Skip to main content

Positron Emission Tomography Imaging for Tumor Ablation

  • Chapter
  • 2704 Accesses

Abstract

Nuclear medicine imaging involves the injection or ingestion of radioactive Pharmaceuticals known as radiotracers, each designed to track a particular physiologic or pathophysiologic process. In contrast to conventional radiologic imaging such as x-ray computed tomography (CT) and magnetic resonance imaging (MRI), which map out anatomic structure and depend on changes in morphology or size for determination of pathology, nuclear medicine imaging provides information on the metabolic function of the investigated organ or tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maisey MN, Wahl RL, Barrington SF. Atlas of Clinical Positron Emission Tomography. London: Arnold, 1999:346.

    Google Scholar 

  2. Brown RS, Wahl RL. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 1993;72(10):2979–2985.

    Article  PubMed  CAS  Google Scholar 

  3. Brown RS, et al. Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 2002;29(4):443–53.

    Article  PubMed  CAS  Google Scholar 

  4. Wieler H, Coleman R. PET in Clinical Oncol ogy. Darmstadt: Steinkopff Verlag, 2000:422.

    Book  Google Scholar 

  5. Gambhir SS, Shepherd JE, Shah BD, et al. Analytical decision model for the cost-effective management of solitary pulmonary nodules. J Clin Oncol 1998;16(6):2113–2125.

    PubMed  CAS  Google Scholar 

  6. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001;42(5 suppl):1S–93S.

    PubMed  CAS  Google Scholar 

  7. Huebner RH, Park KC, Shepherd JE, et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med 2000;41(7):1177–1189.

    PubMed  CAS  Google Scholar 

  8. Kubik-Huch RA, Dorffler W, von Schulthess GK, et al. Value of (18F)-FDG positron emission tomography, computed tomography, and magnetic resonance imaging in diagnosing primary and recurrent ovarian carcinoma. Eur Radiol 2000;10(5):761–767.

    Article  PubMed  CAS  Google Scholar 

  9. Meta J, Seltzer M, Schiepers C, et al. Impact of 18F-FDG PET on managing patients with colorectal cancer: the referring physician’s perspective. J Nucl Med 2001;42(4):586–590.

    PubMed  CAS  Google Scholar 

  10. Park KC, Schwimmer J, Shepherd JE, et al. Decision analysis for the cost-effective management of recurrent colorectal cancer. Ann Surg 2001;233(3):310–319.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Park KC, Schwimmer J, Gambhir SS. Decision analysis for the cost-effective management of recurrent colorectal cancer. Ann Surg 2002;235(2):309–310;author reply 10.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schwimmer J, Essner R, Patel A, et al. A review of the literature for whole-body FDG PET in the management of patients with melanoma. Q J Nucl Med 2000;44(2):153–167.

    PubMed  CAS  Google Scholar 

  13. Scott WJ, Shepherd J, Gambhir SS. Cost-effectiveness of FDG-PET for staging non-small cell lung cancer: a decision analysis. Ann Thorac Surg 1998;66(6):1876–1883;discussion 83–85.

    Article  PubMed  CAS  Google Scholar 

  14. Seltzer MA, Yap CS, Silverman DH, et al. The impact of PET on the management of lung cancer: the referring physician’s perspective. J Nucl Med 2002;43(6):752–756.

    PubMed  Google Scholar 

  15. Wu D, Gambhir SS. Positron emission tomog raphy in diagnosis and management of invasive breast cancer: current status and future perspectives. Clin Breast Cancer 2003;4(suppll):S55–S63.

    Article  PubMed  Google Scholar 

  16. Yap CS, Seltzer MA, Schiepers C, et al. Impact of whole-body 18F-FDG PET on staging and managing patients with breast cancer: the referring physician’s perspective. J Nucl Med 2001;42(9):1334–1337.

    PubMed  CAS  Google Scholar 

  17. Services DOHH. Coverage and related claims processing requirements for positron emission tomography (PET) scans. Program Memoran dum Intermediaries/Carriers. CMS-Pub. 60AB (AB-02-065). 2002:1–4.

    Google Scholar 

  18. Kinkel K, Lu Y, Both M, Warren RS, Thoeni RF. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology 2002;224(3):748–756.

    Article  PubMed  Google Scholar 

  19. Jerusalem G, Beguin Y, Fassotte MF, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for posttreat-ment evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 1999;94(2):429–433.

