Skip to main content

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 466 Accesses

Abstract

The transcriptional mechanisms underlying tooth development are only beginning to be understood. Axenfeld-Rieger syndrome (ARS) patients provided the first link of PITX2 to tooth development. ARS patients present clinically with dental hypoplasia, which includes microdontia, hypodontia and misshapen teeth. Pitx2 is the earliest known transcription factor that is selectively expressed in the oral ectoderm. Since Pitx2, Msx2, Left and Dlx2 are expressed in the dental epithelium we are examining the transcriptional activity of PITX2 in concert with these factors. We demonstrate that Msx2 binds to a variety of DNA elements and may play a more central role in regulating genes in tissues expressing this transcriptional repressor. We have identified the Dlx2 promoter as a target of PITX2 during tooth development. Msx2 represses the Dlx2 promoter and coexpression of both PITX2 and Msx2 resulted in transcriptional antagonism of the Dlx2 promoter. Furthermore, a PITX2A mutation associated with ARS (PITX2A T68P) is unable to transactivate the Dlx2 promoter. ARS patients with this point mutation present clinically with missing teeth. In contrast, a patient that presents clinically with only iris hypoplasia and normal tooth development has a PITX2A mutation (PITX2A R84W) that transactivates the Dlx2 promoter. These data suggest a molecular mechanism for the dental anomalies associated with Axenfeld-Rieger syndrome. We will review the role of PITX2 in tooth development and speculate on potential downstream targets of PITX2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nieminen P, Pekkanen M, Aberg T et al. A graphical WWW-database on gene expression in tooth. Eur J Oral Sci 1998; 106:7–11.

    PubMed  Google Scholar 

  2. Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev 1997; 67:111–123.

    Article  PubMed  CAS  Google Scholar 

  3. Semina EV, Reiter R, Leysens NJ et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nature Genet 1996; 14:392–399.

    Article  PubMed  CAS  Google Scholar 

  4. Amendt BA, Semina EV, Alward WLM. Rieger Syndrome: A clinical, molecular and biochemical analysis. Cell Mol Life Sci 2000; 57:1652–1666.

    Article  PubMed  CAS  Google Scholar 

  5. Mucchielli M-L, Mitsiadis TA, Raffo S et al. Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev Biol 1997; 189:275–284.

    Article  PubMed  CAS  Google Scholar 

  6. Thesleff I, Sahlberg C. Growth factors as inductive signals regulating tooth morphogenesis. Semin Cell Dev Biol 1996; 7:185–193.

    Article  CAS  Google Scholar 

  7. St. Amand TR, Zhang Y, Semina EV et al. Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev Biol 2000; 217:323–332.

    Article  PubMed  CAS  Google Scholar 

  8. MacKenzie A, Ferguson MJW, Sharpe PT. Expression patterns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development 1992; 115:403–420.

    PubMed  CAS  Google Scholar 

  9. Robinson GW, Mahon KA. Differential and overlapping expression domains of Dlx-2 and Dlx-3 suggest distinct roles for Distal-less homeobox genes in craniofacial development. Mech Dev 1994; 48:199–215.

    Article  PubMed  CAS  Google Scholar 

  10. Kratochwil K, Dull M, Farinas I et al. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev 1996; 10:1382–1394.

    PubMed  CAS  Google Scholar 

  11. Vainio S, Karavanova I, Jowett A et al. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 1993; 75:45–58.

    PubMed  CAS  Google Scholar 

  12. Heikinheimo M, Lawshe A, Shackleford GM et al. FGF-8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs and central nervous system. Mech Dev 1994; 48:129–138.

    Article  PubMed  CAS  Google Scholar 

  13. Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interactions in the mouse embryo. Dev Biol 1995; 172:126–138.

    Article  PubMed  CAS  Google Scholar 

  14. Green PD, Hjalt TA, Kirk DE et al. Antagonistic regulation of Dlx2 expression by PITX2 and Msx2: Implications for tooth development. Gene Expr 2001; 9:265–281.

    PubMed  CAS  Google Scholar 

  15. Hjalt TA, Semina EV, Amendt BA et al. The Pitx2 protein in mouse development. Dev Dyn 2000; 218:195–200.

    Article  PubMed  CAS  Google Scholar 

  16. Aberg T, Wozney J, Thesleff I. Expression patterns of bone morphogenetic proteins (BMPs) in the developing mouse tooth suggest roles in morphogenesis and differentiation. Dev Dyn 1997; 210:383–396.

    Article  PubMed  CAS  Google Scholar 

  17. Kettunen P, Thesleff I. Expression and function of FGFs-4,-8, and-9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 1998; 211:256–268.

