Skip to main content

Focused Ultrasound for Tumor Ablation

  • Chapter

Abstract

This chapter reviews the basic principles of focused ultrasound therapy. The physical principles are discussed and explained. The technical requirements and instrumentation used are illustrated. The critical value of using magnetic resonance (MR) as an image guidance method for planning, delivering, and monitoring this form of ablation therapy is reviewed, and its application in uterine leiomyomas is highlighted as an example of current clinical practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fry WJ, Barnard JW, Fry EJ. Ultrasonic lesions in the mammalian central nervous system. Science 1955;122:517–518.

    Article  PubMed  CAS  Google Scholar 

  2. Fry WJ, Fry FJ. Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron 1960;ME-7:166–181.

    Article  PubMed  CAS  Google Scholar 

  3. Coleman D, Lizzi FL, Driller J. Therapeutic ultrasound in the treatment of glaucoma. Ophthalmology 1985;92:339–346.

    Article  PubMed  CAS  Google Scholar 

  4. Sanghvi NT, Fry FJ, Bihrle R. Noninvasive surgery of prostate tissue by high-intensity focused ultrasound. IEEE Trans Ultrason Ferroelectr Freq Contr 1996;43:1099–1110.

    Article  Google Scholar 

  5. Chapelon JW, Ribault M, Vernier F. Treatment of localised prostate cancer with transrectal high intensity focused ultrasound. Eur J Ultrasound 1999;9(1):31–38.

    Article  PubMed  CAS  Google Scholar 

  6. Vallancien G, Harouni M, Veillon B. Focused extracorporeal pyrotherapy: feasibility study in man. J Endourol 1992;6:173–180.

    Article  Google Scholar 

  7. Sanghvi NT, Hynynen K, Lizzi FL. New developments in therapeutic ultrasound. IEEE Biomed Eng 1996;15:83–92. High intensity focused ultrasound. Exp Invest Endosc 1996;1994;4:383–395.

    Google Scholar 

  8. Hiller R, Weninger K, Putterman SJ. Effect of noble gas doping in single-bubble sonoluminescence. Science 1994;266:248–250.

    Article  PubMed  CAS  Google Scholar 

  9. ter Haar G. Ultrasound focal beam surgery. Ultrasound Med Bioi 1995;21(9):1089–1100.

    Article  Google Scholar 

  10. Crum LA, Hynynen K. Sound therapy. Physics World 1996;9:28–33.

    Article  Google Scholar 

  11. Lehmann JF, DeLateur BJ, Warren CJ. Heating produced by ultrasound in bone and soft tissue. Arch Phys Med Rehabil 1967;48:397–401.

    PubMed  CAS  Google Scholar 

  12. Hutchinson EB, Hynynen K. Intracavitary phased arrays for non-invasive prostate surgery. IEEE Trans Ultrason Ferroelectr Freq Contr 1996;43:1032–1042.

    Article  Google Scholar 

  13. Hunt JW. Principles of ultrasound used for generating localized hyperthermia. In: Field SB, Franconi C, eds. Physics and Technology of Hyperthermia. Boston: Martinus Nijhoff, 1987:354–389.

    Chapter  Google Scholar 

  14. Fjield T, Hynynen K. The combined concentric-ring and sector-vortex phased array for MRI guided ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Contr 1997;44:1157–1167.

    Article  Google Scholar 

  15. Dorr LN, Hynynen K. The effect of tissue heterogeneities and large blood vessels on the thermal exposure induced by short high power ultrasound pulses. Int J Hyperthermia 1992;8(1):45–59.

    Article  PubMed  CAS  Google Scholar 

  16. Yang R, Sanghvi NT, Rescorla FJ. Liver cancer ablation with extra-corporeal high-intensity focused ultrasound. Eur Urol 1993;23:15–22.