    PubMed  CAS  Google Scholar 

  20. Dittmann H, Sokler M, Kollmannsberger C, et al. Comparison of 18FDG-PET with CT scans in the evaluation of patients with residual and recurrent Hodgkin’s lymphoma. Oncol Rep 2001;8(6):1393–1399.

    PubMed  CAS  Google Scholar 

  21. Mikhaeel NG, Timothy AR, O’Doherty MJ, Hain S, Maisey MN. 18-FDG-PET as a prognostic indicator in the treatment of aggres sive non-Hodgkin’s lymphoma—comparison with CT. Leuk Lymphoma 2000;39(5–6):543–553.

    Article  PubMed  CAS  Google Scholar 

  22. Pieterman RM, van Putten JW, Meuzelaar JJ, et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 2000;343(4):254–261.

    Article  PubMed  CAS  Google Scholar 

  23. Berman CG, Clark RA. Positron emission tomography in initial staging and diagnosis of persistent or recurrent disease. Curr Opin Oncol 2000;12(2):132–137.

    Article  PubMed  CAS  Google Scholar 

  24. Lowe VJ, Fletcher JW, Gobar L, et al. Prospec tive investigation of positron emission tomography in lung nodules. J Clin Oncol 1998;16(3):1075–1084.

    PubMed  CAS  Google Scholar 

  25. Lowe VJ, Naunheim KS. Positron emission tomography in lung cancer. Ann Thorac Surg 1998;65(6):1821–1829.

    Article  PubMed  CAS  Google Scholar 

  26. Lowe VJ, Naunheim KS. Current role of positron emission tomography in thoracic oncology. Thorax 1998;53(8):703–712.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Delbeke D. Oncological applications of FDG PET imaging: brain tumors, colorectal cancer, lymphoma and melanoma. J Nucl Med 1999;40(4):591–603.

    PubMed  CAS  Google Scholar 

  28. Delbeke D. Oncological applications of FDG PET imaging. J Nucl Med 1999;40(10):1706–1715.

    PubMed  CAS  Google Scholar 

  29. Erasmus JJ, McAdams HP, Connolly JE. Solitary pulmonary nodules: part II. Evaluation of the indeterminate nodule. Radiographics 2000;20(1):59–66.

    Article  PubMed  CAS  Google Scholar 

  30. Erasmus JJ, Connolly JE, McAdams HP, Roggli VL. Solitary pulmonary nodules: part I. Morphologic evaluation for differentiation of benign and malignant lesions. Radiographics 2000;20(1):43–58.

    Article  PubMed  CAS  Google Scholar 

  31. Coleman RE. PET in lung cancer. J Nucl Med 1999;40(5):814–820.

    PubMed  CAS  Google Scholar 

  32. Erasmus JJ, McAdams HP, Patz EF, Jr. Non-small cell lung cancer: FDG-PET imaging. J Thorac Imaging 1999;14(4):247–256.

    Article  PubMed  CAS  Google Scholar 

  33. Rinne D, Baum RP, Hor G, Kaufmann R. Primary staging and follow-up of high risk melanoma patients with whole-body 18F-fluorodeoxyglucose positron emission tomography: results of a prospective study of 100 patients. Cancer 1998;82(9):1664–1671.

    Article  PubMed  CAS  Google Scholar 

  34. Lowe VJ, Boyd JH, Dunphy FR, et al. Surveillance for recurrent head and neck cancer using positron emission tomography. J Clin Oncol 2000;18(3):651–658.

    PubMed  CAS  Google Scholar 

  35. Skehan SJ, Brown AL, Thompson M, Young JE, Coates G, Nahmias C. Imaging features of primary and recurrent esophageal cancer at FDG PET. Radiographics 2000;20(3):713–723.

    Article  PubMed  CAS  Google Scholar 

  36. Luketich JD, Friedman DM, Weigel TL, et al. Evaluation of distant metastases in esophageal cancer: 100 consecutive positron emission tomography scans. Ann Thorac Surg 1999;68(4):1133–1136; discussion 1136–1137.

    Article  PubMed  CAS  Google Scholar 

  37. Zimmer LA, McCook B, Meltzer C, et al. Com bined positron emission tomography/computed tomography imaging of recurrent thyroid cancer. Otolaryngol Head Neck Surg 2003;128(2):178–184.

