Skip to main content

Fibroblast Growth Factor-2

As a therapeutic agent against heart disease

  • Chapter

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 21))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Pohl, C. Seiler, M. Billinger, E. Herren, K. Wustmann, H. Mehta, S. Windecker, F.R. Eberli, and B. Meier, Frequency distribution of collateral flow and factors influencing collateral channel development. Functional collateral channel measurement in 450 patients with coronary artery disease, J Am Coll Cardiol 38, 1872–1878 (2001).

    PubMed  CAS  Google Scholar 

  2. S.E. Epstein, S. Fuchs, Y.F. Zhou, R. Baffour, and R. Kornowski, Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards, Cardiovasc Res 49, 532–542 (2001).

    PubMed  CAS  Google Scholar 

  3. H.M. Piper, and D. Garcia—Dorado, Prime causes of rapid cardiomyocyte death during reperfusion, Ann Thorac Surg 68, 1913–1919 (1999).

    PubMed  CAS  Google Scholar 

  4. D.M. Yellon, and G.F. Baxter, Protecting the ischaemic and reperfused myocardium in acute myocardial infarction: distant dream or near reality? Heart 83, 381–387 (2000).

    PubMed  CAS  Google Scholar 

  5. D.M. Omitz, and N. Itoh, Fibroblast growth factors, Genome Biol 2, REVIEWS3005 (2001).

    Google Scholar 

  6. N. Ferrara, K.A. Houck, L.B. Jakeman, J. Winer, and D.W. Leung, The vascular endothelial growth factor family of polypeptides, J Cell Biochem 47, 211–218 (1991).

    PubMed  CAS  Google Scholar 

  7. M. Piepkorn, M.R. Pittelkow, and P.W. Cook, Autocrine regulation of keratinocytes: the emerging role of heparin-binding, epidermal growth factor-related growth factors, J Invest Dermatol 111, 715–721 (1998).

    PubMed  CAS  Google Scholar 

  8. G. Szebenyi, and J.F. Fallon, Fibroblast growth factors as multifunctional signaling factors, Int Rev Cyrol 185, 45–106 (1999).

    CAS  Google Scholar 

  9. I. Delrieu, The high molecular weight isofoms of basic fibroblast growth factor (FGF—2): an insight into an intracrine mechanism, FEBS Lett 468, 610 (2000).

    Google Scholar 

  10. B.W. Doble, X. Dang, P. Ping, R.R. Fandrich, B.E. Nickel, Y. Jin, P.A. Cattini, and E. Kardami, Phosphorylation of serine 262 in the gap junction protein connexin—43 regulates DNA synthesis in cell—cell contact forming cardiomyocytes, J Cell Sci 117, 507–514 (2004).

    PubMed  CAS  Google Scholar 

  11. K.A. Detillieux, F. Sheikh, E. Kardami, and P.A. Cattini, Biological activities of fibroblast growth factor—2 in the adult myocardium, Cardiovasc Res 57, 8–19 (2003).

    PubMed  CAS  Google Scholar 

  12. C. Touriol, S. Bornes, S. Bonnal, S. Audigier, H. Prats, A.C. Prats, and S. Vagner, Generation of protein isoform diversity by alternative initiation of translation at non—AUG codons, Biol Cell 95, 169–178 (2003).

    PubMed  CAS  Google Scholar 

  13. E. Arnaud, C. Touriol, C. Boutonnet, M.C. Gensac, S. Vagner, H. Prats, and A.C. Prats, A new 34—kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non—AU start codon and behaves as a survival factor, Mol CeN Biol 19, 505–514 (1999).

    CAS  Google Scholar 

  14. S. Bonnal, C. Schaeffer, L. Creancier, S. Clamens, H. Moine, A.C. Prats, and S. Vagner, A single internal ribosome entry site containing a G quartet RNA structure drives fibroblast growth factor 2 gene expression at four alternative translation initiation codons, J Biol Chem 278, 39330–39336 (2003).

    PubMed  CAS  Google Scholar 

  15. A.C. Prats, and H. Prats, Translational control of gene expression: role of IRESs and consequences for cell transformation and angiogenesis, Prog Nucleic Acid Res Mol Biol 72, 367–413 (2002).

    PubMed  CAS  Google Scholar 

  16. J.D. Coffin, R.Z. Florkiewicz, J. Neumann, T. Mort-Hopkins, G.W. Dorn, 2nd, P. Lightfoot, R. German, P.N. Howles, A. Kier, B.A. O’Toole, et al. Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF—2) transgenic mice, Mol Biol Cell 6, 1861–1873 (1995).

    PubMed  CAS  Google Scholar 

  17. L. Liu, B.W. Doble, and E. Kardami, Perinatal phenotype and hypothyroidism are associated with elevated levels of 21.5— to 22—kDa basic fibroblast growth factor in cardiac ventricles, Dev Biol 157, 507–516 (1993).

    PubMed  CAS  Google Scholar 

  18. L. Creancier, D. Morello, P. Mercier, and A.C. Prats, Fibroblast growth factor 2 internal ribosome entry site (IRES) activity ex vivo and in transgenic mice reveals a stringent tissue—specific regulation, J Cell Bioll 50, 275–281 (2000).

    Google Scholar 

  19. M.K. Stachowiak, X. Fang, J.M. Myers, S.M. Dunham, R. Berezney, P.A. Maher, and E.K. Stachowiak, Integrative nuclear FGFR1 signaling (INFS) as a part of a universal “feed—forward—and—gate” signaling module that controls cell growth and differentiation, J Cell Biochem 90, 662–691 (2003).

    PubMed  CAS  Google Scholar 

  20. H. Peng, J. Myers, X. Fang, E.K. Stachowiak, P.A. Maher, G.G. Martins, G. Popescu, R. Berezney, and M.K. Stachowiak, Integrative nuclear FGFR1 signaling (INFS) pathway mediates activation of the tyrosine hydroxylase gene by angiotensin II, depolarization and protein kinase C, J Neurochem 81, 506–524 (2002).