    Article  PubMed  CAS  Google Scholar 

  18. Thomas BL, Tucker AS, Ferguson C et al. Molecular control of odontogenic patterning: Positional dependent initiation and morphogenesis. Eur J Oral Sci 1998; 106:44–47.

    PubMed  CAS  Google Scholar 

  19. Thomas BL, Tucker AS, Qiu M et al. Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development 1997; 124:4811–4818.

    PubMed  CAS  Google Scholar 

  20. Mitsiadis TA, Mucchielli M-L, Raffo S et al. Expression of the transcription factors Otlx2, Barx1 and Sox9 during mouse odontogenesis. Eur J Oral Sci 1998; 106:112–116.

    PubMed  CAS  Google Scholar 

  21. Thesleff I, Nieminen P. Tooth morphogenesis and cell differentiation. Cur Opin Cell Biol 1996; 8:844–850.

    Article  CAS  Google Scholar 

  22. Gage PJ, Suh H, Camper SA. Genetic analysis of the bicoid-related homeobox gene Pitx2. Dev Biol 1999; 210 (Abstract):234.

    Google Scholar 

  23. Towler DA, Rutledge SJ, Rodan GA. Msx-2/Hox 8.1: A transcriptional regulator of the rat osteocalcin promoter. Mol Endo 1994; 8:1484–1493.

    Article  CAS  Google Scholar 

  24. Carlsson P, Waterman ML, Jones KA. The hLEF/TCF-1a HMG protein contains a context-dependent transcriptional activation domain that induces the TCRa enhancer in T cells. Genes Dev 1993; 7:2418–2430.

    PubMed  CAS  Google Scholar 

  25. Giese K, Grosschedl R. LEF-1 contains an activation domain that stimulates transcription only in a specific context of factor-binding sites. EMBO J 1993; 12:4667–4676.

    PubMed  CAS  Google Scholar 

  26. Semenza GL, Wang GL, Kundu R. DNA binding and transcriptional properties of wild-type and mutant forms of the homeodomain protein MSX2. Biochem Biophy Res Comm 1995; 209:257–262.

    Article  CAS  Google Scholar 

  27. Zhang H, Hu G, Wang H et al. Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. Mol Cell Biol 1997; 17:2920–2932.

    PubMed  CAS  Google Scholar 

  28. Qiu M, Bulfone A, Martinez S et al. Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Genes Dev 1995; 9:2523–2538.

    PubMed  CAS  Google Scholar 

  29. Thomas BL, Liu JK, Rubenstein JLR et al. Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch. Development 2000; 127:217–224.

    PubMed  CAS  Google Scholar 

  30. Liu JK, Ghattas I, Liu S et al. Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation. Dev Dyn 1997; 210:498–512.

    Article  PubMed  CAS  Google Scholar 

  31. Qju M, Bulfone A, Ghattas I et al. Role of the Dlx Homeobox genes in proximodistal patterning of the branchial arches: Mutations of Dlx-1, Dlx-2, and Dlx-1 and-2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev Biol 1997; 185:165–184.

    Article  Google Scholar 

  32. Lin CR, Kioussi C, O’Connell S et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 1999; 401:279–282.

    Article  PubMed  CAS  Google Scholar 

  33. Lu M, Pressman C, Dyer R et al. Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 1999; 401:276–278.

    Article  PubMed  CAS  Google Scholar 

  34. Gage PJ, Suh H, Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development 1999; 126:4643–4651.

    PubMed  CAS  Google Scholar 

  35. Newberry EP, Latifi T, Battaile JT et al. Structurefunction analysis of Msx2-mediated transcriptional suppression. Biochem 1997; 36:10451–10462.

    Article  CAS  Google Scholar 

  36. Newberry EP, Latifi T, Towler DA. Reciprocal regulation of osteocalcin transcription by the homeodomain proteins Msx2 and Dlx5. Biochem 1998; 37:16360–16368.

    Article  CAS  Google Scholar 

  37. Travis A, Amsterdam A, Belanger C et al. LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor a enhancer function. Genes Dev 1991; 5:880–894.

    PubMed  CAS  Google Scholar 

  38. Waterman ML, Fischer WH, Jones KA. A thymus-specific member of the HMG protein family regulates the human T-cell receptor Ca enhancer. Genes Dev 1991; 5:656–669.

    PubMed  CAS  Google Scholar 

  39. Oosterwegel M, van de Wetering M, Timmerman J et al. Differential expression of the HMG boxfactors TCF-1 and LEF-1 during murine embryogenesis. Development 1993; 118:439–448.