    Article  PubMed  Google Scholar 

  38. Frilling A, Tecklenborg K, Gorges R, Weber F, Clausen M, Broelsch EC. Preoperative diagnostic value of [(18)F] fluorodeoxygrucose positron emission tomography in patients with radioiodine-negative recurrent well-differentiated thyroid carcinoma. Ann Surg 2001;234(6):804–811.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Helal BO, Merlet P, Toubert ME, et al. Clinical impact of (18)F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative (131)I scanning results after therapy. J Nucl Med 2001;42(10):1464–1469.

    PubMed  CAS  Google Scholar 

  40. Yeo JS, Chung JK, SO Y, et al. F-18-fluorodeoxyglucose positron emission tomography as a presurgical evaluation modality for I-131 scan-negative thyroid carcinoma patients with local recurrence in cervical lymph nodes. Head Neck 2001;23(2):94–103.

    Article  PubMed  CAS  Google Scholar 

  41. Hustinx R, Benard F, Alavi A. Whole-body FDG-PET imaging in the management of patients with cancer. Semin Nucl Med 2002;32(l):35–46.

    Article  PubMed  Google Scholar 

  42. Bassa P, Kim EE, Inoue T, et al. Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 1996;37(6):931–938.

    PubMed  CAS  Google Scholar 

  43. Berlangieri SU, Brizel DM, Scher RL, et al. Pilot study of positron emission tomography in patients with advanced head and neck cancer receiving radiotherapy and chemotherapy. Head Neck 1994;16(4):340–346.

    Article  PubMed  CAS  Google Scholar 

  44. Findlay M, Young H, Cunningham D, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxygrucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol 1996;14(3):700–708.

    PubMed  CAS  Google Scholar 

  45. Haberkorn U, Strauss LG, Dimitrakopoulou A, et al. PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy. J Nucl Med 1991;32(8):1485–1490.

    PubMed  CAS  Google Scholar 

  46. Ichiya Y, Kuwabara Y, Otsuka M, et al. Assessment of response to cancer therapy using fluorine-18-fluorodeoxyglucose and positron emission tomography. J Nucl Med 1991;32(9):1655–1660.

    PubMed  CAS  Google Scholar 

  47. Okazumi S, Isono K, Enomoto K, et al. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med 1992;33(3):333–339.

    PubMed  CAS  Google Scholar 

  48. Reisser C, Haberkorn U, Dimitrakopoulou-Strauss A, Seifert E, Strauss LG. Chemotherapeutic management of head and neck malignancies with positron emission tomo graphy. Arch Otolaryngol Head Neck Surg 1995;121(3):272–276.

    Article  PubMed  CAS  Google Scholar 

  49. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evalua tion. J Clin Oncol 1993;11(11):2101–2111.

    PubMed  CAS  Google Scholar 

  50. Schulte M, Brecht-Krauss D, Werner M, et al. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 1999;40(10):1637–1643.

    PubMed  CAS  Google Scholar 

  51. Minn H, Lapela M, Klemi PJ, et al. Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med 1997;38(12):1907–1911.

    PubMed  CAS  Google Scholar 

  52. Allal AS, Dulguerov P, Allaoua M, et al. Stan dardized uptake value of 2-[(18)F] fluoro-2-deoxy-D-glucose in predicting outcome in head and neck carcinomas treated by radiotherapy with or without chemotherapy. J Clin Oncol 2002;20(5):1398–1404.

    Article  PubMed  CAS  Google Scholar 

  53. Eary JF, Krohn KA. Positron emission tomography: imaging tumor response. Eur J Nucl Med 2000;27(12):1737–1739.

    Article  PubMed  CAS  Google Scholar 

  54. Folpe AL, Lyles RH, Sprouse JT, Conrad EU, III, Eary JF. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res 2000;6(4):1279–1287.

    PubMed  CAS  Google Scholar 

  55. Wong RJ, Lin DT, Schoder H, et al. Diagnostic and prognostic value of [(18)F]fluorodeoxyglu-cosepositron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol 2002;20(20):4199–4208.

    Article  PubMed  CAS  Google Scholar 

  56. Spaepen K, Mortelmans L. Evaluation of treatment response in patients with lymphoma using [18F]FDG-PET: differences between non-Hodgkin’s lymphoma and Hodgkin’s disease. Q J Nucl Med 2001;45(3):269–273.

    PubMed  CAS  Google Scholar 

  57. Spaepen K, Stroobants S, Dupont P, et al. Can positron emission tomography with [(18)F]-fluorodeoxyglucose after first-line treatment distinguish Hodgkin’s disease patients who need additional therapy from others in whom additional therapy would mean avoidable toxicity? Br J Haematol 2001;115(2):272–278.

