Skip to main content

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

The anterior segment of the vertebrate eye is a complex arrangement of interdependent tissues of different embryonic origins. Despite its critical role in normal vision, relatively little is currently known about the development of the anterior segment and its molecular determinants. All three members of the PITX homeobox-containing transcription factor gene family were found to be expressed in the anterior segment structures during embryonic development. Two of these genes, PITX2 and PITX3, were shown to be responsible for a spectrum of developmental anterior segment phenotypes associated with glaucoma, corneal opacities and cataracts in humans and mice. These findings demonstrate a requirement of PITX genes for normal development of the anterior segment of the eye and provide tools to study the molecular control of development of these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gage PJ, Suh H, Camper SA. The bicoid-related Pitx gene family in development. Mamm Genome 1999; 10:197–200.

    Article  PubMed  CAS  Google Scholar 

  2. Semina EV, Reiter R, Leysens NJ et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 1996; 14:392–399.

    Article  PubMed  CAS  Google Scholar 

  3. Semina EV, Ferrell RE, Mintz-Hittner HA et al. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet 1998; 19:167–170.

    Article  PubMed  CAS  Google Scholar 

  4. Szeto DP, Rodriguez-Esteban C, Ryan AK et al. Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 1999; 13:484–494.

    PubMed  CAS  Google Scholar 

  5. Lanctot C, Moreau A, Chamberland M et al. Hindlimb patterning and mandible development require the Ptx1 gene. Development 1999; 126:1805–1810.

    PubMed  CAS  Google Scholar 

  6. Gage PJ, Suh H, Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development 1999; 126:4643–4651.

    PubMed  CAS  Google Scholar 

  7. Lu MF, Pressman C, Dyer R et al. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 1999; 401:276–278.

    Article  PubMed  CAS  Google Scholar 

  8. Lin CR, Kioussi C, O’Connell S et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 1999; 401:279–282.

    Article  PubMed  CAS  Google Scholar 

  9. Kitamura K, Miura H, Miyagawa-Tomita S et al. Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra-and periocular mesoderm and right pulmonary isomerism. Develop ment 1999; 126:5749–5758.

    CAS  Google Scholar 

  10. Semina EV, Murray JC, Reiter R et al. Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum Mol Genet 2000; 9:1575–85.

    Article  PubMed  CAS  Google Scholar 

  11. Rieger DK, Reichenberger E, McLean W et al. A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice. Genomics 2001; 72:61–72.

    Article  PubMed  CAS  Google Scholar 

  12. Shields MB. Axenfeld-Rieger syndrome: A theory of mechanism and distinctions from the iridocorneal endothelial syndrome. Trans Am Ophthalmol Soc 1983; 81:736–84.

    PubMed  CAS  Google Scholar 

  13. Shields MB, Buckley E, Klintworth GK et al. Axenfeld-Rieger syndrome. A spectrum of develop mental disorders. Surv Ophthalmol 1985; 29:387–409.

    Article  PubMed  CAS  Google Scholar 

  14. Hjalt TA, Semina EV, Amendt BA et al. The Pitx2 protein in mouse development. Dev Dyn 2000; 218:195–200.

    Article  PubMed  CAS  Google Scholar 

  15. Saadi I, Semina EV, Amendt BA et al. Identification of a dominant negative homeodomain mutation in Rieger syndrome. J Biol Chem 2001; 276:23034–23041.

    Article  PubMed  CAS  Google Scholar 

  16. Priston M, Kozlowski K, Gill D et al. Functional analyses of two newly identified PITX2 mutants reveal a novel molecular mechanism for Axenfeld-Rieger syndrome. Hum Mol Genet 2001; 10:1631–1638.

    Article  PubMed  CAS  Google Scholar 

  17. Quentien MH, Pitoia F, Gunz G et al. Regulation of prolactin, GH, and Pit-1 gene expression in anterior pituitary by Pitx2: An approach using Pitx2 mutants. Endocrinology 2002; 143:2839–2851.

    Article  PubMed  CAS  Google Scholar 

  18. Semina EV, Reiter RS, Murray JC. Isolation of a new homeobox gene belonging to the Pitx/Rieg family: Expression during lens development and mapping to the aphakia region on mouse chromo some 19. Hum Mol Genet 1997; 6:2109–2116.

    Article  PubMed  CAS  Google Scholar 

  19. Hittner HM, Kretzer FL, Antoszyk JH et al. Variable expressivity of autosomal dominant anterior segment mesenchymal dysgenesis in six generations. Am J Ophthalmol 1982; 93:57–70.

    PubMed  CAS  Google Scholar 

  20. Smidt MP, van Schaick HS, Lanctot C et al. A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 1997; 94:13305–13310.

    Article  PubMed  CAS  Google Scholar 

  21. Varnum DS, Stevens LC. Aphakia, a new mutation in the mouse. J Hered 1968; 59:147–50.

    PubMed  CAS  Google Scholar 

  22. Zwaan J, Kirkland BM. Malorientation of mitotic figures in the early lens rudiment of aphakia mouse embryos. Anat Rec 1975; 182:345–354.

    Article  PubMed  CAS  Google Scholar 

  23. Zwaan J, Webster Jr EH. Histochemical analysis of extracellular matrix material during embryonic mouse lens morphogenesis in an aphakic strain of mice. Dev Biol 1984; 104:380–389.

    Article  PubMed  CAS  Google Scholar 

  24. van Heyningen V. Developmental eye disease—a genome era paradigm. Clin Genet 1998; 54:272–282.

    Article  PubMed  Google Scholar 

  25. Sarfarazi M. Recent advances in molecular genetics of glaucomas. Hum Mol Genet 1997; 6:1667–1677.

    Article  PubMed  CAS  Google Scholar 

  26. Graw J. Mouse mutants for eye development. Results Probl Cell Differ 2000; 31:219–256.

    PubMed  CAS  Google Scholar 

  27. Stone EM, Fingert JH, Alward WL et al. Identification of a gene that causes primary open angle glaucoma. Science 1997; 275:668–670.

    Article  PubMed  CAS  Google Scholar 

  28. Azuma N, Hirakiyama A, Inoue T et al. Mutations of a human homologue of the Drosophila eyes absent gene (EYA1) detected in patients with congenital cataracts and ocular anterior segment anomalies. Hum Mol Genet 2000; 9:363–366.

    Article  PubMed  CAS  Google Scholar 

  29. Brownell I, Dirksen M, Jamrich M. Forkhead Foxe3 maps to the dysgenetic lens locus and is critical in lens development and differentiation. Genesis 2000; 27:81–93.

    Article  PubMed  CAS  Google Scholar 

  30. Blixt A, Mahlapuu M, Aitola M et al. A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev 2000; 14:245–254.

    PubMed  CAS  Google Scholar 

  31. Semina EV, Brownell I, Mintz-Hittner HA et al. Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum Mol Genet 2001; 10:231–236.

    Article  PubMed  CAS  Google Scholar 

  32. Ormestad M, Blixt A, Churchill A et al. Foxe3 haploinsufficiency in mice: A model for Peters’ anomaly. Invest Ophthalmol Vis Sci 2002; 43:1350–1357.

    PubMed  Google Scholar 

  33. Rezaie T, Child A, Hitchings R et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 2002; 295:1077–1079.

    Article  PubMed  CAS  Google Scholar 

  34. Lines MA, Kozlowski K, Walter MA. Molecular genetics of Axenfeld-Rieger malformations. Hum Mol Genet 2002; 11:1177–1187.

    Article  PubMed  CAS  Google Scholar 

  35. Jamieson RV, Perveen R, Kerr B et al. Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum Mol Genet 2002; 11:33–42.

    Article  PubMed  CAS  Google Scholar 

  36. Gould DB, John SW. Anterior segment dysgenesis and the developmental glaucomas are complex traits. Hum Mol Genet 2002; 11:1185–1193.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Semina, E.V. (2005). PITX Genes and Ocular Development. In: The Molecular Mechanisms of Axenfeld-Rieger Syndrome. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28672-1_9

Download citation

Publish with us

Policies and ethics