    Google Scholar 

  17. Kolios MC, Sherar MD, Hunt JW. Blood flow cooling and ultrasonic lesion formation. Med Phys 1996;23:1287–1298.

    Article  PubMed  CAS  Google Scholar 

  18. Moritz AR, Henriques FC Jr. Studies of thermal injury. II. The relative importance of time and surface temperature in the causation of cutaneous burns. Am J Pathol 1947;23:695–720.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Crile G. The effect of heat and radiation on cancers implanted on the feet of mice. Cancer Res 1963;23:372–380.

    PubMed  Google Scholar 

  20. Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Bioi Phys 1984;10(6):787–800.

    Article  CAS  Google Scholar 

  21. Landry J, Marceau N. Rate-limiting events in hyperthermic cell killing. Radiol Res 1978;75:573–585.

    Article  CAS  Google Scholar 

  22. Delon-Martin C, Vogt C, Chigner E. Venous thrombosis generation by means of high-intensity focused ultrasound. Ultrasound Med Biol 1995;21(1):113–119.

    Article  PubMed  CAS  Google Scholar 

  23. Hynynen K, Colucci V, Chung A. Noninvasive artery occlusion using MRI-guided focused ultrasound. Ultrasound Med Bioi 1996;22(8):1071–1077.

    Article  CAS  Google Scholar 

  24. Vaezy S, Marti R, Mourad P. Hemostasis using high intensity focused ultrasound. Eur J Ultrasound 1999;9(1):79–87.

    Article  PubMed  CAS  Google Scholar 

  25. Moonen C, Madio P, de Zwart J. MRI-guided focused ultrasound as a potential tool for control of gene therapy. Eur Radiol 1997;7:1165.

    Google Scholar 

  26. Lynn JG. A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol 1942;179–193

    Google Scholar 

  27. Fry WJ, Barnard JW, Fry FJ. Ultrasonically produced localized selective lesions in the central nervous system. Am J Phys Med 1955;34(3):413–423.

    PubMed  CAS  Google Scholar 

  28. Lele PP. A simple method for production of trackless focal lesions with focused ultrasound: physical factors. J Physiol 1962;160:494–512.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Heimburger RF. Ultrasound augmentation of central nervous system tumor therapy. Indiana Med 1985;78(6):469–476.

    PubMed  CAS  Google Scholar 

  30. Gelet A, Chapelon JY, Bouvier R. Urology Department, Edouard Herriot Hospital and INSERM Unite 28, Lyon, France.

    Google Scholar 

  31. Hill CR, ter Haar G. Review article: high-intensity focused ultrasound-potential for cancer treatment. Br J Radiol 1996;68:1296–1303.

    Article  Google Scholar 

  32. Gianfelice DC. MR guided focused ultrasound ablation of primary breast neoplasms: works in progress. Radiology 1999;213:106–107.

    Google Scholar 

  33. Jolesz FA, Jakab PD. Acoustic pressure wave generation within an MR imaging system: potential medical applications. J Magn Reson Imaging 1991;1(5):609–613.

    Article  PubMed  CAS  Google Scholar 

  34. Cline HE, Schenck JF, Hynynen K. MR-guided focused ultrasound surgery. J Comput Assist Tomogr 1992;16(6):956–965.

    Article  PubMed  CAS  Google Scholar 

  35. Hynynen K, Darkazanli A, Unger E, Schenck JF. MRI-guided noninvasive ultrasound surgery. Med Phys 1993;20(1):107–115.

    Article  PubMed  CAS  Google Scholar 

  36. Cline HE, Schenck JF, Watkins RD. Magnetic resonance-guided thermal surgery. Magn Reson Med 1993;30(1):98–106.

    Article  PubMed  CAS  Google Scholar 

  37. Jolesz FA, Hynynen K. Magnetic resonance image-guided focused ultrasound surgery. Cancer J 2002;8(Suppl 1):S100–112.

    PubMed  Google Scholar 

  38. Hynynen K, Vykhodtseva NI, Chung AH. Thermal effects of focused ultrasound on the brain: determination with MR imaging. Radiology 1997;204(1):247–253.