    Article  PubMed  CAS  Google Scholar 

  58. Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol 2001;19(2):414–419.

    PubMed  CAS  Google Scholar 

  59. Jerusalem G, Warland V, Najjar F, et al. Whole-body 18F-FDG PET for the evaluation of patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Nucl Med Commun 1999;20(1):13–20.

    Article  PubMed  CAS  Google Scholar 

  60. Naumann R, Vaic A, Beuthien-Baumann B, et al. Prognostic value of positron emission tomography in the evaluation of post-treatment residual mass in patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Br J Haematol 2001;115(4):793–800.

    Article  PubMed  CAS  Google Scholar 

  61. de Wit M, Bohuslavizki KH, Buchert R, Bumann D, Clausen M, Hossfeld DK. 18FDG-PET following treatment as valid predictor for disease-free survival in Hodgkin’s lymphoma. Ann Oncol 2001;12(1):29–37.

    Article  PubMed  Google Scholar 

  62. Becherer A, Mitterbauer M, Jaeger U, et al. Positron emission tomography with [18F]2-fluoro-D-2-deoxyglucose (FDG-PET) predicts relapse of malignant lymphoma after high-dose therapy with stem cell transplantation. Leukemia 2002;16(2):260–267.

    Article  PubMed  CAS  Google Scholar 

  63. Bakheet SM, Saleem M, Powe J, Al-Amro A, Larsson SG, Mahassin Z. F-18 fluorodeoxy glucose chest uptake in lung inflammation and infection. Clin Nucl Med 2000;25(4):273–278.

    Article  PubMed  CAS  Google Scholar 

  64. Wolf G, Aigner RM, Schwarz T. Pathologic uptake in F-18 FDG positron emission tomography of the residuals of a surgically removed needle abscess. Clin Nucl Med 2002;27(6):439–440.

    Article  PubMed  Google Scholar 

  65. Yoon SN, Park CH, Kim MK, Hwang KH, Kim S. False-positive F-18 FDG gamma camera positron emission tomographic imaging resulting from inflammation of an anterior mediasti-nal mass in a patient with non-Hodgkin’s lymphoma. Clin Nucl Med 2001;26(5):461–462.

    Article  PubMed  CAS  Google Scholar 

  66. Erasmus JJ, McAdams HP, Patz EF, Jr., Coleman RE, Ahuja V, Goodman PC. Evaluation of primary pulmonary carcinoid tumors using FDG PET. AJR Roentgenol 1998;170(5):1369–1373.

    Article  CAS  Google Scholar 

  67. Rege SD, Hoh CK, Glaspy JA, et al. Imaging of pulmonary mass lesions with whole-body positron emission tomography and fluorode-oxyglucose. Cancer 1993;72(1):82–90.

    Article  PubMed  CAS  Google Scholar 

  68. Hoh CK, Seltzer MA, Franklin J, deKernion JB, Phelps ME, Belldegrun A. Positron emission tomography in urological oncology. J Urol 1998;159(2):347–356.

    Article  PubMed  CAS  Google Scholar 

  69. Miyakita H, Tokunaga M, Onda H, et al. Significance of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of renal cell carcinoma and immunohisto-chemical glucose transporter 1 (GLUT-1) expression in cancer. Int J Urol 2002;9(1):15–18.

    Article  PubMed  Google Scholar 

  70. Hofer C, Kubler H, Hartung R, Breul J, Avril N. Diagnosis and monitoring of urological tumors using positron emission tomography. Eur Urol 2001;40(5):481–487.

    Article  PubMed  CAS  Google Scholar 

  71. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G. Metabolic imaging of untreated prostate cancer by positron emission tomography with 18-fluorine-labeled deoxyglucose. J Urol 1996;155(3):994–998.

    Article  PubMed  CAS  Google Scholar 

  72. Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M. Fluorine-18-fluo-rodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 1999;36(1):31–35.

    Article  PubMed  CAS  Google Scholar 

  73. Seltzer MA, Barbaric Z, Belldegrun A, et al. Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol 1999;162(4):1322–1328.

    Article  PubMed  CAS  Google Scholar 

  74. Dimitrakopoulou-Strauss A, Gutzler F, Strauss LG, et al. [PET studies with C-ll ethanol in intratumoral therapy of hepatocellular carcinomas]. Radiologe 1996;36(9):744–749.