    PubMed  CAS  Google Scholar 

  40. van Genderen C, Okamura RM, Farinas I et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impared in LEF-1-deficient mice. Genes Dev 1994; 8:2691–2703.

    PubMed  Google Scholar 

  41. Zhou P, Byrne C, Jacobs J et al. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes Dev 1995; 9:700–713.

    PubMed  CAS  Google Scholar 

  42. Giese K, Kingsley C, Kirshner JR et al. Assembly and function of a TCRa enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes Dev 1995; 9:995–1008.

    PubMed  CAS  Google Scholar 

  43. Lezot F, Thomas B, Hotton D et al. Biomineralization, life-time of odontogenic cells and differential expression of the two Homeobox genes MSX-1 and DLX-2 in transgenic mice. J Bone Miner Res 2000; 15:430–441.

    Article  PubMed  CAS  Google Scholar 

  44. Gehring WJ, Qian YQ, Billeter M et al. Homeodomain-DNA recognition. Cell 1994; 78:211–223.

    Article  PubMed  CAS  Google Scholar 

  45. Percival-Smith A, Muller M, Affolter M et al. The interaction with DNA of wild-type and mutant fushi tarazu homeodomains. EMBO J 1990; 9:3967–3974.

    PubMed  CAS  Google Scholar 

  46. Wilson DS, Sheng G, Jun S et al. Conservation and diversification in homeodomain-DNA interactions: A comperative genetic analysis. Proc Natl Acad Sci 1996; 93:6886–6891.

    Article  PubMed  CAS  Google Scholar 

  47. Driever W, Nusslein-Volhard C. The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 1989; 337:138–143.

    Article  PubMed  CAS  Google Scholar 

  48. Amendt BA, Sutherland LB, Semina E et al. The molecular basis of rieger syndrome: Analysis of Pitx2 homeodomain protein activities. J Biol Chem 1998; 273:20066–20072.

    Article  PubMed  CAS  Google Scholar 

  49. Amendt BA, Sutherland LB, Russo AF. Transcriptional antagonism between Hmxl and Nkx2.5 for a shared DNA binding site. J Biol Chem 1999; 274:11635–11642.

    Article  PubMed  CAS  Google Scholar 

  50. Thomas BL, Porteus MH, Rubenstein JL et al. The spatial localization of Dlx-2 during tooth development. Connect Tissue Res 1995; 32:27–34.

    PubMed  CAS  Google Scholar 

  51. Chen LS, Couwenhoven RI, Hsu D et al. Maintenance of amelogenin gene expression by trans formed epithelial cells of mouse enamel organ. Archs oral Biol 1992; 37:771–778.

    Article  CAS  Google Scholar 

  52. Amendt BA, Sutherland LB, Russo AF. Multifunctional role of the Pitx2 homeodomain protein c-terminal tail. Mol Cell Biol 1999; 19:7001–7010.

    PubMed  CAS  Google Scholar 

  53. Espinoza HM, Cox CJ, Semina EV et al. A molecular basis for differential developmental anomalies in Axenfeld-Rieger syndrome. Hum Mol Genet 2002; 11:743–753.

    Article  PubMed  CAS  Google Scholar 

  54. Heon E, Sheth BP, Kalenak JW et al. Linkage of autosomal dominant iris hypoplasia to the region of the Rieger syndrome locus (4q25). Hum Mol Genet 1995; 4:1435–1439.

    Article  PubMed  CAS  Google Scholar 

  55. Alward WLM, Semina EV, Kalenak JW et al. Autosomal dominant iris hypoplasia is caused by a mutation in the Rieger syndrome (RIEG/PITX2) gene. Am J Ophthal 1998; 125:98–100.

    Article  PubMed  CAS  Google Scholar 

  56. Kozlowski K, Walter MA. Variation in residual PITX2 activity underlies the phenotypic spectrum of anterior segment developmental disorders. Hum Mol Genet 2000; 9:2131–2139.

    Article  PubMed  CAS  Google Scholar 

  57. Liu C, Liu W, Lu M et al. Regulation of left-right asymmetry by thresholds of Pitx2c activity. Development 2001; 128:2039–2048.

    PubMed  CAS  Google Scholar 

  58. Cox CJ, Espinoza HM, McWilliams B et al. Differential regulation of gene expression by PITX2 isoforms. J Biol Chem 2002; 277:25001–25010.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Amendt, B.A. (2005). The Role of PITX2 in Tooth Development. In: The Molecular Mechanisms of Axenfeld-Rieger Syndrome. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28672-1_8

Download citation

Publish with us

Policies and ethics