L. A. H., Backstrom, J. R., Sanders-Bush, E., and Sesack, S. R., 2003a. Ultrastructural localization of serotonin2A receptors in the middle layers of the rat prelimbic prefrontal cortex, Neuroscience 116:107–117.

    PubMed  CAS  Google Scholar 

  • Miner, L. A. H., Benmansour, S., Moore, F. W., Blakely, R. D., Morilak, D. A., Frazer, A., and Sesack, S. R., 2004, Chronic treatment with a selective serotonin reuptake inhibitor reduces the total and plasmalemmal serotonin transporter immunoreactivity in axon terminals within the rat prefrontal cortex, Soc. Neurosci. Abstr. 29:54.55.

    Google Scholar 

  • Miner, L.A. H., Moore, F.W., Jedema, H. P., Grace, A. A., and Sesack, S. R., 2003b. Ultrastructural localization of the norepinephrine transporter in the prefrontal cortex of chronically stressed rats, Soc. Neurosci. Abstr. 28:506.505.

    Google Scholar 

  • Miner, L. A. H., Schroeter, S., Blakely, R. D., and Sesack, S. R., 2000, Ultrastructural localization of the serotonin transporter in superficial and deep layers of the rat prefrontal cortex and its spatial relationship to dopamine terminals, J. Comp. Neurol. 427:220–234.

    PubMed  CAS  Google Scholar 

  • Miner, L. A. H., Schroeter, S., Blakely, R. D., and Sesack, S. R., 2003c. Ultrastructural localization of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals, J. Comp. Neurol. 466:478–494.

    PubMed  Google Scholar 

  • Monti-Graziadei, A. G., and Berkley, K. J., 1991, Effects of colchicine on retrogradelytransported WGA-HRP, Brain Res. 565:162–166.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., 1981, Methods for selective, restricted lesion placement in the central nervous system, In: Heimer, L., and Robards, M. J. (eds.), Neuroanatomical Tract-Tracing Methods, New York: Plenum Press, pp. 55–90.

    Google Scholar 

  • Mugnaini, E., and Friedrich, V. L., Jr., 1981, Electron microscopy: identification and study of normal and degenerating neural elements by electron microscopy, In: Heimer, L., and Robards, M. J. (eds.), Neuroanatomical Tract-Tracing Methods, New York: Plenum Press, pp. 377–406.

    Google Scholar 

  • Naumann, T., Härtig, W., and Frotscher, M., 2000, Retrograde tracing with Fluoro-Gold: different methods of tracer detection at the ultrastructural level and neurodegenerative changes of back-filled neurons in long-term studies, J. Neurosci. Methods 103:11–21.

    PubMed  CAS  Google Scholar 

  • Norgren, R. B. J., and Lehman, M. N., 1989, A double-label pre-embedding immunoperoxidase technique for electron microscopy using diaminobenzidine and tetramethylbenzidine as markers, J. Histochem. Cytochem. 37:1283–1289.

    PubMed  CAS  Google Scholar 

  • Novikoff, A., Novikoff, P., Quintana, N., and Davis, C., 1972, Diffusion artifacts in 3,3′-diaminobenzidine cytochemistry, J. Histochem. Cytochem. 20:745–749.

    PubMed  CAS  Google Scholar 

  • Novikova, L., Novikov, L., and Kellerth, J. O., 1997, Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates, J. Neurosci. Methods 74:9–15.

    PubMed  CAS  Google Scholar 

  • Nusser, Z., Ahmad, Z., Tretter, V., Fuchs, K., Wisden, W., Sieghart, W., and Somogyi, P., 1999, Alterations in the expression of GABAA receptor subunits in the cerebellar granule cells after the disruption of the alpha6 subunit gene, Eur. J. Neurosci. 11:1685–1697.

    PubMed  CAS  Google Scholar 

  • Nusser, Z., Roberts, J. D., Baude, A., Richards, J. G., Sieghart, W., and Somogyi, P., 1995, Immunocytochemical localization of the α1 and β2/3 subunits of the GABAA receptor in relation to specific GABAergic synapses in the dentate gyrus, Eur. J. Neurosci. 7:630–646

    PubMed  CAS  Google Scholar 

  • Oades, R. D., and Halliday, G. M., 1987, Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity, Brain Res. Rev. 12:117–165.

    Google Scholar 

  • Oakman, S. C., Faris, P. L., Kerr, P. E., Cozzari, C., and Hartman, B. K., 1995, Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area, J. Neurosci. 15:5859–5869.

    PubMed  CAS  Google Scholar 

  • Omelchenko, N., and Sesack, S. R., 2005, Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area, J. Comp. Neurol. 483:217–235.

    PubMed  Google Scholar 

  • Omelchenko, N., and Sesack, S. R., 2005b, cholinergic axons in the rat ventral tegmental are synapse preferentially onto mesoaccumbens dopamine neurons, J. Comp. Neurol.

    Google Scholar 

  • Ordronneau, P., Lindström, P. B.-M., and Petrusz, P., 1981, Four unlabeled antibody bridge techniques: a comparison, J. Histochem. Cytochem. 29:1397–1404.

    PubMed  CAS  Google Scholar 

  • Paspalas, C. D., and Goldman-Rakic, P. S., 2004, Microdomains for dopamine volume neurotransmission in primate prefrontal cortex, J. Neurosci. 24:5292–5300.

    PubMed  CAS  Google Scholar 

  • Paulson, J. C., and McClure, W. O., 1975, Inhibition of axoplasmic transport by colchicine, podophyllotoxin, and vinblastine: an effect on microtubules, Ann. N. Y. Acad. Sci. 253:517–527.

    PubMed  CAS  Google Scholar 

  • Phend, K. D., Rustioni, A., and Weinberg, R. J., 1995, An osmium-free method of epon embedment that preserves both ultrastructure and antigenicity for post-embedding immunocytochemistry, J. Histochem. Cytochem. 43:283–292.

    PubMed  CAS  Google Scholar 

  • Phillipson, O. T., 1979, Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat, J. Comp. Neurol. 187:117–144.

    PubMed  CAS  Google Scholar 

  • Pickel, V. M., 1981, Immunocytochemical methods, In: Heimer, L., and RoBards, M. (eds.), Neuroanatomical Tract-Tracing Methods, New York: Plenum Press, pp. 483–509.

    Google Scholar 

  • Pickel, V. M., and Chan, J., 1999, Ultrastructural localization of the serotonin transporter in limbic and motor compartments of the nucleus accumbens, J. Neurosci. 19:7356–7366.

    PubMed  CAS  Google Scholar 

  • Pickel, V. M., Chan, J., and Aoki, C., 1993, Electron microscopic immunocytochemical labeling of endogenous and/or transported antigens in rat brain using silver-intensified one-nanometre colloidal gold, In: Cuello, A. (ed.), Immunohistochemistry II, Chichester: John Wiley & Sons, pp. 265–280.

    Google Scholar 

  • Pickel, V. M., Chan, J., Kash, T. L., Rodriguez, J. J., and Mackie, K., 2004, Compartment-specific localization of cannabinoid (CB1) and mu-opiod receptors in rat nucleus accumbens, Neuroscience 127: 101–112.

    PubMed  CAS  Google Scholar 

  • Pickel, V. M., and Milner, T. A., 1989, Interchangeable uses of autoradiographic and peroxidase markers for electron microscopic detection of neuronal pathways and transmitter-related antigens in single sections, In: Heimer, L., and Zaborszky, L. (eds.), Neuroanatomical Tract-Tracing Methods 2: Recent Progress, New York: Plenum Press, pp. 97–127.

    Google Scholar 

  • Pieribone, V. A., and Aston-Jones, G., 1988, The iontophoretic application of Fluoro-Gold for the study of afferents to deep brain nuclei, Brain Res. 475:259–271.

    PubMed  CAS  Google Scholar 

  • Pinto, A., Jankowski, M., and Sesack, S. R., 2003, Projections from the paraventricular nucleus of the thalamus to the rat prefrontal cortex and nucleus accumbens shell: ultrastructural characteristics and spatial relationships with dopamine afferent, J. Comp. Neurol. 459:142–155.

    PubMed  Google Scholar 

  • Pinto, A., and Sesack, S. R., 1998, Paraventricular thalamic afferents to the rat prefrontal cortex and nucleus accumbens shell: synaptic targets and relation to dopamine afferents, Soc. Neurosci. Abstr. 24:1595.

    Google Scholar 

  • Pirnik, Z., Mikkelsen, J. D., and Kiss, A., 2003, Fos induction in the rat deep cerebellar and vestibular nuclei following central administration of colchicine: a qualitative and quantitative time-course study, Brain Res. Bull. 61:63–72.

    PubMed  CAS  Google Scholar 

  • Rajakumar, N., Elisevich, K., and Flumerfelt, B. A., 1993, Biotinylated dextran: a versatile anterograde and retrograde neuronal tracer, Brain Res. 607:47–53.

    PubMed  CAS  Google Scholar 

  • Ravary, A., Muzerelle, A., Darmon, M., Murphy, D. L., Moessner, R., Lesch, K. P., and Gaspar, P., 2001, Abnormal trafficking and subcellular localization of an N-terminally truncated serotonin transporter protein, Eur. J. Neurosci. 13:1349–1362.

    PubMed  CAS  Google Scholar 

  • Reiner, A., Veenman, C. L., Medina, L., Jiao, Y., Del Mar, N., and Honig, M. G., 2000, Pathway tracing using biotinylated dextran amines, J. Neurosci. Methods 103:23–37.

    PubMed  CAS  Google Scholar 

  • Rho, J. H., and Swanson, L. W., 1989, A morphometric analysis of functionally defined subpopulations of neurons in the paraventricular nucleus of the rat with observations on the effects of colchicines, J. Neurosci. 9:1375–1388.

    PubMed  CAS  Google Scholar 

  • Riad, M., Garcia, S., Watkins, K. C., Jodoin, N., Doucet, E., Langlois, X., El Mestikaw, S., Hamon, M., and Descarries, L., 2000, Somatodendritic localization of the 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in the adult rat brain, J. Comp. Neurol. 417:181–194.

    PubMed  CAS  Google Scholar 

  • Riad, M., Zimmer, L., Rbah, L., Watkins, K. C., Hamon, M., and Descarries, L., 2004, Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand[18F]MPFF in the nucleus raphe dorsalis of rat, J. Neurosci. 24:5420–5426.

    PubMed  CAS  Google Scholar 

  • Ribak, C. E., Vaughn, J. E., and Saito, K., 1978, Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport, Brain Res. 140:315–332.

    PubMed  CAS  Google Scholar 

  • Rosene, D. L., Roy, N. J., and Davis, B. J., 1986, A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact, J. Histochem. Cytochem. 34:1301–1315.

    PubMed  CAS  Google Scholar 

  • Rye, D. B., Saper, C. B., and Wainer, B. H., 1984, Stabilization of the tetramethylbenzidine (TMB) reaction product: application for retrograde and anterograde tracing, and combination with immunohistochemistry, J. Histochem. Cytochem. 32:1145–1153.

    PubMed  CAS  Google Scholar 

  • Saper, C. B., 2003, Magic peptides, magic antibodies: guidelines for appropriate controls for immunohistochemistry, J. Comp. Neurol. 465:161–163.

    PubMed  Google Scholar 

  • Schmued, L. C., and Fallon, J. H., 1986, Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties, Brain Res. 377:147–154.

    PubMed  CAS  Google Scholar 

  • Schmued, L. C., Kyriakidis, K., Fallon, J. H., and Ribak, C. E., 1989, Neurons containing retrogradely transported Fluoro-Gold exhibit a variety of lysosomal profiles: a combined brightfield, fluorescence, and electron microscopic study, J. Neurocytol. 18:333–343.

    PubMed  CAS  Google Scholar 

  • Sesack, S. R., and Pickel, V. M., 1992, Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area, J. Comp. Neurol. 320:145–160.

    PubMed  CAS  Google Scholar 

  • Sesack, S. R., and Snyder, C. L., 1995, Cellular and subcellular localization of syntaxin-like immunoreactivity in the rat striatum and cortex, Neuroscience 67:993–1007.

    PubMed  CAS  Google Scholar 

  • Shu, S. Y., and Peterson, G. M., 1988, Anterograde and retrograde axonal transport of Phaseolus vulgaris leucoagglutinin (PHA-L) from the globus pallidus to the striatum of the rat, J. Neurosci. Methods 25:175–180.

    PubMed  CAS  Google Scholar 

  • Skirboll, L. R., Thor, K., Helke, C., Hökfelt, T., Robertson, B., and Long, R., 1989, Use of retrograde fluorescent tracers in combination with immunohistochemical methods, In: Heimer, L., and Zaborszky, L. (eds.), Neuroanatomical Tract-Tracing Methods 22: Recent Progress, New York: Plenum Press, pp. 5–18.

    Google Scholar 

  • Smiley, J. F., and Goldman-Rakic, P. S., 1993, Silver-enhanced diaminobenzidine-sulfide (SEDS): a technique for high-resolution immunoelectron microscopy demonstrated with monoamine immunoreactivity in monkey cerebral cortex and caudate, J. Histochem. Cytochem. 41:1393–1404.

    PubMed  CAS  Google Scholar 

  • Smith, Y., Bennett, B. D., Bolam, J. P., Parent, A., and Sadikot, A. F., 1994, Synaptic relationship between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey, J. Comp. Neurol. 344:1–19.

    PubMed  CAS  Google Scholar 

  • Smith, Y., Charara, A., and Parent, A., 1996, Synaptic innervation of midbrain dopaminergic neurons by glutamate-enriched terminals in the squirrel monkey, J. Comp. Neurol. 364:231–253.

    PubMed  CAS  Google Scholar 

  • Srebro, Z., 1972, Ultrastructural localization of peroxidase activity in Gomori-positive glia, Acta Anat. 83:388–397.

    PubMed  CAS  Google Scholar 

  • Sternberger, L. A., 1974, Immunocytochemistry. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Steward, O., 1981, Horseradish peroxidase and fluorescent substances and their combination with other techniques, In: Heimer, L., and Robards, M. J. (eds.), Neuroanatomical Tract-Tracing Methods, New York: Plenum Press, pp. 279–310.

    Google Scholar 

  • Strick, P. L., and Card, J. P., 1992, Transneuronal mapping of neural circuits with alpha herpesviruses, In: Bolam, J. (ed.), Experimental Neuroanatomy: A Practical Approach, New York: IRL Press, pp. 81–101.

    Google Scholar 

  • Svensson, B. A., Rastad, J., and Westman, J., 1984, Endogenous peroxidase-like activity in the feline dorsal column nuclei and spinal cord, Exp. Brain Res. 55:325–332.

    PubMed  CAS  Google Scholar 

  • Swanson, L. W., 1982, The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat, Brain Res. Bull. 9:321–353.

    PubMed  CAS  Google Scholar 

  • Van Bockstaele, E. J., and Pickel, V. M., 1995, GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain, Brain Res. 682:215–221.

    PubMed  Google Scholar 

  • Van Bockstaele, E. J., Wright, A. M., Cestari, D. M., and Pickel, V. M., 1994, Immunolabeling of retrogradely transported Fluoro-Gold: sensitivity and application to ultrastructural analysis of transmitter-specific mesolimbic circuitry, J. Neurosci. Methods 55:65–78.

    PubMed  Google Scholar 

  • Van Haeften, T., and Wouterlood, F. G., 2000, Neuroanatomical tracing at high resolution, J. Neurosci. Methods 103:107–116.

    PubMed  Google Scholar 

  • Veenman, C. L., Reiner, A., and Honig, M. G., 1992, Biotinylated dextran amine as an anterograde tracer for single-and double-labeling studies, J. Neurosci. Methods 41:239–254.

    PubMed  CAS  Google Scholar 

  • Veznedaroglu, E., and Milner, T. E., 1992, Elimination of artifactual labeling of hippocampal mossy fibers seen following pre-embedding immunogold-silver technique by pretreatment with zinc chelator, Microsc. Res. Tech. 23:100–101.

    PubMed  CAS  Google Scholar 

  • von Bartheld, C., 2002, Counting particles in tissue sections: choices of methods and importance of calibration to minimize biases, Histol. Histopathol. 17:639–648.

    Google Scholar 

  • Warr, W. B., de Olmos, J. S., and Heimer, L., 1981, Horseradish peroxidase: the basic procedure, In: Heimer, L., and Robards, M. J. (eds.), Neuroanatomical Tract-Tracing Methods, New York: Plenum Press, pp. 207–262.

    Google Scholar 

  • Wong, H. K., Liu, X. B., Matos, M. F., Chan, S. F., Perez-Otano, I., Boysen, M., Cui, J., Nakanishi, N., Trimmer, J. S., Jones, E. G., Lipton, S. A., and Sucher, N. J., 2002, Temporal and regional expression of NMDA receptor subunit NR3A in the mammalian brain, J. Comp. Neurol. 450:303–317.

    PubMed  CAS  Google Scholar 

  • Wouterlood, F. G., Goede, P. H., and Groenewegen, H. J., 1990, The in situ detectability of the neuroanatomical tracer Phaseolus vulgaris-leucoagglutinin (PHA-L), J. Chem. Neuroanat. 3:11–18.

    PubMed  CAS  Google Scholar 

  • Wouterlood, F. G., and Groenewegen, H. J., 1985, Neuroanatomical tracing by use of Phaseolus vulgaris leucoagglutnin (PHA-L): electron microscopy of PHA-L filled neuronal somata, dendrites, axons and axon terminals, Brain Res. 326:188–191.

    PubMed  CAS  Google Scholar 

  • Wouterlood, F. G., and Jorritsma-Byham, B., 1993, The anterograde neuroanatomical tracer biotinylated dextran-amine: comparison with the tracer Phaseolus vulgaris leucoagglutinin in preparations for electron microscopy, J. Neurosci. Methods 48:75–87.

    PubMed  CAS  Google Scholar 

  • Yagi, T., Terada, N., Baba, T., and Ohno, S., 2002, Localization of endogenous biotin-containing proteins in mouse Bergmann glial cells, Histochem. J. 34:567–572.

    PubMed  CAS  Google Scholar 

  • Yan, X. X., and Ribak, C. E., 1999, Alteration of GABA transporter expression in the rat cerebral cortex following needle puncture and colchicine injection, Brain Res. 816:317–328.

    PubMed  CAS  Google Scholar 

  • Yi, H., Leunissen, J. L. M., Shi, G.-M., Gutekunst, C.-A., and Hersch, S. M., 2001, A novel procedure for pre-embedding double immunogold-silver labeling at the ultrastructural level, J. Histochem. Cytochem. 49:279–284.

    PubMed  CAS  Google Scholar 

  • Zaborszky, L., and Heimer, L., 1989, Combinations of tracer techniques, especially HRP and PHA-L, with transmitter identification for correlated light and electron microscopic studies, In: Heimer, L., and Zaborszky, L. (eds.), Neuroanatomical Tract-Tracing Methods 2: Recent Progress, New York: Plenum Press, pp. 49–96.

    Google Scholar 

  • Zaborszky, L., Léránth, C., and Palkovits, M., 1979, Light and electron microscopic identification of monoaminergic terminals in the central nervous system, Brain Res. Bull. 4:99–117.

    PubMed  CAS  Google Scholar 

  • Zaborszky, L., Rosin, D. L., and Kiss, J., 2004, Alpha-adrenergic receptor (α2A) is colocalized in basal forebrain cholinergic neurons: a light and electron microscopic double immunolabeling study, J. Neurocytol. 33:265–276.

    PubMed  CAS  Google Scholar 

  • Zhao, S., Maxwell, S., Jimenez-Beristain, A., Vives, J., Kuehner, E., Zhao, J., O’Brien, C., de Felipe, C., Semina, E., and Li, M., 2004, Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons, Eur. J. Neurosci. 19:1133–1140.

    PubMed  Google Scholar 

  • Zhou, M., and Grofova, I., 1995, The use of peroxidase substrate Vector VIP in electron microscopic single and double antigen localization, J. Neurosci. Methods 62:149–158.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Sesack, S.R., Miner, L.H., Omelchenko, N. (2006). Preembedding Immunoelectron Microscopy: Applications for Studies of the Nervous System. In: Zaborszky, L., Wouterlood, F.G., Lanciego, J.L. (eds) Neuroanatomical Tract-Tracing 3. Springer, Boston, MA . https://doi.org/10.1007/0-387-28942-9_2

Download citation

Publish with us

Policies and ethics