    Article  PubMed  CAS  Google Scholar 

  75. Wudel LJ, Jr., Dielbeke D, Morris D, et al. The role of [18F]fluorodeoxyglucose positron emission tomography imaging in the evaluation of hepatocellular carcinoma. Am Surg 2003;69(2):117–124, discussion 24–26.

    PubMed  Google Scholar 

  76. Iwata Y, Shiomi S, Sasaki N, et al. Clinical usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose in the diagnosis of liver tumors. Ann Nucl Med 2000;14(2):121–126.

    Article  PubMed  CAS  Google Scholar 

  77. Schroder O, Trojan J, Zeuzem S, Baum RP. [Limited value of fluorine-18-fluorodeoxyglu-cose PET for the differential diagnosis of focal liver lesions in patients with chronic hepatitis C virus infection]. Nuklearmedizin 1998;37(8):279–285.

    PubMed  CAS  Google Scholar 

  78. Schwarzbach MH, Dimitrakopoulou-Strauss A, Mechtersheimer G, et al. Assessment of soft tissue lesions suspicious for liposarcoma by F18-deoxyglucose (FDG) positron emission tomography (PET). Anticancer Res 2001;21(5):3609–3614.

    PubMed  CAS  Google Scholar 

  79. Hoekstra CJ, Paglianiti I, Hoekstra OS, et al. Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med 2000;27(6):731–743.

    Article  PubMed  CAS  Google Scholar 

  80. Weber WA, Ziegler SI, Thodtmann R, Hanauske AR, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 1999;40(11):1771–1777.

    PubMed  CAS  Google Scholar 

  81. Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 1999;35(13):1773–1782.

    Article  PubMed  CAS  Google Scholar 

  82. Ahuja V, Coleman RE, Herndon J, Patz EF, Jr. The prognostic significance of fluorodeoxyglu-cose positron emission tomography imaging for patients with nonsmall cell lung carcinoma. Cancer 1998;83(5):918–924.

    Article  PubMed  CAS  Google Scholar 

  83. Schelling M, Avril N, Nahrig J, et al. Positron emission tomography using [(18)F]Fluorode-oxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol 2000;18(8):1689–1695.

    PubMed  CAS  Google Scholar 

  84. Saunders CA, Dussek JE, O’Doherty MJ, Maisey MN. Evaluation of fluorine-18-fluorodeoxyglucose whole body positron emission tomography imaging in the staging of lung cancer. Ann Thorac Surg 1999;67(3):790–797.

    Article  PubMed  CAS  Google Scholar 

  85. Hallett WA, Marsden PK, Cronin BF, O’Doherty MJ. Effect of corrections for blood glucose and body size on [18F]FDG PET standardised uptake values in lung cancer. Eur J Nucl Med 2001;28(7):919–922.

    Article  PubMed  CAS  Google Scholar 

  86. Zimny M, Wildberger JE, Cremerius U, et al. [Combined image interpretation of computed tomography and hybrid PET in head and neck cancer.] Nuklearmedizin 2002;41(1):14–21.

    PubMed  CAS  Google Scholar 

  87. Caldwell CB, Mah K, Ung YC, et al. Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 2001;51(4):923–931.

    Article  PubMed  CAS  Google Scholar 

  88. Schaffler GJ, Groell R, Schoellnast H, et al. Digital image fusion of CT and PET data sets—clinical value in abdominal/pelvic malignancies. J Comput Assist Tomogr 2000;24(4):644–647.

    Article  PubMed  CAS  Google Scholar 

  89. Beyer T, Townsend DW, Brun T, et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000;41(8):1369–1379.

    PubMed  CAS  Google Scholar 

  90. Townsend DW, Cherry SR. Combining anatomy and function: the path to true image fusion. Eur Radiol 2001;11(10):1968–1974.

    Article  PubMed  CAS  Google Scholar 

  91. Cook GJ, Ott RJ. Dual-modality imaging. Eur Radiol 2001;11(10):1857–1858.

    Article  PubMed  CAS  Google Scholar 

  92. Osman MM, Cohade C, Nakamoto Y, Marshall LT, Leal JP, Wahl RL. Clinically significant inaccurate localization of lesions with PET/CT: frequency in 300 patients. J Nucl Med 2003;44(2):240–243.

    PubMed  Google Scholar 

  93. Osman MM, Cohade C, Nakamoto Y, Wahl RL. Respiratory motion artifacts on PET emission images obtained using CT attenuation correction on PET-CT. Eur J Nucl Med Mol Imaging 2003;30(4):603–606.