    Article  PubMed  CAS  Google Scholar 

  39. Chung AH, Jolesz FA, Hynynen K. Thermal dosimetry of a focused ultrasound beam in vivo by magnetic resonance imaging. Med Phys 1999;26(9):2017–2026.

    Article  PubMed  CAS  Google Scholar 

  40. McDannold NJ, King RL, Jolesz FA. Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology 2000;216(2):517–523.

    Article  PubMed  CAS  Google Scholar 

  41. McDannold NJ, Hynynen K, Wolf D. MRI evaluation of thermal ablation of tumors with focused ultrasound. J Magn Reson Imaging 1998;8(1):91–100.

    Article  PubMed  CAS  Google Scholar 

  42. Hazle JD, Stafford RJ, Price RE. Magnetic resonance imaging-guided focused ultrasound thermal therapy in experimental animal models: correlation of ablation volumes with pathology in rabbit muscle and VX2 tumors. J Magn Reson Imaging 2002;15(2):185–194.

    Article  PubMed  Google Scholar 

  43. Hynynen K, Pomeroy O, Smith DN. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology 2001;219(1):176–185.

    Article  PubMed  CAS  Google Scholar 

  44. Huber PE, Jenne JW, Rastert R. A new noninvasive approach in breast cancer therapy using magnetic resonance imaging-guided focused ultrasound surgery. Cancer Res 2001;61(23):8441–8447.

    PubMed  CAS  Google Scholar 

  45. Tempany CM, Stewart EA, McDannold N. MR imaging-guided focused ultrasound surgery of uterine leiomyomas: a feasibility study. Radiology 2003;226:897–905.

    Article  PubMed  Google Scholar 

  46. Chen L, Bouley D, Yuh E. Study of focused ultrasound tissue damage using MRI and histology. J Magn Reson Imaging 1999;10(2):146–153.

    Article  PubMed  CAS  Google Scholar 

  47. Hynynen K, Darkazanli A, Damianou CA. The usefulness of a contrast agent and gradient-recalled acquisition in a steady-state imaging sequence for magnetic resonance imaging-guided noninvasive ultrasound surgery. Invest Radiol 1994;29(10):897–903.

    Article  PubMed  CAS  Google Scholar 

  48. Graham SJ, Stanisz GJ, Kecojevic A, Bronskill MJ, Henkelman RM. Analysis of changes in MR properties of tissues after heat treatment. Magn Reson Med 1999;42(6):1061–1071.

    Article  PubMed  CAS  Google Scholar 

  49. Rowland IJ, Rivens I, Chen L. MRI study of hepatic tumours following high intensity focused ultrasound surgery. Br J Radiol 1997;70:144–153.

    Article  PubMed  CAS  Google Scholar 

  50. Stewart EA. Uterine fibroids. Lancet 2001;357:293–298.

    Article  PubMed  CAS  Google Scholar 

  51. Law P, Gedroyc WM, Regan L. Magnetic resonance-guided percutaneous laser ablation of uterine fibroids. J Magn Reson Imaging 2000;12(4):565–570.

    Article  PubMed  CAS  Google Scholar 

  52. Law P, Gedroyc WM, Regan L. Magnetic resonance guided persutaneous laser ablation of uterine fibroids. Lancet 1999;354:2049–2050.

    Article  PubMed  CAS  Google Scholar 

  53. Sewell PE, Arriola RM, Robinette L. Real-time IMR-imaging—guided cryoablation of uterine fibroids. J Vasc Interv Radiol 2001;12:891–893.

    Article  PubMed  CAS  Google Scholar 

  54. Carlson KJ, Nichols DH, Schiff I. Indications for hysterectomy. N Engl J Med 1993;328(12):856–860.

    Article  PubMed  CAS  Google Scholar 

  55. ACOG practice bulletin. Surgical alternatives to hysterectomy in the management of leiomyomas. Int J Gynaecol Obstet 2001;73(3):285–293.