    PubMed  CAS  Google Scholar 

  21. S.K. Jimenez, F. Sheikh, Y. Jin, K.A. Detillieux, J. Dhaliwal, E. Kardami, and P.A. Cattini, Transcriptional regulation of FGF—2 gene expression in cardiac myocytes, Cardiovasc Res 62, 548–557 (2004).

    PubMed  CAS  Google Scholar 

  22. R.R. Padua, and E. Kardami, Increased basic fibroblast growth factor (bFGF) accumulation and distinct patterns of localization in isoproterenol—induced cardiomyocyte injury, Growth Factors 8, 291–306 (1993).

    PubMed  CAS  Google Scholar 

  23. R. Friesel, and T. Maciag, Fibroblast growth factor prototype release and fibroblast growth factor receptor signaling, Thromb Haemost 82, 748–754 (1999).

    PubMed  CAS  Google Scholar 

  24. D. Kaye, D. Pimental, S. Prasad, T. Maki, H.J. Berger, P.L. McNeil, T.W. Smith, and R.A. Kelly, Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro, J Clin Invest 97, 281–291 (1996).

    PubMed  CAS  Google Scholar 

  25. M.S. Clarke, R.W. Caldwell, H. Chiao, K. Miyake, and P.L. McNeil, Contraction—induced cell wounding and release of fibroblast growth factor in heart, Circ Res 76, 927–934 (1995).

    PubMed  CAS  Google Scholar 

  26. C. Pellieux, A. Foletti, G. Peduto, J.F. Aubert, J. Nussberger, F. Beermann, H.R. Brunner, and T. Pedrazzini, Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF—2, J Clin Invest 108, 1843–1851 (2001).

    PubMed  CAS  Google Scholar 

  27. P.L. McNeil, L. Muthukrishnan, E. Warder, and P.A. D’Amore, Growth factors are released by mechanically wounded endothelial cells, J Cell Biol 109, 811–822 (1989).

    PubMed  CAS  Google Scholar 

  28. P.T. Ku, and P.A. D’Amore, Regulation of basic fibroblast growth factor (bFGF) gene and protein expression following its release from sublethally injured endothelial cells, J Cell Biochem 58, 328–343 (1995).

    PubMed  CAS  Google Scholar 

  29. G.C. Cheng, W.H. Briggs, D.S. Gerson, P. Libby, A.J. Grodzinsky, M.L. Gray, and R.T. Lee, Mechanical strain tightly controls fibroblast growth factor—2 release from cultured human vascular smooth muscle cells, Circ Res 80, 28–36 (1997).

    PubMed  CAS  Google Scholar 

  30. F. Sheikh, D.P. Sontag, R.R. Fandrich, E. Kardami, and P.A. Cattini, Overexpression of FGF—2 increases cardiac myocyte viability after injury in isolated mouse hearts, Am J Physiol Heart Circ Physiol 280, H1039–1050 (2001).

    PubMed  CAS  Google Scholar 

  31. R.S. Piotrowicz, P.A. Maher, and E.G. Levin, Dual activities of 22–24 kDA basic fibroblast growth factor: inhibition of migration and stimulation of proliferation, J Cell Physiol 178, 144–153 (1999).

    PubMed  CAS  Google Scholar 

  32. S. Tavema, G. Ghersi, A. Ginestra, S. Rigogliuso, S. Pecorella, G. Alaimo, F. Saladino, V. Dolo, P. Dell’Era, A. Pavan, et al. Shedding of membrane vesicles mediates fibroblast growth factor—2 release from cells, J Biol Chem 278, 51911–51919 (2003).

    Google Scholar 

  33. K.B. Pasumarthi, B.W. Doble, E. Kardami, and P.A. Cattini, Over—expression of CUG— or AUG—initiated forms of basic fibroblast growth factor in cardiac myocytes results in similar effects on mitosis and protein synthesis but distinct nuclear morphologies, J Mol Cell Cardiol 26, 1045–1060 (1994).

    PubMed  CAS  Google Scholar 

  34. L. Liu, K.B. Pasumarthi, R.R. Padua, H. Massaeli, R.R. Fandrich, G.N. Pierce, P.A. Cattini, and E. Kardami, Adult cardiomyocytes express functional high—affinity receptors for basic fibroblast growth factor, Am J Physiol 268, H1927–1938 (1995).

    PubMed  CAS  Google Scholar 

  35. Y. Jin, K.B. Pasumarthi, M.E. Bock, A. Lytras, E. Kardami, and P.A. Cattini, Cloning and expression of fibroblast growth factor receptor—1 isoforms in the mouse heart: evidence for isoform switching during heart development, J Mot Cell Cardiol 26, 1449–1459 (1994).

    CAS  Google Scholar 

  36. A.C. Rapraeger, A. Krufka, and B.B. Olwin, Requirement of heparan sulfate for bFGF—mediated fibroblast growth and myoblast differentiation, Science 252, 1705–1708 (1991).

    PubMed  CAS  Google Scholar 

  37. E. Kardami, Z.S. Jiang, S.K. Jimenez, C.J. Hirst, F. Sheikh, P. Zahradka, and P.A. Cattini, Fibroblast growth factor 2 isoforms and cardiac hypertrophy, Cardiovasc Res 63, 458–466 (2004).

    PubMed  CAS  Google Scholar 

  38. P.A. Maher, Nuclear Translocation of fibroblast growth factor (FGF) receptors in response to FGF—2, J Cell Biol 134, 529–536 (1996).

    PubMed  CAS  Google Scholar 

  39. J.F. Reilly, and P.A. Maher, Importin beta—mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation, J Cell Biol 152, 1307–1312 (2001).

    PubMed  CAS  Google Scholar 

  40. C. Bossard, H. Laurell, L. Van den Berghe, S. Meunier, C. Zanibellato, and H. Prats, Translokin is an intracellular mediator of FGF—2 trafficking, Nat Cell Biol 5, 433–439 (2003).

    PubMed  CAS  Google Scholar 

  41. H. Bonnet, O. Filhol, I. Truchet, P. Brethenou, C. Cochet, F. Amalric, and G. Bouche, Fibroblast growth factor—2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin, J Biol Chem 271, 24781–24787 (1996).