    Article  PubMed  Google Scholar 

  94. Beyer T, Antoch G, Blodgett T, Freudenberg LF, Akhurst T, Mueller S. Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology. Eur J Nucl Med Mol Imaging 2003;30(4):588–596.

    Article  PubMed  Google Scholar 

  95. Nakamoto Y, Tatsumi M, Cohade C, Osman M, Marshall LT, Wahl RL. Accuracy of image fusion of normal upper abdominal organs visualized with PET/CT. Eur J Nucl Med Mol Imaging 2003;30(4):597–602.

    Article  PubMed  Google Scholar 

  96. Israel O, Keidar Z, Iosilevsky G, Bettman L, Sachs J, Frenkel A. The fusion of anatomic and physiologic imaging in the management of patients with cancer. Semin Nucl Med 2001;31(3):191–205.

    Article  PubMed  CAS  Google Scholar 

  97. Martinelli M, Townsend D, Meltzer C, Ville-magne VV. 7. Survey of Results of Whole Body Imaging Using the PET/CT at the University of Pittsburgh Medical Center PET Facility. Clin Positron Imaging 2000;3(4):161.

    Article  PubMed  Google Scholar 

  98. D’Amico TA, Wong TZ, Harpole DH, Brown SD, Coleman RE. Impact of computed tomography-positron emission tomography fusion in staging patients with thoracic malignancies. Ann Thorac Surg 2002;74(1):160–163; discussion 3.

    Article  PubMed  Google Scholar 

  99. Charron M, Beyer T, Bohnen NN, et al. Image analysis in patients with cancer studied with a combined PET and CT scanner. Clin Nucl Med 2000;25(11):905–910.

    Article  PubMed  CAS  Google Scholar 

  100. Hany TF, Steinert HC, Goerres GW, Buck A, von Schulthess GK. PET diagnostic accuracy: improvement with in-line PET-CT system: initial results. Radiology 2002;225(2):575–581.

    Article  PubMed  Google Scholar 

  101. Langenhoff BS, Oyen WJ, Jager GJ, et al. Efficacy of fluorine-18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol 2002;20(22):4453–4458.

    Article  PubMed  CAS  Google Scholar 

  102. Anderson GS, Brinkmann F, Soulen MC, Alavi A, Zhuang H. FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation. Clin Nucl Med 2003;28(3):192–197.

    PubMed  Google Scholar 

  103. Hautzel H, Muller-Gartner HW. Early changes in fluorine-18-FDG uptake during radiotherapy. J Nucl Med 1997;38(9):1384–1386.

    PubMed  CAS  Google Scholar 

  104. Engenhart R, Kimmig B, Hover KH, Strauss LG, Lorenz WJ, Wannenmacher M. [Photon-neutron therapy for recurrent colorectal cancer—follow up and preliminary results.] Strahlenther Onkol 1990;166(1):95–98.

    PubMed  CAS  Google Scholar 

  105. Higashi K, Clavo AC, Wahl RL. In vitro assessment of 2-fluoro-2-deoxy-D-glucose, L-methionine and thymidine as agents to monitor the early response of a human adenocarcinoma cell line to radiotherapy. J Nucl Med 1993;34(5):773–779.

    PubMed  CAS  Google Scholar 

  106. Fischman AJ, Thornton AF, Frosch MP, Swearinger B, Gonzalez RG, Alpert NM. FDG hypermetabolism associated with inflammatory necrotic changes following radiation of menin-gioma. J Nucl Med 1997;38(7):1027–1029.

    PubMed  CAS  Google Scholar 

  107. Zhuang H, Pourdehnad M, Lambright ES, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 2001;42(9):1412–1417.

    PubMed  CAS  Google Scholar 

  108. Hustinx R, Smith RJ, Benard F, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 1999;26(10):1345–1348.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Van den Abbeele, A.D., Israel, D.A., Lechpammer, S., Badawi, R.D. (2005). Positron Emission Tomography Imaging for Tumor Ablation. In: vanSonnenberg, E., McMullen, W.N., Solbiati, L., Livraghi, T., Müeller, P.R., Silverman, S.G. (eds) Tumor Ablation. Springer, New York, NY. https://doi.org/10.1007/0-387-28674-8_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-28674-8_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95539-1

  • Online ISBN: 978-0-387-28674-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics