Skip to main content

Directional Hearing in Nonmammalian Tetrapods

  • Chapter
Sound Source Localization

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 25))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aertsen AMHJ, Vlaming MSMG, Eggermont JJ, Johannesma PIM (1986) Directional hearing in the grassfrog (Rana temporaria L.). II. Acoustics and modelling of the auditory periphery. Hear Res 21:17–40.

    Article  PubMed  CAS  Google Scholar 

  • Bala ADS, Spitzer MW, Takahashi TT (2003) Prediction of auditory spatial acuity from neural images on the owl’s auditory space map. Nature 424:771–774.

    Article  PubMed  CAS  Google Scholar 

  • Beranek LL (1986) Acoustics. New York: American Institute of Physics.

    Google Scholar 

  • Berger K (1924) Experimentelle Studien über Schallperzeption bei Reptilien. Z Vergl Physiol 1:517–540.

    Article  Google Scholar 

  • Blauert J (1997) Spatial Hearing. Cambridge, MA: MIT Press, pp. 372–392.

    Google Scholar 

  • Bolt JR, Lombard RE (1985) Evolution of the amphibian tympanic ear and the origin of frogs. Biol J Linn Soc 24:83–99.

    Google Scholar 

  • Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time coding. Nature 417:543–547.

    Article  PubMed  CAS  Google Scholar 

  • Brandt C, Christensen-Dalsgaard J (2001) Responses to three-dimensional vibrations and sound stimuli in single fibers from the 8th cranial nerve of the grass frog, Rana temporaria. In: Elsner N, Kreuzberg GW (eds), Göttingen Neurobiology Report 2001. Stuttgart: Georg Thieme Verlag, p. 386.

    Google Scholar 

  • Bregman A (1990) Auditory Scene Analysis. The Perceptual Organization of Sound. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Brückner S, Hyson RL (1998) Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick. Eur J Neurosci 10:3438–3450.

    Article  PubMed  Google Scholar 

  • Calford MB (1988) Constraints on the coding of sound frequency imposed by the avian interaural canal. J Comp Physiol A 162:491–502.

    Article  Google Scholar 

  • Carr C, Code RA (2000) The central auditory system of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN (eds), Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 197–248.

    Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10:3227–3246.

    PubMed  CAS  Google Scholar 

  • Carr CE, Soares D, Parameshwaran S, Perney T (2001) Evolution and development of time coding systems. Curr Opin Neurobiol 11:727–733.

    Article  PubMed  CAS  Google Scholar 

  • Christensen KR, Christensen-Dalsgaard J (1997) Directional hearing in the natterjack toad, Bufo calamita. In Elsner N, Wässle H (eds), Göttingen Neurobiology Report 1997. Stuttgart: Georg Thieme Verlag, p. 334.

    Google Scholar 

  • Christensen-Dalsgaard J, Elepfandt A (1995) Biophysics of underwater hearing in the clawed frog, Xenopus laevis. J Comp Physiol A 176:317–324.

    Article  PubMed  CAS  Google Scholar 

  • Christensen-Dalsgaard J, Jørgensen MB (1996) Sound and vibration sensitivity of VIIIth nerve fibers in the grass frog, Rana temporaria. J Comp Physiol A 179:437–445.

    Article  PubMed  CAS  Google Scholar 

  • Christensen-Dalsgaard J, Kanneworff M (2005) Binaural interaction in the frog dorsomedullary nucleus. Brain Res Bull (in press).

    Google Scholar 

  • Christensen-Dalsgaard J, Manley GA (2005) Directionality of the lizard ear. J. Exp Biol 208:1209–1217.

    Article  PubMed  Google Scholar 

  • Christensen-Dalsgaard J, Narins PM (1993) Sound and vibration sensitivity in the frogs Leptodactylus albilabris and Rana pipiens pipiens. J Comp Physiol A 172:653–662.

    Article  PubMed  CAS  Google Scholar 

  • Christensen-Dalsgaard J, Kanneworff M, Jørgensen MB (1997) Extratympanic sound sensitivity of frog auditory fibers. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E (eds), Diversity in Auditory Mechanics, Singapore: World Scientific, pp. 64–68.

    Google Scholar 

  • Christensen-Dalsgaard J, Jørgensen MB, Kanneworff M (1998) Base response characteristics of auditory nerve fibers in the grass frog (Rana temporana). Hear Res 119:155–163.

    Article  PubMed  CAS  Google Scholar 

  • Clack JA (1993) Homologies in the fossil record: the middle ear as a test case. Acta Biotheor 41:391–409.

    Article  PubMed  CAS  Google Scholar 

  • Clack JA (1997) The evolution of tetrapod ears and the fossil record. Brain Behav Evol 50:198–212.

    PubMed  CAS  Google Scholar 

  • Coles RB, Aitkin LM (1979) The response properties of auditory neurones in the midbrain of the domestic fowl (Gallus gallus) to monaural and binaural stimuli. J Comp Physiol 134:241–251.

    Article  Google Scholar 

  • Coles RB, Guppy A (1988) Directional hearing in the barn owl (Tyto alba). J Comp Physiol A 163:117–133.

    Article  PubMed  CAS  Google Scholar 

  • Coles RB, Lewis DB, Hill KG, Hutchings ME, Gower DM (1980) Directional hearing in the Japanese quail (Coturnix coturnix japonica). II. Cochlear physiology. J Exp Biol 86:153–170.

    Google Scholar 

  • Diego-Rasilla FJ, Luengo RM (2004) Heterospecific call recognition and phonotaxis in the orientation behavior of the marbled newt, Triturus marmoratus. Behav Ecol Sociobiol 55:556–560.

    Article  Google Scholar 

  • Edwards CJ, Kelley DB (2001) Auditory and lateral line inputs to the midbrain of an aquatic anuran; neuroanatomic studies in Xenopus laevis. J Comp Neurol 438:148–162.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont JJ (1988) Mechanisms of sound localization in anurans. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds), The Evolution of the Amphibian Auditory System. New York: John Wiley & Sons, pp. 307–336.

    Google Scholar 

  • Ehret G, Keilwerth E, Kamada T (1993) The lung-eardrum pathway in three treefrog and four dendrobatid frog species: some properties of sound transmission. J Exp Biol 195:329–343.

    Google Scholar 

  • Elepfandt A, Eistetter I, Fleig A, Günther E, Hainich M, Hepperle S, Traub B (2000) Hearing threshold and frequency discrimination in the purely aquatic frog Xenopus laevis (Pipidae): measurement by means of conditioning. J Exp Biol 203:3621–3629.

    PubMed  CAS  Google Scholar 

  • Endepols H, Walkowiak W, Luksch H (2000) Chemoarchitecture of the anuran auditory midbrain. Brain Res Rev 33:179–198.

    Article  PubMed  CAS  Google Scholar 

  • Endepols H, Feng AS, Gerhardt HC, Schul J, Walkowiak W (2003) Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs (Hyla versicolor). Behav Brain Res 145:63–77.

    Article  PubMed  Google Scholar 

  • Epping WJM, Eggermont JJ (1985) Relation of binaural interaction and spectro-temporal characteristics in the auditory midbrain of the grassfrog. Hear Res 19:15–28.

    Article  PubMed  CAS  Google Scholar 

  • Eurich C, Roth G, Schwegler H, Wiggers W (1995) Simulander: a neural network model for the orientation movement of salamanders. J Comp Physiol A 176:379–389.

    Article  Google Scholar 

  • Fay RR, Feng AS (1987) Mechanisms for directional hearing among nonmammalian vertebrates. In Yost WA, Gourevitch G (eds), Directional Hearing. New York: Springer-Verlag, pp. 179–213.

    Google Scholar 

  • Feng AS (1980) Directional characteristics of the acoustic receiver of the leopard frog (Rana pipiens): a study of the eighth nerve auditory responses. J Acoust Soc Am 68:1107–1114.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS (1981) Directional response characteristics of single neurons in the torus semicircularis of the leopard frog (Rana pipiens). J Comp Physiol 144:419–428.

    Article  Google Scholar 

  • Feng AS (1982) Quantitative analysis of intensity-rate and intensity-latency functions in peripheral auditory nerve fibers of northern leopard frogs (Rana p. pipiens). Hear Res 6:241–246.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS (1986) Afferent and efferent innervation patterns of the cochlear nucleus (dorsal medullary nucleus) of the leopard frog. Brain Res 367:183–191.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Capranica RR (1976) Sound localization in anurans. I. Evidence of binaural interaction in the dorsal medullary nucleus of the bullfrog (Rana catesbeiana). J Neurophysiol 39:871–881.

    PubMed  CAS  Google Scholar 

  • Feng AS, Capranica RR (1978) Sound localization in anurans. II. Binaural interaction in superior olivary nucleus of the green tree frog (Hyla cinerea). J Neurophysiol 41:43–54.

    PubMed  CAS  Google Scholar 

  • Feng AS, Lin WY (1991) Differential innervation patterns of three divisions of frog auditory midbrain (torus semicircularis). J Comp Neurol 306:613–630.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Lin WY (1996) Neuronal architecture of the dorsal nucleus (cochlear nucleus) of the frog (Rana pipiens pipiens). J Comp Neurol 366:320–334.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Schellart NAM (1999) Central auditory processing in fish and amphibians. In: Fay RR, Popper AN (eds), Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 218–268.

    Google Scholar 

  • Feng AS, Shofner (1981) Peripheral basis of sound localization in anurans. Acoustic properties of the frog’s ear. Hear Res 5:201–216.

    Article  PubMed  CAS  Google Scholar 

  • Feng AS, Gerhardt HC, Capranica RR (1976) Sound localization behavior of the green treefrog (Hyla cinerea) and the barking treefrog (H. gratiosa). J Comp Physiol 107:241–252.

    Article  Google Scholar 

  • Fischer FP, Köppl C, Manley GA (1988) The basilar papilla of the barn owl Tyto alba: a quantitative morphological SEM analysis. Hear Res 34:87–101.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher NH (1992) Acoustic systems in biology. Oxford: Oxford University Press.

    Google Scholar 

  • Fletcher N, Thwaites S (1979) Physical models for the analysis of acoustical systems in biology. Q Rev Biophys 12:25–65.

    PubMed  CAS  Google Scholar 

  • Foster RE, Hall WC (1978) The organization of central auditory pathways in a reptile, Iguana iguana. J Comp Neurol 178:783–832.

    Article  PubMed  CAS  Google Scholar 

  • Frishkopf LS, Goldstein MH (1963) Responses to acoustic stimuli from single units in the eighth nerve of the bullfrog. Acoust Soc Am 35:1219–1228.

    Article  Google Scholar 

  • Gerhardt HC (1995) Phonotaxis in female frogs and toads: execution and design of experiments. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds), Methods in Comparative Psycho-Acoustics, Basel: Birkhäuser Verlag, pp. 209–220.

    Google Scholar 

  • Gerhardt HC, Klump (1988) Phonotactic responses and selectivity of barking treefrogs (Hyla gratiosa) to chorus sounds. J Comp Physiol A 163:795–802.

    Article  Google Scholar 

  • Gerhardt HC, Rheinlaender J (1980) Accuracy of sound localization in a miniature dendrobatid frog. Naturwissenschaften 67:362–363.

    Article  Google Scholar 

  • Gleich O, Manley GA (2000) The hearing organs of birds and crocodilia. In: Dooling RJ, Fay RR, Popper AN (eds), Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 70–138.

    Google Scholar 

  • Gleich O, Narins PM (1988) The phase response of primary auditory afferents in a songbird (Sturnus vulgaris L.) Hear Res 32:81–91.

    Article  PubMed  CAS  Google Scholar 

  • Gold JI, Knudsen EI (2000) A site of auditory experience-dependent plasticity in the neural representation of auditory space in the barn owl’s inferior colliculus. J Neurosci 20:3469–3486.

    PubMed  CAS  Google Scholar 

  • Goodrich (1930) Studies on the Structure and Development of the Vertebrates, Vol. 1. New York: Dover (reprint 1958).

    Google Scholar 

  • Gooler DM, Condon CJ, Xu J, Feng AS (1993) Sound direction influences the frequencytuning characteristics of neurons in the frog inferior colliculus. J Neurophysiol 69:1018–1030.

    PubMed  CAS  Google Scholar 

  • Grothe B (2003) New roles for synaptic inhibition in sound localization. Nat Rev Neurosci 4:1–11.

    Article  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1992) Evolution of sound localization in mammals. In: Webster DB, Fay RR, Popper AN (eds), The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 691–715.

    Google Scholar 

  • Hetherington TE, Lindquist E (1999) Lung-based hearing in an ‘earless’ anuran amphibian. J Comp Physiol 184:395–401.

    Article  Google Scholar 

  • Hill KG, Lewis DB, Hutchings ME, Coles RB (1980) Directional hearing in the Japanese quail (Coturnix coturnix japonica). I. Acoustical properties of the auditory system. J Exp Biol 68:135–151.

    Google Scholar 

  • Hoy (1992) The evolution of hearing in insects as an adaptation to predation from bats. In: Webster DB, Fay RR, Popper AN (eds), The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 115–129.

    Google Scholar 

  • Hyde PS, Knudsen EI (2000) Topographic projection from the optic tectum to the auditory space mapin the inferior colliculus of the barn owl. J Comp Neurol 21:8586–8593.

    Google Scholar 

  • Hyson RL, Overholt EM, Lippe WR (1994) Cochlear microphonic measurements of interaural time differences in the chick. Hear Res 81:109–118.

    Article  PubMed  CAS  Google Scholar 

  • Jaslow AP, Hetherington TE, Lombard RE (1988) Structure and function of the amphibian middle ear. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds), The Evolution of the Amphibian Auditory System. New York: John Wiley & Sons, pp. 69–91.

    Google Scholar 

  • Jørgensen MB (1991) Comparative studies of the biophysics of directional hearing in anurans. J Comp Physiol A 169:591–598.

    Google Scholar 

  • Jørgensen MB (1993) Vibrational patterns of the anuran eardrum. In: Elsner N, Heisenberg M (eds), Gene-Brain-Behaviour. Proceedings of the 21st Göttingen Neurobiology Conference. Stuttgart: Georg Thieme Verlag, p. 231.

    Google Scholar 

  • Jørgensen MB, Christensen-Dalsgaard J (1997a) Directionality of auditory nerve fiber responses to pure tone stimuli in the grassfrog, Rana temporaria. I. Spike rate responses. J Comp Physiol A 180:493–502.

    Article  PubMed  Google Scholar 

  • Jørgensen MB, Christensen-Dalsgaard (1997b) Directionality of auditory nerve fiber responses to pure tone stimuli in the grassfrog, Rana temporaria. II. Spike timing. J Comp Physiol A 180:503–511.

    Article  PubMed  Google Scholar 

  • Jørgensen MB, Gerhardt HC (1991) Directional hearing in the gray tree frog Hyla versicolor: eardrum vibrations and phonotaxis. J Comp Physiol A 169:177–183.

    Article  PubMed  Google Scholar 

  • Jørgensen MB, Kanneworff M (1998) Middle ear transmission in the grass frog, Rana temporaria. J Comp Physiol A 182:59–64.

    PubMed  Google Scholar 

  • Jørgensen MB, Schmitz B, Christensen-Dalsgaard J (1991) Biophysics of directional hearing in the frog Eleutherodactylus coqui. J Comp Physiol A 168:223–232.

    Article  Google Scholar 

  • Joseph AW, Hyson RL (1993) Coincidence detection by binaural neurons in the chick brain stem. J Neurophysiol 69:1197–1211.

    PubMed  CAS  Google Scholar 

  • Kaulen R, Lifschitz W, Palazzi C, Adrian H (1972) Binaural interaction in the inferior colliculus of the frog. Exp Neurol 37:469–480.

    Article  PubMed  CAS  Google Scholar 

  • Keller CH, Hartung K, Takahashi TT (1998) Head-related transfer functions of the barn owl: measurement and neural responses. Hear Res 118:13–34.

    Article  PubMed  CAS  Google Scholar 

  • Klump GM (1995) Studying sound localization in frogs with behavioral methods. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds), Methods in Comparative Psycho-Acoustics. Basel: Birkhäuser Verlag, pp. 221–233.

    Google Scholar 

  • Klump GM (2000) Sound localization in birds. In: Dooling RJ, Fay RR, Popper AN (eds), Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 249–307.

    Google Scholar 

  • Klump GM, Gerhardt HC (1989) Sound localization in the barking treefrog. Naturwissenschaften 76:35–37.

    Article  PubMed  CAS  Google Scholar 

  • Klump GM, Larsen ON (1991) Azimuthal sound localization in the European starling (Sturnus vulgaris): I. Physical binaural cues. J Comp Physiol A 170:243–251.

    Google Scholar 

  • Klump GM, Windt W. Cuno E (1986) The great tit’s (Parus major) auditory resolution in azimuth. J Comp Physiol A 158:383–390.

    Article  Google Scholar 

  • Knudsen EI (1980) Sound localization in birds. In: Popper AN, Fay RR (eds), Comparative Studies of Hearing in Vertebrates. Berlin: Springer-Verlag, pp. 289–322.

    Google Scholar 

  • Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the owl. J Neurosci 2:1177–1194.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (2002) Instructed learning in the auditory localization pathway of the barn owl. Nature 417:322–328.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978a) A neural map of auditory space in the owl. Science 200:795–797.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1978b) Center-surround organization of auditory receptive fields in the owl. Science 202:778–780.

    PubMed  CAS  Google Scholar 

  • Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol 133:13–21.

    Article  Google Scholar 

  • Knudsen EI, Blasdel GG, Konishi M (1979) Sound localization by the barn owl (Tyto alba) measured with the search coil technique. J Comp Physiol 133:1–11.

    Article  Google Scholar 

  • Konishi M (1973) How the owl tracks its prey. Am Scientist 61:414–424.

    Google Scholar 

  • Konishi M (2000) Study of sound localizaton by owls and its relevance to humans. Comp Biochem Physiol A 126:459–469.

    Article  CAS  Google Scholar 

  • Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17:3312–3321.

    PubMed  Google Scholar 

  • Köppl C, Carr CE (2003) Computational diversity in the cochlear nucleus angularis of the barn owl. J Neurophysiol 89:2313–2329.

    PubMed  Google Scholar 

  • Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol A 171:695–704.

    Article  Google Scholar 

  • Kubke MF, Massoglia DP, Carr CE (2002) Developmental changes underlying the formation of the specialized time coding circuits in barn owls (Tyto alba). J Neurosci 22:7671–7679.

    PubMed  CAS  Google Scholar 

  • Kühne R, Lewis B (1985) External and middle ears. In: King AS, McLelland J (eds), Form and Function in Birds, Vol. 3. London: Academic Press, pp. 227–271.

    Google Scholar 

  • Larsen ON (1995) Acoustic equipment and sound field calibration. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds), Methods in Comparative Psycho-Acoustics. Basel: Birkhaüser Verlag, pp. 31–45.

    Google Scholar 

  • Larsen ON, Popov AV (1995) The interaural canal does enhance directional hearing in quail (Coturnix coturnix japonica). In: Burrows M, Matheson T, Newland PL, Schüppe H (eds), Neural systems and behavior. Proceedings of the 4th International Conference in Neuroethology. Stuttgart: Georg Thieme Verlag, p. 313.

    Google Scholar 

  • Larsen ON, Dooling RJ, Ryals BM (1997) Roles of intracranial air pressure in bird audition. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E (eds), Diversity in Auditory Mechanics. Singapore: World Scientific, pp. 11–17.

    Google Scholar 

  • Lewald J (1990) The directionality of the ear of the pigeon (Columba livia). J Comp Physiol A 167:533–543.

    Article  Google Scholar 

  • Lewald J, Dörrscheidt GJ (1998) Spatial-tuning properties of auditory neurons in the optic tectum of the pigeon. Brain Res 790:339–342.

    Article  PubMed  CAS  Google Scholar 

  • Lewis ER, Narins PM (1999) The acoustic periphery of amphibians: anatomy and physiology. In: Fay RR, Popper AN (eds), Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 101–154.

    Google Scholar 

  • Lombard RE, Bolt J (1979) Evolution of the tetrapod ear: an analysis and reinterpretation. Biol J Linn Soc 11:19–76.

    Google Scholar 

  • Lombard RE, Straughan IR (1974) Functional aspects of anuran middle ear structures. J Exp Biol 61:71–93.

    PubMed  CAS  Google Scholar 

  • Luksch H, Walkowiak W (1998) Morphology and axonal projection patterns of auditory neurons in the midbrain of the painted frog, Discoglossus pictus. Hear Res 122:1–17.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (1972) The middle ear of the tokay gecko. J Comp Physiol 81:239–250.

    Article  Google Scholar 

  • Manley GA (1981) A review of the auditory physiology of the reptiles. Prog Sens Physiol 2:49–134.

    Google Scholar 

  • Manley GA (1990) Peripheral Hearing Mechanisms in Reptiles and Birds. New York: Springer-Verlag.

    Google Scholar 

  • Manley GA (2000) The hearing organs of lizards. In: Dooling RJ, Fay RR, Popper AN (eds), Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 139–196.

    Google Scholar 

  • Manley GA (2004) The lizard basilar papilla and its evolution. In: Manley GA, Popper AN, Fay RR (eds), Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 200–224.

    Google Scholar 

  • Manley GA, Clack J (2004) An outline of the evolution of vertebrate hearing organs. In: Manley GA, Popper AN, Fay RR (eds), Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 1–26.

    Google Scholar 

  • Manley GA, Köppl C (1998) Phylogenetic development of the cochlea and its innervation. Curr Opin Neurobiol 8:468–474.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Köppl C, Konishi M (1988) A neural map of interaural intensity difference in the brainstem of the barn owl. J Neurosci 8:2665–2677.

    PubMed  CAS  Google Scholar 

  • McCormick CA (1999) Anatomy of the central auditory pathways of fish and amphibians. In: Fay RR, Popper AN (eds), Comparative Hearing: Fish and Amphibians. New York: Springer-Verlag, pp. 155–217.

    Google Scholar 

  • Megela-Simmons A, Moss CF, Daniel KM (1985) Behavioral audiograms of the bullfrog (Rana catesbeiana) and the green treefrog (Hyla cinerea). J Acoust Soc Am 78:1236–1244.

    Article  PubMed  CAS  Google Scholar 

  • Melssen WJ, Epping WJM (1990) A combined sensitivity for frequency and interaural 120 J. Christensen-Dalsgaard intensity difference in neurons in the auditory midbrain of the grassfrog. Hear Res 44:35–50.

    Article  PubMed  CAS  Google Scholar 

  • Melssen WJ, Epping WJM (1992) Selectivity for temporal characteristics of sound and interaural time difference of auditory midbrain neurons in the grassfrog: a system theoretical approach. Hear Res 60:178–198.

    Article  PubMed  CAS  Google Scholar 

  • Melssen WJ, Epping WJM, van Stokkum IHM (1990) Sensitivity for interaural time and intensity difference of auditory midbrain neurons in the grassfrog. Hear Res 47:235–256.

    Article  PubMed  CAS  Google Scholar 

  • Michelsen A (1994) Directional hearing in crickets and other small animals. Fortschr Zool 39:195–207.

    Google Scholar 

  • Michelsen A (1998) Biophysics of sound localization in insects. In Hoy RR, Popper AN, Fay RR (eds), Comparative Hearing: Insects. New York: Springer-Verlag, pp. 18–62.

    Google Scholar 

  • Michelsen A, Jørgensen M, Christensen-Dalsgaard J, Capranica RR (1986) Directional hearing of awake, unrestrained treefrogs. Naturwissenschaften 73:682–683.

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Knudsen EI (1994) Representation of interaural level difference in the VLVp, the first site of binaural comparison in the barn owl’s auditory system. Hear Res 74:148–164.

    Article  PubMed  CAS  Google Scholar 

  • Moiseff A (1989) Bi-coordinate sound localization by the barn owl. JComp Physiol A 164:637–644.

    Article  CAS  Google Scholar 

  • Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48.

    PubMed  CAS  Google Scholar 

  • Morse PM (1948) Vibration and sound, 2nd ed (reprint 1986). New York: American Institute of Physics.

    Google Scholar 

  • Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85:1255–1265.

    Google Scholar 

  • Nelson BS, Stoddard PK (1998) Accuracy of auditory distance and azimuth perception by a passerine bird in natural habitat. Anim Behav 56:467–477.

    Article  PubMed  Google Scholar 

  • Overholt EM, Rubel EW, Hyson RL (1992) A circuit for coding interaural time differences in the chick brainstem. J Neurosci 12:1698–1708.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Pinder AC (1984) The directionality of the frog ear described by a mechanical model. J Theor Biol 110:205–215.

    PubMed  CAS  Google Scholar 

  • Parameshwaran S, Carr CE, Perney TM (2001) Expression of the Kv3.1 potassium channel in the avian auditory brainstem. J Neurosci 21:485–494.

    PubMed  CAS  Google Scholar 

  • Park TJ, Dooling RJ (1991) Sound localization in small birds: absolute localization in azimuth. J Comp Psychol 105:121–133.

    Google Scholar 

  • Passmore NI, Telford SR (1981) The effect of chorus organization on mate localization in the painted reed frog (Hyperolius marmoratus). Behav Ecol Sociobiol 9:291–293.

    Article  Google Scholar 

  • Passmore NI, Capranica RR, Telford SR, Bishop PJ (1984) Phonotaxis in the painted reed frog (Hyperolius marmoratus). J Comp Physiol A 154:189–197.

    Article  Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls. J Exp Biol 54:535–573.

    PubMed  CAS  Google Scholar 

  • Pettigrew AG, Anson M, Chung SH (1981) Hearing in the frog: a neurophysiological study of the auditory response in the midbrain. Proc R Soc Lond B 212:433–457.

    Google Scholar 

  • Pettigrew AG, Carlile S (1984) Auditory responses in the torus semicircularis of the cane toad, Bufo marinus. I. Field potential studies. Proc R Soc Lond B 222:231–242.

    PubMed  CAS  Google Scholar 

  • Pettigrew JD, Larsen ON (1990) Directional hearing in the plains-wanderer Pedionomus torquatus. In: Rowe M, Aitkin L (eds), Information Processing in Mammalian Auditory and Tactile Systems. New York: Alan R. Liss, pp. 179–190.

    Google Scholar 

  • Pinder AC, Palmer AR (1983) Mechanical properties of the frog ear: vibration measurements under free-and closed-field acoustic conditions. Proc R Soc Lond B 219:371–396.

    Article  PubMed  CAS  Google Scholar 

  • Poganiatz I, Nelken I, Wagner H (2001) Sound-localization experiments with barn owls in virtual space: influence on interaural time difference on head-turning behavior. J Assoc Res Otolaryngol 2:1–21.

    PubMed  CAS  Google Scholar 

  • Purgue A (1997) Tympanic sound radiation in the bullfrog, Rana catesbeiana. J Comp Physiol A 181:438–445.

    Article  PubMed  CAS  Google Scholar 

  • Purgue A, Narins PM (2000) Mechanics of the inner ear of the bullfrog (Rana catesbeiana): the contact membranes and the periotic canal. J Comp Physiol A 186:481–488.

    Article  PubMed  CAS  Google Scholar 

  • Rheinlaender J, Klump G (1988) Behavioral aspects of sound localization. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds), The Evolution of the Amphibian Auditory System. New York: John Wiley & Sons, pp. 297–305.

    Google Scholar 

  • Rheinlaender J, Gerhardt HC, Yager DD, Capranica RR (1979) Accuracy of phonotaxis by the green treefrog (Hyla cinerea). J Comp Physiol 133:247–255.

    Article  Google Scholar 

  • Rheinlaender J, Walkowiak W, Gerhardt HC (1981) Directional hearing in the green treefrog: a variable mechanism? Naturwissenschaften 68:430–431.

    Article  Google Scholar 

  • Rice WR (1982) Acoustical location of prey by the marsh hawk: adaptation to concealed prey. Auk 99:409–413.

    Google Scholar 

  • Rosowski JJ, Saunders JC (1980) Sound transmission through the avian interaural pathway. J Comp Physiol A 130:183–190.

    Google Scholar 

  • Sakaluk SK, Bellwood JJ (1984) Gecko phonotaxis to cricket calling song: a case of satellite predation. Anim Behav 32:659–662.

    Article  Google Scholar 

  • Saunders JC, Duncan RK, Doan DE, Werner YL (2000) The middle ear of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN (eds), Comparative Hearing: Birds and Reptiles. New York: Springer-Verlag, pp. 13–69.

    Google Scholar 

  • Schmidt R (1988) Mating call phonotaxis in female American toads: lesions of central auditory system. Brain Behav Evol 32:119–128.

    PubMed  CAS  Google Scholar 

  • Schmitz B, White TD, Narins PM (1992) Directionality of phase locking in auditory nerve fibers of the leopard frog Rana pipiens pipiens. J Comp Physiol A 170:589–604.

    PubMed  CAS  Google Scholar 

  • Schwartz J, Gerhardt HC (1989) Spatially mediated release from auditory masking in an anuran amphibian. J Comp Physiol A 166:37–41.

    Article  Google Scholar 

  • Schwartz J, Gerhardt HC (1995) Directionality of the auditory system and call pattern recognition during acoustic interference in the gray tree frog, Hyla versicolor. Audit Neurosci 1:195–206.

    Google Scholar 

  • Schwartzkopff J (1950) Beitrag zur Problem des Richtungshörens bei Vögeln. Z Vergl Physiol 32:319–327.

    Article  Google Scholar 

  • Schwartzkopff J (1952) Untersuchungen über die Arbeitsweise des Mittelohres und das Richtungshören der Singvögel unter verwendung von Cochlea-Potentialen. Z Vergl Physiol 34:46–68.

    Article  Google Scholar 

  • Smith CA, Konishi M, Schuff N (1985) Structure of the barn owl’s (Tyto alba) inner ear. Hear Res 17:237–247.

    Article  PubMed  CAS  Google Scholar 

  • Soares C, Carr CE (2001) The cytoarchitecture of the nucleus angularis in the barn owl (Tyto alba). J Comp Neurol 429:192–203.

    Article  PubMed  CAS  Google Scholar 

  • Soares D, Chitwood RA, Hyson RL, Carr CE (2002) Intrinsic neuronal properties of the chick nucleus angularis. J Neurophysiol 88:152–162.

    PubMed  Google Scholar 

  • Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799.

    PubMed  CAS  Google Scholar 

  • Szpir MR, Sento S, Ryugo DK (1990) Central projections of cochlear nerve fibers in the alligator lizard. J Comp Neurol 295:530–547.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4:1781–1786.

    PubMed  CAS  Google Scholar 

  • ten Donkelaar H, Bangma GC, Barbas-Henry HA, de Boer-van Huizen R, Wolters JG (1987) The brain stem in a lizard, Varanus exanthematicus. Adv Anat Embryol Cell Biol 107:56–60.

    Google Scholar 

  • van Bergeijk WA (1966) Evolution of the sense of hearing in vertebrates. Am Zool 6:371–377.

    PubMed  Google Scholar 

  • Vlaming MSMG, Aertsen AMBJ, Epping WJM (1984) Directional hearing in the grassfrog (Rana temporaria L.). I. Mechanical vibrations of tympanic membrane. Hear Res 14:191–201.

    Article  PubMed  CAS  Google Scholar 

  • Volman SF, Konishi M (1989) Spatial selectivity and binaural responses in the inferior colliculus of the great horned owl. J Neurosci 9:3083–3096.

    PubMed  CAS  Google Scholar 

  • Volman S, Konishi M (1990) Comparative physiology of sound localization in four species of owls. Brain Behav Evol 36:196–215.

    PubMed  CAS  Google Scholar 

  • Wagner H (1993) Sound-localization deficits induced by lesions in the barn owl’s space map. J Neurosci 13:371–386.

    PubMed  CAS  Google Scholar 

  • Wagner H (2002) Directional hearing in the barn owl: psychophysics and neurophysiology. In: Tranebjærg L, Christensen-Dalsgaard J, Andersen T, Poulsen T (eds), Genetics and the Function of the Auditory System. Proceedings of the 19th Danavox Symposium. Copenhagen: Holmens Trykkeri, pp. 331–351.

    Google Scholar 

  • Wagner H, Takahashi TT, Konishi M (1987) Representation of interaural time difference in the central nucleus of the barn owl’s inferior colliculus. J Neurosci 7:3105–3116.

    PubMed  CAS  Google Scholar 

  • Walkowiak W (1980) The coding of auditory signals in the torus semicircularis of the fire-bellied toad and the grass frog: responses to simple stimuli and to conspecific calls. J Comp Physiol 138:131–148.

    Article  Google Scholar 

  • Walkowiak W, Berlinger M, Schul J, Gerhardt HC (1998) Significance of forebrain structures in acoustically guided behaviour in anurans. Eur J Morphol 37:177–181.

    Article  Google Scholar 

  • Wang J, Narins PM (1996) Directional masking of phase locking in the amphibian auditory nerve. J Acoust Soc Am 99:1611–1620.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Ludwig TA, Narins PM (1996) Spatial and spectral dependence of the auditory periphery in the northern leopard frog. J Comp Physiol A 178:159–172.

    Article  PubMed  CAS  Google Scholar 

  • Werner YL (2003) Mechanical leverage in the middle ear of the American bullfrog, Rana catesbeiana. Hear Res 175:54–65.

    Article  PubMed  Google Scholar 

  • Werner YL, Montgomery LG, Safford SD, Igic PG, Saunders JC (1998) How body size affects middle-ear structure and function and auditory sensitivity in gekkonoid lizards. J Exp Biol 201:487–502.

    PubMed  CAS  Google Scholar 

  • Wever EG (1978) The Reptile Ear. Princeton: Princeton University Press.

    Google Scholar 

  • Wever EG (1985) The Amphibian Ear. Princeton: Princeton University Press.

    Google Scholar 

  • White TD, Schmitz B, Narins PM (1992) Directional dependence of auditory sensitivity and frequency selectivity in the leopard frog. J Acoust Soc Am 92:1953–1961.

    Article  PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ, Perkins ME (1987) A new approach to the study of human sound localization. In: Yost WA, Gourevitch G (eds), Directional Hearing. New York: Springer-Verlag, pp. 26–48.

    Google Scholar 

  • Wilczynski W (1988) Brainstem auditory pathways in anuran amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds), The Evolution of the Amphibian Auditory System. New York: John Wiley & Sons, pp. 209–231.

    Google Scholar 

  • Wilczynski W, Resler C, Capranica RR (1987) Tympanic and extratympanic sound transmission in the leopard frog. J Comp Physiol A 161:659–669.

    Article  PubMed  CAS  Google Scholar 

  • Wilczynski W, Rand AS, Ryan MJ (2001) Evolution of calls and auditory tuning in the Physalaemus pustulosus species group. Brain Behav Evol 58:137–151.

    Article  PubMed  CAS  Google Scholar 

  • Will U (1988) Organization and projections of the area octavolateralis in amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds), The Evolution of the Amphibian Auditory System. New York: John Wiley & Sons, pp. 185–208.

    Google Scholar 

  • Will U, Fritzsch B (1988) The eighth nerve of amphibians. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds), The Evolution of the Amphibian Auditory System. New York: John Wiley & Sons, pp. 159–183.

    Google Scholar 

  • Woodworth RS, Schlosberg H (1962) Experimental Psychology. New York: Holt, Rinehart and Winston, pp. 349–361.

    Google Scholar 

  • Xu J, Gooler DM, Feng AS (1994) Single neurons in the frog inferior colliculus exhibit direction-dependent frequency selectivity to isointensity tone bursts. J Acoust Soc Am 95:2160–2170.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Xu J, Feng AS (1999) Effects of GABA-mediated inhibition on directiondependent frequency tuning in the frog inferior colliculus. J Comp Physiol A 184:85–98.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Christensen-Dalsgaard, J. (2005). Directional Hearing in Nonmammalian Tetrapods. In: Popper, A.N., Fay, R.R. (eds) Sound Source Localization. Springer Handbook of Auditory Research, vol 25. Springer, New York, NY. https://doi.org/10.1007/0-387-28863-5_4

Download citation

Publish with us

Policies and ethics