    PubMed  CAS  Google Scholar 

  42. G. Bouche, V. Baldin, P. Belenguer, H. Prats, and F. Amalric, Activation of rDNA transcription by FGF—2: key role of protein kinase CKII, Cell Mol Biol Res 40, 547–554 (1994).

    PubMed  CAS  Google Scholar 

  43. V. Patry, E. Arnaud, F. Amalric, and H. Prats, Involvement of basic fibroblast growth factor NH2 terminus in nuclear accumulation, Growth Factors 11, 163–174 (1994).

    PubMed  CAS  Google Scholar 

  44. K.B. Pasumarthi, E. Kardami, and P.A. Cattini, High and low molecular weight fibroblast growth factor—2 increase proliferation of neonatal rat cardiac myocytes but have differential effects on binucleation and nuclear morphology. Evidence for both paracrine and intracrine actions of fibroblast growth factor—2, Circ Res 78, 126–136 (1996).

    PubMed  CAS  Google Scholar 

  45. G. Sun, B.W. Doble, J.M. Sun, R.R. Fandrich, R. Florkiewicz, L. Kirshenbaum, J.R. Davie, P.A. Cattini, and E. Kardami, CUG—initiated FGF—2 induces chromatin compaction in cultured cardiac myocytes and in vitro, J Cell Physiol 186, 457–467 (2001).

    PubMed  CAS  Google Scholar 

  46. C.J. Hirst, M. Herlyn, P.A. Cattini, and E. Kardami, High levels of CUG—initiated FGF—2 expression cause chromatin compaction, decreased cardiomyocyte mitosis, and cell death, Mol Cell Biochem 246, 111–116 (2003).

    PubMed  CAS  Google Scholar 

  47. R. Bolli, The late phase of preconditioning, Circ Res 87, 972–983 (2000).

    PubMed  CAS  Google Scholar 

  48. K.A. Detillieux, P.A. Cattini, and E. Kardami, Beyond angiogenesis: the cardioprotective potential of fibroblast growth factor—2, Can J Physiol Pharmacol 82, 1044–1052 (2004).

    PubMed  CAS  Google Scholar 

  49. R.R. Padua, R. Sethi, N.S. Dhalla, and E. Kardami, Basic fibroblast growth factor is cardioprotective in ischemia—reperfusion injury, Mol Cell Biochem 143, 129–135 (1995).

    PubMed  CAS  Google Scholar 

  50. S.L. House, C. Bolte, M. Zhou, T. Doetschman, R. Klevitsky, G. Newman, and J. Schultz Jel, Cardiac—specific overexpression of fibroblast growth factor—2 protects against myocardial dysfunction and infarction in a murine model of low—flow ischemia, Circulation 108, 3140–3148 (2003).

    PubMed  CAS  Google Scholar 

  51. P. Htun, W.D. Ito, I.E. Hoefer, J. Schaper, and W. Schaper, Intramyocardial infusion of FGF—1 mimics ischemic preconditioning in pig myocardium, J Mol Cell Cardiol 30, 867–877 (1998).

    PubMed  CAS  Google Scholar 

  52. R.R. Padua, P.L. Merle, B.W. Doble, C.H. Yu, P. Zahradka, G.N. Pierce, V. Panagia, and E. Kardami, FGF—2—induced negative inotropism and cardioprotection are inhibited by chelerythrine: involvement of sarcolemmal calcium—independent protein kinase C, J Mol Cell Cardiol 30, 2695–2709 (1998).

    PubMed  CAS  Google Scholar 

  53. Z.S. Jiang, W. Srisakuldee, F. Soulet, G. Bouche, and E. Kardami, Non—angiogenic FGF—2 protects the ischemic heart From injury, in the presence or absence of reperfusion, Cardiovarc Res 62 154–166 (2004).

    CAS  Google Scholar 

  54. S. Hoshi, M. Goto, N. Koyama, K. Nomoto, and H. Tanaka, Regulation of vascular smooth muscle cell proliferation by nuclear factor—kappaB and its inhibitor, I—kappaB, J Biol Chem 275, 883–889 (2000).

    PubMed  CAS  Google Scholar 

  55. N. Wakisaka, S. Murono, T. Yoshizaki, M. Furukawa, and J.S. Pagano, Epstein—barr virus latent membrane protein 1 induces and causes release of fibroblast growth factor—2, Cancer Res 62, 6337–6344 (2002).

    PubMed  CAS  Google Scholar 

  56. M. Bond, A.H. Baker, and A.C. Newby, Nuclear factor kappaB activity is essential for matrix metalloproteinase—1 and —3 upregulation in rabbit dermal fibroblasts, Biochem Biophys Res Commun 264, 561–567 (1999).

    PubMed  CAS  Google Scholar 

  57. H. Li, T. Wallerath, and U. Forstermann, Physiological mechanisms regulating the expression of endothelial—type NO synthase, Nitric Oxide 7, 132–147 (2002).

    PubMed  CAS  Google Scholar 

  58. D.J. Hausenloy, and D.M. Yellon, New directions for protecting the heart against ischaemia—reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)—pathway, Cardiovasc Res 61, 448–460 (2004).

    PubMed  CAS  Google Scholar 

  59. Z.S. Jiang, R.R. Padua, H. Ju, B.W. Doble, Y. Jin, J. Hao, P.A. Cattini, I.M. Dixon, and E. Kardami, Acute protection of ischemic heart by FGF—2: involvement of FGF—2 receptors and protein kinase C, Am J Physiol Heart Circ Physiol 282, H1071–1080 (2002).

    PubMed  CAS  Google Scholar 

  60. M. Miyataka, K. Ishikawa, and R. Katori, Basic fibroblast growth factor increased regional myocardial blood flow and limited infarct size of acutely infarcted myocardium in dogs, Angiology 49, 381–390 (1998).

    PubMed  CAS  Google Scholar 

  61. Y. Uchida, A. Yanagisawa—Miwa, F. Nakamura, K. Yamada, T. Tomaru, K. Kimura, and T. Morita, Angiogenic therapy of acute myocardial infarction by intrapericardial injection of basic fibroblast growth factor and heparin sulfate: an experimental study, Am Heart J 130, 1182–1188 (1995).

    PubMed  CAS  Google Scholar 

  62. M. Kawasuji, H. Nagamine, M. Ikeda, N. Sakakibara, H. Takemura, S. Fujii, and Y. Watanabe, Therapeutic angiogenesis with intramyocardial administration of basic fibroblast growth factor, Ann Thorac Surg 69, 1155–1161 (2000).

    PubMed  CAS  Google Scholar 

  63. E. Watanabe, D.M. Smith, J. Sun, F.W. Smart, J.B. Delcarpio, T.B. Roberts, C.H. Van Meter, Jr, and W.C. Claycomb, Effect of basic fibroblast growth factor on angiogenesis in the infarcted porcine heart, Basic Res Cardiol 93, 30–37 (1998).

    PubMed  CAS  Google Scholar 

  64. L. Chen, L.R. Wright, C.H. Chen, S.F. Oliver, P.A. Wender, and D. Mochly—Rosen, Molecular transporters for peptides: delivery of a cardioprotective epsilonPKC agonist peptide into cells and intact ischemic heart using a transport system, R(7), Chem Biol 8, 1123–1129 (2001).

    PubMed  CAS  Google Scholar 

  65. F. Eefting, B. Rensing, J. Wigman, W.J. Pannekoek, W.M. Liu, M.J. Cramer, D.J. Lips, and P.A. Doevendans, Role of apoptosis in reperfusion injury, Cardiovasc Res 61 414–426 (2004).

    PubMed  CAS  Google Scholar 

  66. T.G. Cross, D. Scheel-Toellner, N.V. Henriquez, E. Deacon, M. Salmon, and J.M. Lord, Serinel/threonine protein kinases and apoptosis, Exp Cell Res 256, 34–41 (2000).

    PubMed  CAS  Google Scholar 

  67. E. Iwai-Kanai, K. Hasegawa, M. Fujita, M. Araki, T. Yanazume, S. Adachi, and S. Sasayama, Basic fibroblast growth factor protects cardiac myocytes from iNOS—mediated apoptosis, J Cell Physiol 190, 54–62 (2002).

    PubMed  CAS  Google Scholar 

  68. J. Zhang, C.P. Baines, N.C. Zong, E.M. Cardwell, G. Wang, T.M. Vondriska, and P. Ping, Functional proteomic analysis of a three tier PKC{epsilon}—Akt—eNOS signaling module in cardiac protection, Am J Physiol Heart Circ Physiol. 288(2), 954–961 (2005).

    Google Scholar 

  69. T.J. Poole, E.B. Finkelstein, and C.M. Cox? The role of FGF and VEGF in angioblast induction and migration during vascular development, Dev Dyn 220, 1–17 (2001).

    PubMed  CAS  Google Scholar 

  70. I. Leconte, J.C. Fox, H.S. Baldwin, C.A. Buck, and J.L. Swain, Adenoviral—mediated expression of antisense RNA to fibroblast growth factors disrupts murine vascular development, Dev Dyn 213, 421–430 (1998).

    PubMed  CAS  Google Scholar 

  71. C.M. Cox, and T.J. Poole, Angioblast differentiation is influenced by the local environment: FGF—2 induces angioblasts and patterns vessel formation in the quail embryo, Dev Dyn 218, 371–382 (2000).

    PubMed  CAS  Google Scholar 

  72. P. Parsons-Wingerter, K.E. Elliott, J.I. Clark, and A.G. Fan, Fibroblast growth factor—2 selectively stimulates angiogenesis of small vessels in arterial tree, Arterioscler Thromb Vasc Biol 20, 1250–1256 (2000).

    PubMed  CAS  Google Scholar 

  73. E.F. Unger, S. Banai, M. Shou, D.F. Lazarous, M.T. Jaklitsch, M. Scheinowitz, R. Correa, C. Klingbeil, and S.E. Epstein, Basic fibroblast growth factor enhances myocardial collateral flow in a canine model, Am J Physiol 266, H1588–1595 (1994).

    PubMed  CAS  Google Scholar 

  74. A. Yanagisawa-Miwa, Y. Uchida, F. Nakamura, T. Tomaru, H. Kido, T. Kamijo, T. Sugimoto, K. Kaji, M. Utsuyama, C. Kurashima, et al, Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor, Science 257, 1401–1403 (1992).

    PubMed  CAS  Google Scholar 

  75. D.F. Lazarous, M. Scheinowitz, M. Shou, E. Hodge, S. Rajanayagam, S. Hunsberger, W.G. Robison, Jr., J.A. Stiber, R. Correa, S.E. Epstein, et al, Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart, Circulation 91, 145–153 (1995).

    PubMed  CAS  Google Scholar 

  76. M. Shou, V. Thirumurti, S. Rajanayagam, D.F. Lazarous, E. Hodge, J.A. Stiber, M. Pettiford, E. Elliott, S.M. Shah, and E.F. Unger, Effect of basic fibroblast growth factor on myocardial angiogenesis in dogs with mature collateral vessels, J Am Coll Cardiol 29, 1102–1106 (1997).

    PubMed  CAS  Google Scholar 

  77. K. Harada, W. Grossman, M. Friedman, E.R. Edelman, P.V. Prasad, C.S. Keighley, W.J. Manning, F.W. Sellke, and M. Simons, Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts, J Clin Invest 94, 623–630 (1994).

    PubMed  CAS  Google Scholar 

  78. A. Battler, M. Scheinowitz, A. Bor., D. Hasdai, Z. Vered, E. Di Segni, N. Varda-Bloom, D. Nass, S. Engelberg, M. Eldar, et al, Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium, J Am Coll Cardiol 22 2001–2006 (1993).

    PubMed  CAS  Google Scholar 

  79. G. Seghezzi, S. Patel, C.J. Ren, A. Gualandris, G. Pintucci, E.S. Robbins, R.L. Shapiro, A.C. Galloway, D.B. Rifkin, and P. Mignatti, Fibroblast growth factor—2 (FGF—2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis, J Cell Biol 141, 1659–1673 (1998).

    PubMed  CAS  Google Scholar 

  80. S.J. Mandriota, and M.S. Pepper, Vascular endothelial growth factor—induced in vitro angiogenesis and plasminogen activator expression are dependent on endogenous basic fibroblast growth factor, J Cell Sci 110 (Pt 18), 2293–2302 (1997).

    PubMed  CAS  Google Scholar 

  81. M.S. Pepper, S.J. Mandriota, M. Jeltsch, V. Kumar, and K. Alitalo, Vascular endothelial growth factor (VEGF)—C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity, J Cell Physiol 177, 439–452 (1998).

    PubMed  CAS  Google Scholar 

  82. M.S. Pepper, N. Ferrara, L. Orci, and R. Montesano, Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro, Biochem Biophys Res Commun 189, 824–831 (1992).

    PubMed  CAS  Google Scholar 

  83. T. Asahara, C. Bauters, L.P. Zheng, S. Takeshita, S. Bunting, N. Ferrara, J.F. Symes, and J.M. Isner, Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo, Circulation 92, 11365–371 (1995).

    Google Scholar 

  84. F.W. Sellke, R.J. Laham, E.R. Edelman, J.D. Pearlman, and M. Simons, Therapeutic angiogenesis with basic fibroblast growth factor: technique and early results, Ann Thorac Surg 65, 1540–1544 (1998).

    PubMed  CAS  Google Scholar 

  85. R.J. Laham, F.W. Sellke, E.R. Edelman, J.D. Pearlman, J.A. Ware, D.L. Brown, J.P. Gold, and M. Simons, Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial, Circulation 100, 1865–1871 (1999).

    PubMed  CAS  Google Scholar 

  86. R.J. Laham, N.A. Chronos, M. Pike, M.E. Leimbach, J.E. Udelson, J.D. Pearlman, R.I. Pettigrew, M.J. Whitehouse, C. Yoshizawa, and M. Simons, Intracoronary basic fibroblast growth factor (FGF—2) in patients with severe ischemic heart disease: results of a phase I open—label dose escalation study, J Am Coll Cardiol 36, 2132–2139 (2000).

    PubMed  CAS  Google Scholar 

  87. J.E. Udelson, V. Dilsizian, R.J. Laham, N. Chronos, J. Vansant, M. Blais, J.R. Galt, M. Pike, C. Yoshizawa, and M. Simons, Therapeutic angiogenesis with recombinant fibroblast growth factor—2 improves stress and rest myocardial perfusion abnormalities in patients with severe symptomatic chronic coronary artery disease, Circulation 102, 1605–1610 (2000).

    PubMed  CAS  Google Scholar 

  88. E.F. Unger, L. Goncalves, S.E. Epstein, E.Y. Chew, C.B. Trapnell, R.O. Cannon, 3rd, and A.A. Quyyumi, Effects of a single intracoronary injection of basic fibroblast growth factor in stable angina pectoris, Am J Cardiol 85, 1414–1419 (2000).

    PubMed  CAS  Google Scholar 

  89. M. Ruel, R.J. Laham, J.A. Parker, M.J. Post, J.A. Ware, M. Simons, and F.W. Sellke, Long-term effects of surgical angiogenic therapy with fibroblast growth factor 2 protein, J Thorac Cardiovasc Surg 124, 28–34 (2002).

    PubMed  CAS  Google Scholar 

  90. M. Simons, B.H. Annex, R.J. Laham, N. Kleiman, T. Henry, H. Dauerman, J.E. Udelson, E.V. Gervino, M. Pike, M.J. Whitehouse, et al, Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor—2: double—blind, randomized, controlled clinical trial, Circulation 105, 788–793 (2002).

    PubMed  CAS  Google Scholar 

  91. R.J. Aviles, B.H. Annex, and R.J. Lederman, Testing clinical therapeutic angiogenesis using basic fibroblast growth factor (FGF—2), Br J Pharmacol 140, 637–646 (2003).

    PubMed  CAS  Google Scholar 

  92. R. Khurana, and M. Simons, Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease, Trends Cardiovasc Med 13, 116–122 (2003).

    PubMed  CAS  Google Scholar 

  93. M.A. Pfeffer, Left ventricular remodeling after acute myocardial infarction, Annu Rev Med 46, 455–466 (1995).

    PubMed  CAS  Google Scholar 

  94. P. Anversa, and B. Nadal—Ginard, Myocyte renewal and ventricular remodelling, Nature 415, 240–243 (2002).

    PubMed  CAS  Google Scholar 

  95. C.E. Mum, M.H. Soonpaa, H. Reinecke, H. Nakajima, H.O. Nakajima, M. Rubart, K.B. Pasumarthi, J.I. Virag, S.H. Bartelmez, V. Poppa, et al, Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts, Nature 428, 664–668 (2004).

    Google Scholar 

  96. A.P. Beltrami, L. Barlucchi, D. Torella, M. Baker, F. Limana, S. Chimenti, H.Kasahara, M. Rota, E. Musso, K. Urbanek, et al, Adult cardiac stem cells are multipotent and support myocardial regeneration, Cell 114, 763–776 (2003).

    PubMed  CAS  Google Scholar 

  97. R.C. Chiu, Bone—marrow stem cells as a source for cell therapy, Heart Fail Rev 8, 247–251 (2003).

    PubMed  Google Scholar 

  98. J.S. Forrester, M.J. Price, and R.R. Makkar, Stem cell repair of infarcted myocardium: an overview for clinicians, Circulation 108, 1139–1145 (2003).

    PubMed  Google Scholar 

  99. A.A. Mangi, N. Noiseux, D. Kong, H. He, M. Rezvani, J.S. Ingwall, and V.J. Dzau, Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts, Nut Med 9, 1195–1201 (2003).

    CAS  Google Scholar 

  100. D. Orlic, J.M. Hill, and A.E. Arai, Stem cells for myocardial regeneration, Circ Res 91, 1092–1102 (2002).

    PubMed  CAS  Google Scholar 

  101. D. Orlic, J. Kajstura, S. Chimenti, D.M. Bodine, A. Leri, and P. Anversa, Transplanted adult bone marrow cells repair myocardial infarcts in mice, Ann N Y Acad Sci 938, 221–229; discussion 229–230 (2001).

    PubMed  CAS  Google Scholar 

  102. D. Orlic, J. Kajstura, S. Chimenti, D.M. Bodine, A. Leri, and P. Anversa, Bone marrow stem cells regenerate infarcted myocardium, Pediab Transplant 7 Suppl 3, 86–88 (2003).

    Google Scholar 

  103. Y. Schwartz, and R. Kornowski, Autologous stem cells for functional myocardial repair, Heart Fail Rev 8, 237–245 (2003).

    PubMed  Google Scholar 

  104. E. Kardami, Stimulation and inhibition of cardiac myocyte proliferation in vitro, Mol Cell Biochem 92, 129–135 (1990).

    PubMed  CAS  Google Scholar 

  105. K. Wada, H. Sugimori, P.G. Bhide, M.A. Moskowitz, and S.P. Finklestein, Effect of basic fibroblast growth factor treatment on brain progenitor cells after permanent focal ischemia in rats, Stroke 34, 2722–2728 (2003).

    PubMed  CAS  Google Scholar 

  106. I. Kashiwakura, and T.A. Takahashi, Basic fibroblast growth factor—stimulated ex vivo expansion of haematopoietic progenitor cells from human placental and umbilical cord blood, Br J Haematol 122, 479–488 (2003).

    PubMed  CAS  Google Scholar 

  107. K. Caims, and S.P. Finklestein, Growth factors and stem cells as treatments for stroke recovery, Phys Med Rehabil Clin N Am 14, S135–142 (2003).

    Google Scholar 

  108. M.E. Doumit, D.R. Cook, and R.A. Merkel, Fibroblast growth factor, epidermal growth factor, insulin—like growth factors, and platelet—derived growth factor—BB stimulate proliferation of clonally derived porcine myogenic satellite cells, J Cell Physiol 157, 326–332 (1993).

    PubMed  CAS  Google Scholar 

  109. E. Moroni, P. Dell’Era, M. Rusnati, and M. Presta, Fibroblast growth factors and their receptors in hematopoiesis and hematological tumors, J Hematother Stem Cell Res 11, 19–32 (2002).

    PubMed  CAS  Google Scholar 

  110. C. van den Bos, J.D. Mosca, J. Winkles, L. Kerrigan, W.H. Burgess, and D.R. Marshak, Human mesenchymal stem cells respond to fibroblast growth factors, Hum Cell 10, 45–50 (1997).

    PubMed  Google Scholar 

  111. Y. Sugimoto, T. Koji, and S. Miyoshi, Modification of expression of stem cell factor by various cytokines, J Cell Physiol 181, 285–294 (1999).

    PubMed  CAS  Google Scholar 

  112. P.E. Burger, S. Coetzee, W.L. McKeehan, M. Kan, P. Cook, Y. Fan, T. Suda, R.P. Hebbel, N. Novitzky, W.A. Muller, et al, Fibroblast growth factor receptor—1 is expressed by endothelial progenitor cells, Blood 100, 3527–3535 (2002).

    PubMed  CAS  Google Scholar 

  113. F. Sheikh, C.J. Hirst, Y. Jin, M.E. Bock, R.R. Fandrich, B.E. Nickel, B.W. Dobl, E. Kardami, and P.A. Cattini, Inhibition of TGFbeta signaling potentiates the FGF—2—induced stimulation of cardiomyocyte DNA synthesis, Cardiovasc Res 64, 516–525 (2004).

    PubMed  CAS  Google Scholar 

  114. B. Heissig, Z. Werb, S. Rafii, and K. Hattori, Role of c—kit/Kit ligand signaling in regulating vasculogenesis, Thromb Haemost 90, 570–576 (2003).

    PubMed  CAS  Google Scholar 

  115. R.J. Laham, M. Rezaee, M. Post, F.W. Sellke, R.A. Braeckman, D. Hung, and M. Simons, Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution, Drug Metab Dispos 27, 821–826 (1999).

    PubMed  CAS  Google Scholar 

  116. D.F. Lazarous, M. Shou, J.A. Stiber, D.M. Dadhania, V. Thirumurti, E. Hodge, and E.F. Unger, Pharmacodynamics of basic fibroblast growth factor: route of administration determines myocardial and systemic distribution, Cardiovasc Res 36, 78–85 (1997).

    PubMed  CAS  Google Scholar 

  117. M. Simons, R.O. Bonow, N.A. Chronos, D.J. Cohen, F.J. Giordano, H.K. Hammond, R.J. Laham, W. Li, M. Pike, F.W. Sellke, et al, Clinical trials in coronary angiogenesis: issues, problems, consensus: An expert panel summary, Circulation 102, E73–86 (2000).

    PubMed  CAS  Google Scholar 

  118. K. Sato, R.J. Laham, J.D. Pearlman, D. Novicki, F.W. Sellke, M. Simons, and M.J. Post, Efficacy of intracoronary versus intravenous FGF—2 in a pig model of chronic myocardial ischemia, Ann Thorac Surg 70, 2113–2118 (2000).

    PubMed  CAS  Google Scholar 

  119. R.J. Lederman, F.O. Mendelsohn, R.D. Anderson, J.F. Saucedo, A.N. Tenaglia, J.B. Hermiller, W.B. Hillegass, K. Rocha—Singh, T.E. Moon, M.J. Whitehouse, et al, Therapeutic angiogenesis with recombinant fibroblast growth factor—2 for intermittent claudication (the TRAFFIC study): a randomised trial, Lancet 359, 2053–2058 (2002).

    PubMed  CAS  Google Scholar 

  120. M.A. Bush, E. Samara, M.J. Whitehouse, C. Yoshizawa, D.L. Novicki, M. Pike, R.J. Laham, M. Simons, and N.A. Chronos, Pharmacokinetics and pharmacodynamics of recombinant FGF—2 in a phase I trial in coronary artery disease, J Clin Pharmacol 41, 378–385 (2001).

    PubMed  CAS  Google Scholar 

  121. H.C. Gwon, J.O. Jeong, H.J. Kim, S.W. Park, S.H. Lee, S.J. Park, J.E. Huh, Y. Lee, S. Kim, and D.K. Kim, The feasibility and safety of fluoroscopy—guided percutaneous intramyocardial gene injection in porcine heart, Int J Cardiol 79, 77–88 (2001).

    PubMed  CAS  Google Scholar 

  122. M. Rezaee, A.C. Yeung, P. Altman, D. Lubbe, S. Takeshi, R.S. Schwartz, S. Stertzer, and J.D. Altman, Evaluation of the percutaneous intramyocardial injection for local myocardial treatment, Catheter Cardiovasc Interv 53, 271–276 (2001).

    PubMed  CAS  Google Scholar 

  123. M.J. Post, R. Laham, F.W. Sellke, and M. Simons, Therapeutic angiogenesis in cardiology using protein formulations, Cardiovasc Res 49, 522–531 (2001).

    PubMed  CAS  Google Scholar 

  124. R.J. Laham, M. Rezaee, M. Post, X. Xu, and F.W. Sellke, Intrapericardial administration of basic fibroblast growth factor: myocardial and tissue distribution and comparison with intracoronary and intravenous administration, Catheter Cardiovasc Interv 58, 375–381 (2003).

    PubMed  Google Scholar 

  125. S.E. Epstein, R. Komowski, S. Fuchs, and H.F. Dvorak, Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects, Circulation 104, 115–119 (2001).

    PubMed  CAS  Google Scholar 

  126. S.L. Woodley, M. McMillan, J. Shelby, D.H. Lynch, L.K. Roberts, R.D. Ensley and W.H. Barry, Myocyte injury and contraction abnormalities produced by cytotoxic T lymphocytes, Circulation 83, 1410–1418 (1991).

    PubMed  CAS  Google Scholar 

  127. J.T. Meij, F. Sheikh, S.K. Jimenez, P.W. Nickerson, E. Kardami, and P.A. Cattini, Exacerbation of myocardial injury in transgenic mice overexpressing FGF—2 is T cell dependent, Am J Physiol Heart Circ Physiol 282, H547–555 (2002).

    PubMed  CAS  Google Scholar 

  128. L.T. Cooper, Jr., W.R. Hiatt, M.A. Creager, X. Regensteiner, W. Casscells, J.M. Isner, J.P. Cooke, and A.T. Hirsch, Proteinuria in a placebo—controlled study of basic fibroblast growth factor for intermittent claudication, Vasc Med 6, 235–239 (2001).

    PubMed  Google Scholar 

  129. R.A. Kloner, M.T. Speakman, and K. Przyklenk, Ischemic preconditioning: a plea for rationally targeted clinical trials, Cardiovasc Res 55, 526–533 (2002).

    PubMed  CAS  Google Scholar 

  130. K.W. Mahaffey, J.A. Puma, N.A. Barbagelata, M.F. DiCarli, M.A. Leesar, K.F. Browne, P.R. Eisenberg, R. Bolli, A.C. Casas, V. Molina-Viamonte, et al, Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo—controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial, J Am Coll Cardiol 34, 1711–1720 (1999).

    PubMed  CAS  Google Scholar 

  131. M. Quintana, P. Hjemdahl, A. Sollevi, T. Kahan, M. Edner, N. Rehnqvist, E. Swahn, A.C. Kjerr; and P. Nasman, Left ventricular function and cardiovascular events following adjuvant therapy with adenosine in acute myocardial infarction treated with thrombolysis, results of the ATTenuation by Adenosine of Cardiac Complications (ATTACC) study, Eur J Clin Pharmacol 59, 1–9 (2003).

    PubMed  CAS  Google Scholar 

  132. D.J. Hausenloy, M.M. Mocanu, and D.M. Yellon, Ischemic Preconditioning Protects by Activating Pro—Survival Kinases at Reperfusion, Am J Physiol Heart Circ Physiol 288(2), 971–976 (2005).

    Google Scholar 

  133. M. Quintana, T. Kahan, and P. Hjemdahl, Pharmacological prevention of reperfusion injury in acute myocardial infarction. A potential role for adenosine as a therapeutic agent, Am J Cardiovasc Drugs 4, 159–167 (2004).

    PubMed  CAS  Google Scholar 

  134. R.A. Kloner, and S.H. Rezkalla, Cardiac protection during acute myocardial infarction: where do we stand in 2004? J Am Coll Cardiol 44, 276–286 (2004).

    PubMed  Google Scholar 

  135. M.N. Sack, and D.M. Yellon, Insulin therapy as an adjunct to reperfusion after acute coronary ischemia: a proposed direct myocardial cell survival effect independent of metabolic modulation, J Am Coll Cardiol 41, 1404–1407 (2003).

    PubMed  CAS  Google Scholar 

  136. D. Sodi-Pallares, M.R. Testelli, B.L. Fishleder, A. Bisteni, G.A. Medrano, C. Friedland, and A. De Micheli, Effects of an intravenous infusion of a potassium—glucose—insulin solution on the electrocardiographic signs of myocardial infarction. A preliminary clinical report, Am J Cardiol 9, 166–181 (1962).

    PubMed  CAS  Google Scholar 

  137. A.K. Jonassen, B.K. Brar, O.D. Mjos, M.N. Sack, D.S. Latchman, and D.M. Yellon, Insulin administered at reoxygenation exerts a cardioprotective effect in myocytes by a possible anti—apoptotic mechanism, J Mol Cell Cardiol 32, 757–764 (2000).

    PubMed  CAS  Google Scholar 

  138. A.K. Jonassen, E. Aasum, R.A. Riemersma, O.D. Mjos, and T.S. Larsen, Glucose—insulin—potassium reduces infarct size when administered during reperfusion, Cardiovasc Drugs Ther 14, 615–623 (2000).

    PubMed  CAS  Google Scholar 

  139. F. Gao, E. Gao, T.L. Yue, E.H. Ohlstein, B.L. Lopez, T.A. Christopher, and X.L. Ma, Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia—reperfusion: the roles of PI3—kinase, Akt, and endothelial nitric oxide synthase phosphorylation, Circulation 105, 1497–1502 (2002).

    PubMed  CAS  Google Scholar 

  140. A.K. Jonassen, M.N. Sack, O.D. Mjos and D.M. Yellon, Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell—survival signaling, Circ Res 89, 1191–1198 (2001).

    PubMed  CAS  Google Scholar 

  141. L. Wang, W. Ma, R. Markovich, J.W. Chen, and P.H. Wang, Regulation of cardiomyocyte apoptotic signaling by insulin—like growth factor I, Circ Res 83, 516–522 (1998).

    PubMed  CAS  Google Scholar 

  142. Y. Fujio, T. Nguyen, D. Wencker, R.N. Kitsis, and K. Walsh, Akt promotes survival of cardiomyocytes in vitro and protects against ischemia—reperfusion injury in mouse heart, Circulation 101, 660–667 (2000).

    PubMed  CAS  Google Scholar 

  143. M. Buerke, T. Murohara, C. Skurk, C. Nuss, K. Tomaselli, and A.M. Lefer, Cardioprotective effect of insulin—like growth factor I in myocardial ischemia followed by reperfusion, Proc Natl Acad Sci USA 92, 8031–8035 (1995).

    PubMed  CAS  Google Scholar 

  144. K. Yamashita, J. Kajstura, D.J. Discher, B.J. Wasserlauf, N.H. Bishopric, P. Anversa, and K.A. Webster, Reperfusion—activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin—like growth factor—1, Circ Res 88, 609–414 (2001).

    PubMed  CAS  Google Scholar 

  145. H. Otani, T. Yamamura, Y. Nakao, R. Hattori, H. Kawaguchi, M. Osako, and H. Imamura, Insulin—like growth factor—1 improves recovery of cardiac performance during reperfusion in isolated rat heart by a wortmannin—sensitive mechanism, J Cardiovasc Pharmacol 35, 275–281 (2000).

    PubMed  CAS  Google Scholar 

  146. E.Y. Davani, Z. Brumme, G.K. Singhera, H.C. Cote, P.R. Harrigan, and D.R. Dorscheid, Insulin—like growth factor—1 protects ischemic murine myocardium from ischemia/reperfusion associated injury, Crit Care 7, R176–183 (2003).

    PubMed  Google Scholar 

  147. G.F. Baxter, M.M. Mocanu, B.K. Brar, D.S. Latchman and D.M. Yellon, Cardioprotective effects of transforming growth factor—betal during early reoxygenation or reperfusion are mediated by p42/p44 MAPK, J Cardiovasc Pharmacol 38, 930–939 (2001).

    PubMed  CAS  Google Scholar 

  148. A.M. Lefer, P. Tsao, N. Aoki, and M.A. Palladino, Jr. Mediation of cardioprotection by transforming growth factor—beta, Science 249, 61–64 (1990).

    PubMed  CAS  Google Scholar 

  149. Z. Sheng, K. Knowlton, J. Chen, M. Hoshijima, J.H. Brown and K.R. Chien, Cardiotrophin 1 (CT—1) inhibition of cardiac myocyte apoptosis via a mitogen—activated protein kinase—dependent pathway. Divergence from downstream CT—1 signals for myocardial cell hypertrophy, J Biol Chem 272, 5783–5791 (1997).

    PubMed  CAS  Google Scholar 

  150. B.K. Brar, A. Stephanou, D. Pennica, and D.S. Latchman, CT—1 mediated cardioprotection against ischaemic re—oxygenation injury is mediated by PI3 kinase, Akt and MEK1/2 pathways, Cytokine 16, 93–96 (2001).

    PubMed  CAS  Google Scholar 

  151. Z. Liao, B.K. Brar, Q. Cai, A. Stephanou, R.M. O’Leary, D. Pennica, D.M. Yellon, and D.S. Latchman, Cardiotrophin—1 (CT—1) can protect the adult heart from injury when added both prior to ischaemia and at reperfusion, Cardiovasc Res 53, 902–910 (2002).

    PubMed  CAS  Google Scholar 

  152. Y. Ruixing, Y. Dezhai, and L. Jiaquan, Effects of cardiotrophin—1 on hemodynamics and cardiomyocyte apoptosis in rats with acute myocardial infarction, J Medlnvest 51, 29–37 (2004).

    Google Scholar 

  153. P. Cuevas, F. Carceller, R.M. Lozano, A. Crespo, M. Zazo, and G. Gimenez-Gallego, Protection of rat myocardium by mitogenic and non-mitogenic fibroblast growth factor during post—ischemic reperfusion, Growth Factors 15, 29–40 (1997).

    PubMed  CAS  Google Scholar 

  154. P. Cuevas, D. Reimers, F. Carceller, V. Martinez-Coso, M. Redond-Horcajo, I. Saenz de Tejada, and G. Gimenez-Gallego, Fibroblast growth factor—1 prevents myocardial apoptosis triggered by ischemia reperfusion injury, Eur J Med Res 2, 465–468 (1997).

    PubMed  CAS  Google Scholar 

  155. P. Cuevas, F. Carceller, V. Martinez-Coso, B. Cuevas, A. Fernandez-Ayerdi, D. Reimers, E. Asin-Cardiel, and G. Gimenez-Gallego, Cardioprotection from ischemia by fibroblast growth factor: role of inducible nitric oxide synthase, Eur J Med Res 4, 517–524 (1999).

    PubMed  CAS  Google Scholar 

  156. A. Buehler, A. Martire, C. Strohm, S. Wolfram, B. Fernandez, M. Palmen, X.H. Wehrens, P.A. Doevendans, W.M. Franz, W. Schaper, et al, Angiogenesis—independent cardioprotection in FGF—1 transgenic mice, Cardiovasc Res 55, 768–777 (2002).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elissavet Kardami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kardami, E., Detillieux, K.A., Jimenez, S.K., Cattini, P.A. (2006). Fibroblast Growth Factor-2. In: Cokkinos, D.V., Pantos, C., Heusch, G., Taegtmeyer, H. (eds) Myocardial Ischemia. Basic Science for the Cardiologist, vol 21. Springer, Boston, MA. https://doi.org/10.1007/0-387-28658-6_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-28658-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28657-0

  • Online ISBN: 978-0-387-28658-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics