Skip to main content

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 402 Accesses

Abstract

PITX2 is a paired-related homeobox gene that has been shown to be the mutated gene in Axenfeld-Rieger syndrome (ARS). The focus of this chapter will be to review recent studies that address the role of pitx2 in cardiac morphogenesis. Since ARS patients usually manifest ocular, dental and abdominal wall phenotypes, this review will deal primarily with experiments performed in model systems used to study gene function, such as the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bekir NA, Gungor K. Atrial septal defect with interatrial aneurysm and Axenfeld-Rieger syndrome. Acta Ophthalmol Scand 2000; 78:101–103.

    Article  PubMed  CAS  Google Scholar 

  2. Cunningham Jr ET, Eliott D, Miller NR et al. Familial Axenfeld-Rieger anomaly, atrial septal defect, and sensorineural hearing loss: A possible new genetic syndrome. Arch Ophthalmol 1998; 116:78–82.

    PubMed  Google Scholar 

  3. Mammi I, De Giorgio P, Clementi M et al. Cardiovascular anomaly in Rieger Syndrome: Heterogeneity or contiguity? Acta Ophthalmol Scand 1998; 76:509–512.

    Article  PubMed  CAS  Google Scholar 

  4. Legius E, de Die-Smulders CE, Verbraak F et al. Genetic heterogeneity in Rieger eye malformation. J Med Genet 1994; 31:340–341.

    Article  PubMed  CAS  Google Scholar 

  5. Semina EV, Reiter R, Leysens NJ et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 1996; 14:392–399.

    Article  PubMed  CAS  Google Scholar 

  6. Brown NA, Anderson RH. Symmetry and laterality in the human heart: Developmental implications. In: Harvey RP, Rosenthal N, eds. Heart Development. San Diego, London, New York, Tokyo, Toronto: Academic Press, 1999:1:447–462.

    Google Scholar 

  7. Icardo JM, Sanchez de Vega MJ. Spectrum of heart malformations in mice with situs solitus, situs inversus, and associated visceral heterotaxy. Circulation 1991; 84:2547–2558.

    PubMed  CAS  Google Scholar 

  8. Capdevila J, Vogan KJ, Tabin CJ et al. Mechanisms of left-right determination in vertebrates. Cell 2000; 101:9–21.

    Article  PubMed  CAS  Google Scholar 

  9. Harvey RP. Links in the left/right axial pathway. Cell 1998; 94:273–276.

    Article  PubMed  CAS  Google Scholar 

  10. Brown NA, Wolpert L. The development of handedness in left/right asymmetry. Development 1990; 109:1–9.

    PubMed  CAS  Google Scholar 

  11. Essner JJ, Vogan KJ, Wagner MK et al. Conserved function for embryonic nodal cilia. Nature 2002; 418:37–38.

    Article  PubMed  CAS  Google Scholar 

  12. Nonaka S, Shiratori H, Saijoh Y et al. Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 2002; 418:96–99.

    Article  PubMed  CAS  Google Scholar 

  13. Nonaka S, Tanaka Y, Okada Y et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998; 95:829–837.

    Article  PubMed  CAS  Google Scholar 

  14. Campione M, Ros MA, Icardo JM et al. Pitx2 expression defines a left cardiac lineage of cells: Evidence for atrial and ventricular molecular isomerism in the iv/iv mice. Dev Biol 2001; 231:252–264.

    Article  PubMed  CAS  Google Scholar 

  15. Logan M, Pagan-Westphal SM, Smith DM et al. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 1998; 94:307–317.

    Article  PubMed  CAS  Google Scholar 

  16. Ryan AK, Blumberg B, Rodriguez-Esteban C et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 1998; 394:545–551.

    Article  PubMed  CAS  Google Scholar 

  17. Piedra ME, Icardo JM, Albajar M et al. Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 1998; 94:319–324.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshioka H, Meno C, Koshiba K et al. Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 1998; 94:299–305.

    Article  PubMed  CAS  Google Scholar 

  19. Campione M, Steinbeisser H, Schweickert A et al. The homeobox gene Pitx2: Mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 1999; 126:1225–1234.

    PubMed  CAS  Google Scholar 

  20. Pagan-Westphal SM, Tabin CJ. The transfer of left-right positional information during chick embryogenesis. Cell 1998; 93:25–35.

    Article  PubMed  CAS  Google Scholar 

  21. Franco D, Campione M, Kelly R et al. Multiple transcriptional domains, with distinct left and right components, in the atrial chambers of the developing heart. Circ Res 2000; 87:984–991.

    PubMed  CAS  Google Scholar 

  22. Liu C, Liu W, Lu MF et al. Regulation of left-right asymmetry by thresholds of pitx2c activity. Development 2001; 128:2039–2048.

    PubMed  CAS  Google Scholar 

  23. Shiratori H, Sakuma R, Watanabe M et al. Two-step regulation of left-right asymmetric expression of Pitx2: Initiation by nodal signaling and maintenance by Nkx2. Molecular Cell 2001; 7:137–149.

    Article  PubMed  CAS  Google Scholar 

  24. Cox CJ, Espinoza HM, McWilliams B et al. Differential regulation of gene expression by PITX2 isoforms. J Biol Chem 2002; 277:25001–25010.

    Article  PubMed  CAS  Google Scholar 

  25. Kitamura K, Miura H, Miyagawa-Tomita S et al. Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra-and periocular mesoderm and right pulmonary isomerism. Development 1999; 126:5749–5758.

    PubMed  CAS  Google Scholar 

  26. Schweickert A, Campionel M, Steinbeisser H et al. Pitx2 isoforms: Involvement of Pitx2c but not Pitx2a or Pitx2b in vertebrate left-right asymmetry. Mech Dev 2000; 90:41–51.

    Article  PubMed  CAS  Google Scholar 

  27. Yu X, St Amand TR, Wang S et al. Differential expression and functional analysis of Pitx2 isoforms in regulation of heart looping in the chick. Development 2001; 128:1005–1013.

    PubMed  CAS  Google Scholar 

  28. Gage PJ, Hoonkyo S, Camper S. Dosage requirement of Pitx2 for development of multiple organs. Development 1999; 126:4643–4651.

    PubMed  CAS  Google Scholar 

  29. Lin CR, Kioussi C, O’Connell S et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 1999; 401:279–282.

    Article  PubMed  CAS  Google Scholar 

  30. Lu MF, Pressman C, Dyer R et al. Function of rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 1999; 401:276–278.

    Article  PubMed  CAS  Google Scholar 

  31. Wright CVE. Mechanisms of Left-Right asymmetry: What’s Right and What’s Left. Developmental Cell 2001; 1:179–186.

    Article  PubMed  CAS  Google Scholar 

  32. Espinoza HM, Cox CJ, Semina EV et al. A molecular basis for differential developmental anomalies in Axenfeld-Rieger syndrome. Hum Mol Genet 2002; 11:743–753.

    Article  PubMed  CAS  Google Scholar 

  33. Amendt BA, Sutherland LB, Russo AF. Multifunctional role of the Pitx2 homeodomain protein C-terminal tail. Mol Cell Biol 1999; 19:7001–7010.

    PubMed  CAS  Google Scholar 

  34. Liu C, Liu W, Palie J et al. Pitx2c patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions. Development 2002; in press.

    Google Scholar 

  35. Jiang X, Rowitch DH, Soriano P et al. Fate of the mammalian cardiac neural crest. Development 2000; 127:1607–1616.

    PubMed  CAS  Google Scholar 

  36. Robb L, Mifsud L, Hartley L et al. Epicardin: A novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts, and mesenchyme of developing lung, gut, kidney, and gonads. Dev Dyn 1998; 213:105–113.

    Article  PubMed  CAS  Google Scholar 

  37. Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 2001; 1:435–440.

    Article  PubMed  CAS  Google Scholar 

  38. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R et al. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 2001; 238:1–13.

    Article  CAS  Google Scholar 

  39. Waldo KL, Kumiski DH, Wallis KT et al. Conotruncal myocardium arises from a secondary heart field. Development 2001; 128:3179–3188.

    PubMed  CAS  Google Scholar 

  40. van den Hoff MJ, Moorman AF, Ruijter JM et al. Myocardialization of the cardiac outflow tract. Dev Biol 1999; 212:477–490.

    Article  PubMed  Google Scholar 

  41. van den Hoff MJB, Kruithof BPT, Moorman AFM et al. Formation of myocardium after the initial development of the Linear Heart Tube. Dev Biol 2001; 240:61–76.

    Article  PubMed  CAS  Google Scholar 

  42. Wei Q, Adelstein RS. Pitx2a expression alters actin-myosin cytoskeleton and migration of HeLa cells through Rho GTPase signaling. Mol Biol Cell 2002; 13:683–697.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media.

About this chapter

Cite this chapter

Martin, J.F. (2005). The Multiple Roles of Pitx2 in Heart Development. In: The Molecular Mechanisms of Axenfeld-Rieger Syndrome. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28672-1_7

Download citation

Publish with us

Policies and ethics