    Google Scholar 

  56. Spies JB, Ascher SA, Roth AR. Uterine artery embolization for leiomyomata. Obstet Gynecol 2001;98(1):29–34.

    Article  PubMed  CAS  Google Scholar 

  57. Cote I, Jacobs P, Cumming D. Work loss associated with increased menstrual loss in the United States. Obstet Gynecol 2002;100(4):683–687.

    Article  PubMed  Google Scholar 

  58. Marshall LM, Spiegelman D, Barbieri RL. Variation in the incidence of uterine leiomyoma among premenopausal women by age and race. Obstet Gynecol 1997;90(6):967–973.

    Article  PubMed  CAS  Google Scholar 

  59. Baird D, Dunson D, Hill M. Cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Gen Obstet Gynecol 2003;188(1):100–107.

    Google Scholar 

  60. Kjerulff KH, Langenberg P, Seidman JD. Uterine leiomyomas. Racial differences in severity, symptoms and age at diagnosis. J Reprod Med 1996;41(7):483–490.

    PubMed  CAS  Google Scholar 

  61. Myers ER, Barber MD, Gustilo-Ashby T. Management of uterine leiomyomata: what do we really know? Obstet Gynecol 2002;100(1):8–17.

    Article  PubMed  Google Scholar 

  62. Bonney V. The technique and results of myomectomy. Lancet 1931;1:171–177.

    Article  Google Scholar 

  63. Ecker JL, Foster FS, Friedman AJ. Abdominal hysterectomy or abdominal myomectomy for symptomatic leiomyoma: a comparison of preoperative demography and postoperative morbidity. J Gynecol Surg 1995;11(1):11–18.

    Article  Google Scholar 

  64. Iverson RE Jr, Chelmow D, Strohbehn K. Relative morbidity of abdominal hysterectomy and myomectomy for management of uterine leiomyomas. Obstet Gynecol 1996;88(3):415419.

    Google Scholar 

  65. Stewart EA, Faur AV, Wise LA. Predictors of subsequent surgery for uterine leiomyomata after abdominal myomectomy. Obstet Gynecol 2002;99(3):426–432.

    Article  PubMed  Google Scholar 

  66. Spies JB, Roth AR, Jha RC. Leiomyomata treated with uterine artery embolization: factors associated with successful symptom and imaging outcome. Radiology 2002;222(1):45–52.

    Article  PubMed  Google Scholar 

  67. Pron G, Bennett J, Common A. The Ontario uterine fibroid embolization trial part 2. Uterine fibroid reduction and symptom relief after uterine artery embolization for fibroids. Fertil Steril 2003;79(1):120–127.

    Article  PubMed  Google Scholar 

  68. Goodwin SC, Walker WJ. Uterine artery embolization for the treatment of uterine fibroids. Curr Opin Obstet Gynecol 1998;10(4):315–320.

    Article  PubMed  CAS  Google Scholar 

  69. Vashisht A. Studd J, Carey A. Fatal septicaemia after fibroid embolisation. Lancet 1999;354(9175):307–308.

    Article  PubMed  CAS  Google Scholar 

  70. Godfrey CD, Zbella EA. Uterine necrosis after uterine artery embolization for leiomyoma. Obstet Gynecol 2001;98(5 Pt 2):950–952.

    Article  PubMed  CAS  Google Scholar 

  71. Spies JB, Spector A, Roth AR. Complications after uterine artery embolization for leiomyomas. Obstet Gynecol 2002;100(5 Pt 1):873–880.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Tempany, C., MacDonold, N., Stewart, E.A., Hynynen, K. (2005). Focused Ultrasound for Tumor Ablation. In: vanSonnenberg, E., McMullen, W.N., Solbiati, L., Livraghi, T., Müeller, P.R., Silverman, S.G. (eds) Tumor Ablation. Springer, New York, NY. https://doi.org/10.1007/0-387-28674-8_22

Download citation

  • DOI: https://doi.org/10.1007/0-387-28674-8_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95539-1

  • Online ISBN: 978-0-387-28674-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics