Skip to main content

Connexin 43 and Ischemic Preconditioning

  • Chapter
Myocardial Ischemia

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 21))

  • 670 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.A.B. van Veen, H.V.M. van Rijen, T. Opthof, Cardiac gap junction channels: modulation of expression and channel properties, Cardiovasc Res 51, 217–229 (2001).

    PubMed  Google Scholar 

  2. S. Poelzing, F.G. Akar, E. Baron, D.S. Rosenbaum, Heterogenous connexin43 expression produces electrophysiological heterogeneities across ventricular wall, Am J Physiol Heart Circ Physiol 286, H2001–H2009 (2004).

    PubMed  CAS  Google Scholar 

  3. H.V. van Rijen, D. Eckardt, J. Degen, M. Theis, T. Ott, K. Willecke, H.J. Jongsma, T. Opthof, J.M. de Bakker, Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43, Circulation 109, 1048–1055 (2004).

    PubMed  Google Scholar 

  4. K.A. Yamada, E.M. Kanter, K.G. Green, J.E. Saffitz, Transmural distribution of connexins in rodent hearts, J Cardiovasc Elecfrophysiol 15, 710–715 (2004).

    Google Scholar 

  5. J.-A. Yao, Gutstein, D.E. Liu F, G.I. Fishman, A.L. Wit, Cell coupling between ventricular myocyte pairs from connexin43-deficient murine hearts, Circ Res 93, 736–743 (2003).

    PubMed  CAS  Google Scholar 

  6. J.E. Contreras, H.A. Sánchez, E.A. Eugenin, D. Speidel, M. Theis, K. Willecke, F.F. Bukauskas, M.V. Bennett, J.C. Saez, Metabolic inhibition induces opening of unopposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture, Proc Natl Acad Sci USA 99, 495–500 (2002).

    PubMed  CAS  Google Scholar 

  7. J.C. Saez, V.M. Berthoud, M.C. Branes, A.D. Martinez, E.C. Beyer, Plasma membrane channels formed by connexins: Their regulation and functions, Physiol Rev 83, 1359–1400 (2003).

    PubMed  CAS  Google Scholar 

  8. A. De Maio, V.L. Vega, J.E. Contreras, Gap junctions, homeostasis, and injury, J Cell Physiol 191, 269–282 (2002).

    PubMed  Google Scholar 

  9. L.I. Plotkin, T. Bellido, Bisphosphonate-induced, hemichannel-mediated, anti-apoptosis through the Src/ERK pathway: a gap junction-independent action of connexin43, Cell Commun Adhes 8, 377–382 (2001).

    PubMed  CAS  Google Scholar 

  10. A.P. Quist, S.K. Rhee, H. Lin, R. Lal, Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation, Cell Biol 48, 1063–1074 (2000).

    Google Scholar 

  11. S.B. Yancey, S.A. John, R. Lal, B.J. Austin, J.P. Revel, The 43-kD polypeptide of heart gap junctions: immunolocalization, topology, and functional domains, J Cell Biol 108, 2241–2254 (1989).

    PubMed  CAS  Google Scholar 

  12. E.C. Beyer, J. Kistler, D.L. Paul, D.A. Goodenough, Antisera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues, J Cell Biol 108, 595–605 (1989).

    PubMed  CAS  Google Scholar 

  13. T. Toyofuku, M. Yabuki, K. Otsu, T. Kuzuya, M. Hori, M. Tada, Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes, J Biol Chem 273, 12725–12731 (1998).

    PubMed  CAS  Google Scholar 

  14. R.J. Barker, R.L. Price, R.G. Gourdie, Increased association of ZO-1 with connexin 43 during remodeling of cardiac gap junctions, Circ Res 90, 317–324 (2002).

    PubMed  CAS  Google Scholar 

  15. E. Kardami, R.M. Stoski, B.W. Doble, T. Yamamoto, E.L. Hertzberg, J.I. Nagy, Biochemical and ultrastructural evidence for the association of basic fibroblast growth factor with cardiac gap junctions, J Biol Chem 266, 19551–19557 (1991).

    PubMed  CAS  Google Scholar 

  16. B.N. Giepmans, I. Verlaan, T. Hengeveld, H. Janssen, J. Calafat, M.M. Falk, W.H. Moolenaar, Gap junction protein connexin-43 interacts directly with microtubules, Curr Biol 11, 1364–1368 (2001).

    PubMed  CAS  Google Scholar 

  17. R.D. Veenstra, H.-Z. Wang, D.A. Beblo, M.G. Chilton, A.L. Harris, E.C. Beyer, P.R. Brink, Selectivity of connexin-specific gap junctions does not correlate with channel conductance, Circ Res 77, 1156–1 165 (1995).

    PubMed  CAS  Google Scholar 

  18. D.C. Spray, J.M. Burt, Structure-activity relations of the cardiac gap junction channel, Am JPhysiol Cell Physiol 258, C195–C205 (1990).

    CAS  Google Scholar 

  19. L. Polontchouk, V. Valiunas, J.-A. Haefliger, H.M. Eppenberger, R. Weingart, Expression and regulation of connexins in cultured ventricular myocytes isolated from adult rat hearts, Pfügers Arch — Eur J Physiol 443, 676–689 (2002).

    CAS  Google Scholar 

  20. B.R. Takens-Kwak, H.J. Jongsma, Cardiac gap junctions: three distinct single channel conductances and their modulation by phosphorylating treatments, Pfügers Arch — Eur JPhysiol 422, 198–200 (1992).

    CAS  Google Scholar 

  21. C.G. Nebigil, N. Etienne, N. Messaddeo, L. Maroteaux, Serotonin is a novel survival factor of cardiomyocytes: mitochondria as a target of 5-HT2B receptor signaling, Faseb J 17, 1373–1375 (2003).

    PubMed  CAS  Google Scholar 

  22. J.E. Contreras, J.C. Saez, FF. Bukauskas, M.V.L. Bennett, Gating and regulation of connexin 43 (Cx43) hemichannels, Proc Natl AcadSci USA 100, 11388–11393 (2003).

    CAS  Google Scholar 

  23. J.K. VanSlyke, LS. Musil, Analysis of connexin intracellular transport and assembly, Methods 20, 156–164 (2000).

    Google Scholar 

  24. L.S. Musil, B.A. Cunningham, G.M. Edelman, D.A. Goodenough, Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and-deficient cell-lines, J Cell Biol 111, 2077–2088 (1990).

    PubMed  CAS  Google Scholar 

  25. J.C. Saez, A.C. Nairn, A.J. Czernik, G.I. Fishman, D.C. Spray, EL. Hertzberg, Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions, J Mol Cell Cardiol 29, 2131–2145 (1997).

    PubMed  CAS  Google Scholar 

  26. E.L. Hertzberg, J.C. Saez, R.A. Corpina, C. Roy, J.A. Kessler, Use of antibodies in the analysis of connexin 43 turnover and phosphorylation, Methods 20, 129–139 (2000).

    PubMed  CAS  Google Scholar 

  27. R. Schulz, G. Heusch, Connexin 43 and ischemic preconditioning, Cardiovasc Res 62, 335–344 (2004).

    PubMed  CAS  Google Scholar 

  28. M. Delmar, W. Coombs, P. Sorgen, H. Duffy, S.M. Taffet, Structural bases for the chemical regulation of connexin43 channels, Cardiovasc Res 62, 268–275 (2004).

    PubMed  CAS  Google Scholar 

  29. A.P. Moreno, Biophysical properties of homomeric and heteromultimeric channels formed by cardiac connexins, Cardiovasc Res 62, 276–286 (2004).

    PubMed  CAS  Google Scholar 

  30. BR. Kwak, TA. van Veen, LJ. Analbers, HJ. Jongsma, TPA increases conductance but decreases permeability in neonatal rat cardiomyocyte gap junction channels, Exp Cell Res 220, 56–463 (1995).

    Google Scholar 

  31. BR. Kwak, HJ. Jongsma, Regulation of cardiac gap junction channel permeability and conductance by several phosphorylating conditions. Mol Cell Biochem 157, 93–99 (1996).

    PubMed  CAS  Google Scholar 

  32. M. Ruiz-Meana, D. Garcia-Dorado, S. Lane, P. Pina, J. Inserte, M. Mirabet, J. Soler-Soler, Persistence of gap junction communication during myocardial ischemia, Am J Physiol Heart Circ Physiol 280, H2563–H2571 (2001).

    PubMed  CAS  Google Scholar 

  33. A.F. Lau, V. Hatch-Pigott, DS. Crow, Evidence that heart connexin43 is a phosphoprotein, J Mol Cell Cardiol 23, 659–663 (1991).

    PubMed  CAS  Google Scholar 

  34. J.M. Burt, D.C. Spray, Inotropic agents modulate gap junctional conductance between cardiac myocytes, Am J Physiol Heart Circ Physiol 254, H1206–H1210 (1988).

    CAS  Google Scholar 

  35. W.C. De Mello, Impaired regulation of cell communication by ß-adrenergic receptor activation in the failing heart, Hypertension 27, 265–268 (1996).

    PubMed  Google Scholar 

  36. A.F. Paulson, P.D. Lampe, R.A. Meyer, E. TenBroek, M.M. Atkinson, T.F. Walseth, R.G. Johnson, Cyclic AMP and LDL trigger a rapid enhancement in gap junction assembly through a stimulation of connexin trafficking, J Cell Science 113, 3037–3049 (2000).

    PubMed  CAS  Google Scholar 

  37. P.D. Lampe, Q. Qiu, RA. Meyer, E.M. TenBroek, T.F. Walseth, T.A. Stanch, H.L. Grunenwald, R.G. Johnson, Gap junction assembly: PTX-sensitive G proteins regulate the distribution of connexin43 within cells, Am JPhysiol Cell Physiol 281, C1211–Cl222 (2001).

    CAS  Google Scholar 

  38. E.M. TenBroek, P.D. Lampe, J.L. Solan, J.K. Reynhout, R.G. Johnson, Ser364 of connexin43 and the upregulation of gap junction assembly by cAMP, J Cell Biol 155, 1307–1318 (2003).

    Google Scholar 

  39. G. Kojda, K. Kottenberg, Regulation of basal myocardial function by NO, Cardiovasc Res 41, 514–523 (1999).

    PubMed  CAS  Google Scholar 

  40. M.T. Gewaltig, G. Kojda, Vasoprotection by nitric oxide: mechanisms and therapeutic potential, Cardiovase Res 55, 250–260 (2002).

    CAS  Google Scholar 

  41. A. Friebe, D. Koesling, Regulation of nitric oxide — sensitive guanylyl cyclase, Circ Res 93, 96–105 (2003).

    PubMed  CAS  Google Scholar 

  42. P. Ping, J. Zhang, W.M. Pierce, R. Bolli, Functional proteomic analysis of protein kinase C ε signaling complexes in the normal heart and during cardioprotection, Circ Res 88, 59–62 (2001).

    PubMed  CAS  Google Scholar 

  43. R. Schulz, P. Gres, A. Skyschally, A. Duschin, S. Belosjorow, I Konietzka, G. Heusch, Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo, Faseb J 17, 1355–1357 (2003).

    PubMed  CAS  Google Scholar 

  44. B.W. Doble, P. Ping, E. Kardami, The ε subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation, Circ Res 86, 293–301 (2000).

    PubMed  CAS  Google Scholar 

  45. N. Bowling, X. Huang, G.E. Sandusky, R.L. Fouts, K. Mintze, M. Esterman, P.D. Allen, R Maddi, E. McCall, C.J. Vlahos, Protein kinase C-α and ε modulate connexin-43 phosphorylation in human heart, J Mol Cell Cardiol 33, 789–798 (2001).

    PubMed  CAS  Google Scholar 

  46. B.W. Doble, P. Ping, R.R. Fandrich, P.A. Cattani, E. Kardami, Protein kinase C-epsilon mediates phorbol ester-induced phosphorylation of connexin-43, Cell Commun Adhes 8, 253–256 (2001).

    PubMed  CAS  Google Scholar 

  47. S. Weng, M. Lauven, T. Schaefer, L. Polontchouk, R. Grover, S. Dhein, Pharmacological modification of gap junction coupling by an antiamhyhmic peptide via protein kinase C activation, Faseb J 16, 1114–1116.

    Google Scholar 

  48. B.W. Doble, Y. Chen, D.G. Bosc, D.W. Litchfield, E. Kardami, Fibroblast growth factor-2 decreases metabolic coupling and stimulates phosphorylation as well as masking of connexin43 epitopes in cardiac myocytes, Circ Res 79, 647–658 (1996).

    PubMed  CAS  Google Scholar 

  49. T. Toyofuku, Y. Akamatsu, H. Zhang, M. Tada, M. Hori, c-Src regulates the interaction between connexin-43 and ZO-1 in cardiac myocytes, J Biol Chem 276, 1780–1788 (2001).

    PubMed  CAS  Google Scholar 

  50. D. Lidington, K. Tyml, Y. Ouellette, Lipopolysaccharide-induced reductions in cellular coupling correlate with tyrosine phosphorylation of connexin 43, J Cell Physiol 193, 373–379 (2002).

    PubMed  CAS  Google Scholar 

  51. L. Polontchouk, B. Ebelt, M. Jackels, S. Dhein, Chronic effects of endothelin 1 and angiotensin II on gap junctions and intercellular communication in cardiac cells, Faseb J 16, 87–89 (2002).

    PubMed  CAS  Google Scholar 

  52. R.P. Brandes, R. Popp, G. Ott, D. Bredenkotter, C. Wallner, R. Busse, I. Fleming, The extracellular regulated kinases (ERK) 112 mediate cannabinoid-induced inhibition of gap junctional communication in endothelial cells, Br J Pharmacol 136,709–716 (2002).

    PubMed  CAS  Google Scholar 

  53. D.Y. Kim, Y. Kam, S.K. Koo, C.O. Joe, Gating connexin 43 channels reconstituted in lipid vesicles by mitogen-activated protein kinase phosphorylation, J Biol Chem 274, 5581–5587 (1999).

    PubMed  CAS  Google Scholar 

  54. B.J. Warn-Cramer, G.T. Cottrell, J.M. Burt, A.F. Lau, Regulation of connexin-43 gap junctional intercellular communication by mitogen-activated protein kinase, J Biol Chem 273, 9188–9196 (1998).

    PubMed  CAS  Google Scholar 

  55. S.J. Cameron, S. Malik, M. Akaike, N. Lerner-Marmarosh, C. Yan, JD. Lee, J Abe, J. Yang, Regulation of epidermal growth factor-induced connexin 43 gap junction communication by big mitogen-activated protein kinase 1/ERK 5 but not ERK1/2 kinase activation, J Biol Chem 278, 18682–18688 (2003).

    PubMed  CAS  Google Scholar 

  56. B.G. Petrich, X. Gong, DL. Lerner, X. Wang, JH. Brown, JE. Saffitz, Y, Wang, c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes, Circ Res 91, 640–647 (2002).

    PubMed  CAS  Google Scholar 

  57. RJ. Barker, RG. Gourdie, JNK bond regulation. Why do mammalian hearts invest in connexin 43? Circ Res 91, 556–558 (2002).

    PubMed  CAS  Google Scholar 

  58. B.J. Warn-Cramer, P.D. Lampe, W.E, Kurata, M.Y. Kanemitsu, L.W. Loo, W. Eckhart, A.F. Lau, Characterization of the mitogen-activated protein kinase phosphorylation sites on the cowexin-43 gap junction protein, J Biol Chem 271, 3779–3786 (1996).

    PubMed  CAS  Google Scholar 

  59. A.F. Lau, W.E. Kurata, M.Y. Kanemitsu, L.W. Loo, B.J. Warn-Cramer, W. Eckhart, P.D. Lampe, Regulation of connexin43 function by activated tyrosine protein kinases, J Bioenerg Biomembr 28, 359–368 (1996).

    PubMed  CAS  Google Scholar 

  60. CD. Cooper, P.D. Lampe, Casein kinase 1 regulates connexin-43 gap junction assembly, J Biol Chem 277, 4962–44968 (2003).

    Google Scholar 

  61. I. Konietzka, P. Gres, G. Heusch, R. Schulz, Co-localization of connexin 43 (Cx43) and protein phosphatases in preconditioned myocardium in pigs, J Mol Cell Cardiol 36, 757 (Abstract) (2004).

    Google Scholar 

  62. M. Jeyaraman, S. Tanguy, RA. Fandrich, A. Lukas, E. Kardami, Ischemia-induced dephosphorylation of cardiomyocyte cowexin-43 is reduced by okadaic acid calyculin A but not fostriecin, Mol Cell Biochem 242, 129–134 (2003).

    PubMed  CAS  Google Scholar 

  63. X. Ai, S.M. Pogwizd, Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A, Circ Res 96, 5443 (2005).

    Google Scholar 

  64. Q. Liu, P.A. Hofmann, Modulation of protein phosphatase 2a by adenosine A1 receptors in cardiomyocytes: role for p38 MAPK, Am J Physiol Heart Circ Physiol 285, H97–H103 (2003).

    PubMed  CAS  Google Scholar 

  65. M.C. Michel, Y. Li, G. Heusch, Mitogen-activated protein kinases in the heart. Naunyn-Schmiedeberg’s Arch Pharmacol 363, 245–266 (2001).

    CAS  Google Scholar 

  66. M. Sayed, S.O. Kim, B.S. Salh, 0.-G. Issinger, S.L. Pelech, Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase, J Biol Chem 275, 16569–16573 (2000).

    PubMed  CAS  Google Scholar 

  67. K. Cieslik, C.-M. Lee, J. Tang, K.K. Wu, Transcriptional regulation of endothelial nitric-oxide synthase by an interaction between casein kinase 2 and protein phosphatase 2A, J Biol Chem 274, 34669–34675 (1999).

    PubMed  CAS  Google Scholar 

  68. S.M. Keyse, Protein phosphatases and the regulation of mitogen-activated protein kinase signalling, Curr Opinion Cell Biol 12: 186–192 (2000).

    PubMed  CAS  Google Scholar 

  69. H.M. Piper, The calcium paradox revisited: an artefact of great heuristic value. Cardiovasc Res 45, 123–127 (2000).

    PubMed  CAS  Google Scholar 

  70. G.-T. Kim, Y.-S. Chun, J.-W. Park, M.-S. Kim, Role of apoptosis-inducing factor in myocardial cell death by ischemia-reperfusion, Biochem Biophys Res Commun 309, 619–624 (2003).

    PubMed  CAS  Google Scholar 

  71. R. Schulz, M.V. Cohen, M. Behrends, J.M. Downey, G. Heusch, Signal transduction of ischemic preconditioning, Cardiovasc Res 52, 181–198 (2001).

    PubMed  CAS  Google Scholar 

  72. F. Li, K. Sugishita, Z. Su, I. Ueda, W.H. Barry, Activation of connexin-43 hemichannels can elevate [Ca2+]i and [Na+]i in rabbit ventricular myocytes during metabolic inhibition, J Mol Cell Cardiol 33, 2145–2155 (2001).

    PubMed  CAS  Google Scholar 

  73. S.A. John, R. Kondo, S.-Y. Wang, J.I. Goldhaber, J.N. Weiss, Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274, 236–240 (1999).

    PubMed  CAS  Google Scholar 

  74. C.E. Murry, R.B. Jennings, K.A. Reimer, Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium, Circulation 74, 1124–1136 (1986).

    PubMed  CAS  Google Scholar 

  75. C.A. Piot, D. Padmanaban, P.C. Ursell, R.E. Sievers, C.L. Wolfe, Ischemic preconditioning decreases apoptosis in rat hearts in vivo, Circulation 96, 1598–1604 (1997).

    PubMed  CAS  Google Scholar 

  76. N. Maulik, T. Yoshida, R.M. Engelman, D. Deaton, J.E. Flack 3rd, J.A. Rousou, D.K. Das, Ischemic preconditioning attenuates apoptotic cell death associated with ischemia/reperfusion, Mol Cell Biochem 186, 139–145 (1998).

    PubMed  CAS  Google Scholar 

  77. M. Nakamura, N.-P. Wang, Z.-Q. Zhao, J.N. Wilcox, V. Thourani, R.A. Guyton, J. Vinten-Johansen, Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart, Cardiovasc Res 45, 661–670 (2000).

    PubMed  CAS  Google Scholar 

  78. D.M. Yellon, J.M. Downey, Preconditioning the myocardium: From cellular physiology to clinical cardiology, Physiol Rev 83, 1113–1151 (2003).

    PubMed  CAS  Google Scholar 

  79. M.A. Beardslee, D.L. Lerner, P.N. Tadros, J.G. Laing, E.C. Beyer, K.A. Yamada, A.G. Kleber, R.B. Schuessler, JE. Saffitz, Dephosphorylation and intracellular redistributoin of ventricular connexin 43 during electrical uncoupling induced by ischemia, Circ Res 87, 656–662 (2000).

    PubMed  CAS  Google Scholar 

  80. S.K. Jain, R.B. Schuessler, J.E. Saffitz, Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning, Circ Res 92, 1138–1144 (2003).

    PubMed  CAS  Google Scholar 

  81. T. Miura, Y. Ohnuma, A. Kuno, M. Tanno, Y. Ichikawa, Y. Nakamura, T. Yano, T. Miki, J. Sakamoto, K. Shimamoto, Protective role of gap junctions in preconditioning against myocardial infarction, Am J Physiol Heart Circ Physiol 286, H214–H221 (2004).

    PubMed  CAS  Google Scholar 

  82. D. Garcia-Dorado, M. Ruiz-Meana, F. Padilla, A. Rodriguez-Sinovas, M. Mirabet, Gap-junction-mediated intercellular communication in ischemic preconditioning, Cardiovasc Res 55, 456–465 (2002).

    PubMed  CAS  Google Scholar 

  83. R.P. Kondo, SY. Wang, SA. John, JN. Weiss, JI. Goldhaber, Metabolic inhibition activates a non-selective current through connexin hemichannels in isolated ventricular myocytes, J Mol Cell Cardiol 32, 1859–1872 (2000).

    PubMed  CAS  Google Scholar 

  84. MM. Pike, C.S. Luo, S. Yanagida, G.R. Hageman, P.G. Anderson, 23Na and 31P nuclear magnetic resonance studies of ischemia-induced ventricular fibrillation. Alterations of intracellular Na+ and cellular energy, Circ Res 77, 349–406 (1995).

    Google Scholar 

  85. J.A. Balschi, 23Na NMR demonstrates prolonged increase of intracellular sodium following transient regional ischemia in the in situ pig heart, Basic Res Cardiol 94, 60–69 (1999).

    PubMed  CAS  Google Scholar 

  86. C.J.A. van Echteld, J.H. Kirkels, M.H.J. Eijgelshoven, P. van der Meer, TJC. Ruigrok, Intracellular sodium during ischemia and calcium-free perfbsion: A233Na NMR Study, J Mol Cell Cardiol 23, 297–307 (1991).

    PubMed  Google Scholar 

  87. M. Ruiz-Meana, D. Garcia-Dorado, B. Hofstaetter, H.M. Piper, J. Soler-Soler, Propagation of cardiomyocyte hypercontracture by passage of Na+ through gap junctions, Circ Res 85, 280–287 (1999).

    PubMed  CAS  Google Scholar 

  88. D. Garcia-Dorado, A. Rodriguez-Sinovas, M. Ruiz-Maena, Gap junction-mediated spread of cell injury and death during myocardial ischemia-reperfusion, Cardiovasc Res 61, 386–401 (2004).

    PubMed  CAS  Google Scholar 

  89. D. Garcia-Dorado, J. Inserte, M. Ruiz-Meana, M.A. Gonzalez, J. Solares, M. Julia, J.A. Barrabes, J. Soler-Soler, Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion, Circulation 96, 3579–3586 (1997).

    PubMed  CAS  Google Scholar 

  90. F. Duthe, E. DuPont, F. Verrechia, I. Plaisance, N.J. Severs, D Sarrouilhe, J.C. Herve, Dephosphorylation agents depress gap junctional communication between rat cardiac cells without modifying the connexin 43 phosphorylation degree, Gen Physiol Biophys 19, 441–449 (2000).

    PubMed  CAS  Google Scholar 

  91. D. Garcia-Dorado, P. Théroux, J.M. Duran, J. Solares, J. Alonso, E. Sanz, R. Munoz, J. Elizaga, J. Botas, F. Femandez-Aviles, et al. Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion, Circulation 85, 1160–1174 (1992).

    PubMed  CAS  Google Scholar 

  92. S.C. Armstrong, C. Shivell, C.E. Ganote, Sarcolernrnal blebs and osmotic fragility as correlates of irreversible ischemic injury in preconditioned isolated rabbit cardiomycytes, J Mol Cell Cadiol 33: 149–160 (2001).

    CAS  Google Scholar 

  93. Z.-S. Jiang, R.R. Padua, H. Ju, B.W. Doble, Y. Jin, J. Hao, P.A. Cattini, I.M. Dixon, E. Kardami, Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C, Am J Physiol Heart Circ Physiol 282, H1071–H1080 (2002).

    PubMed  CAS  Google Scholar 

  94. P. Htun, W.D. Ito, I.E. Hoefer, J. Schaper, W. Schaper, Intramyocardial infusion of FGF-1 mimics ischemic preconditioning in pig myocardium, J Mol Cell Cardiol 30, 867–877 (1998).

    PubMed  CAS  Google Scholar 

  95. K.A. Detillieux, F. Sheikh, E. Kardami, P.A. Cattini, Biological activities of fibroblast growth factor-2 in the adult myocardium, Cardiovasc Res 57, 8–19 (2003).

    PubMed  CAS  Google Scholar 

  96. E.I. Azzam, S.M. de Toledo, J.B. Little, Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to non-irradiated cells, Proc Natl Acad Sci USA 98, 473–478 (2001).

    PubMed  CAS  Google Scholar 

  97. G. Li, P. Whittaker, M. Yao, R.A. Kloner, K. Przyklenk, The gap junction uncoupler heptanol abrogates infarct size reduction with preconditioning in mouse hearts, Cardiovasc Pathol 11, 158–165 (2002).

    PubMed  CAS  Google Scholar 

  98. U. Schwanke, I. Konietzka, A. Duschin, X. Li, R. Schulz, G. Heusch, No ischemic preconditioning in heterozygous connexin 43-deficient mice, Am JPhysiol Heart Circ Physiol 283, H1740–H1742 (2002).

    CAS  Google Scholar 

  99. U. Schwanke, X. Li, R. Schulz, G. Heusch, No ischemic preconditioning in heterozygous connexin 43-deficient mice: a further in vivo study, Basic Res Cardiol 98, 181–182 (2003).

    PubMed  Google Scholar 

  100. F. Padilla, D. Garcia-Dorado, A. Rodriguez-Sinovas, M. Ruiz-Meana, J. Inserte, J. Soler-Soler, Protection afforded by ischemic preconditioning is not mediated by effects on cell-to-cell electrical coupling during myocardial ischemia-reperfusion, Am J Physiol Heart Circ Physiol 285, H1909–HI916 (2003).

    PubMed  CAS  Google Scholar 

  101. X. Li, FR. Heinzel, K. Boengler, R. Schulz, G. Heusch, Role of connexin 43 in ischemic preconditioning does not involve intercellular communications through gap junctions, J Mol Cell Cardiol 36, 161–163 (2004).

    PubMed  CAS  Google Scholar 

  102. X. Dang, B.W. Doble, E. Kardami, The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth, Mol Cell Biochem 242, 35–38 (2003).

    PubMed  CAS  Google Scholar 

  103. H. Li, S. Brodsky, S. Kumari, V. Valiunas, P. Brink, J. Kaide, A. Nasjletti, MS. Goligorsky, Paradoxical overexpression and translocation of connexin 43 in homocysteine-treated endothelial cells, Am J Physiol Heart Circ Physiol 282, H2124–H2133 (2002).

    PubMed  CAS  Google Scholar 

  104. L.H. Opie, M.N. Sack, Metabolic plasticity and the promotion of cardiac protection in ischemia and ischemic preconditioning, J Mol Cell Cardiol 34, 1077–1089 (2002).

    PubMed  CAS  Google Scholar 

  105. T. Krieg, M.V. Cohen, J.M. Downey, Mitochondria and their role in preconditioning’s trigger phase, Basic Res Cardiol 98, 228–234 (2003).

    PubMed  CAS  Google Scholar 

  106. G. Taimor, Mitochondria as common endpoints in early and late preconditioning, Cardiovasc Res 59, 266–267 (2003).

    PubMed  CAS  Google Scholar 

  107. B. O’Rourke, Evidence for mitochondrial K+ channels and their role in cardioprotection, Circ Res 94, 420–432 (2004).

    PubMed  CAS  Google Scholar 

  108. A.P. Halestrap, S.J. Clarke, S.A. Javadov, Mitochondrial permeability transition pore opening during myocardial reperfusion — a target for cardioprotection, Cardiovasc Res 61, 372–385 (2004).

    PubMed  CAS  Google Scholar 

  109. E. Murphy, Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection, Circ Res 94, 7–16 (2004d)

    PubMed  CAS  Google Scholar 

  110. D. Hausenloy, A. Wynne, M. Duchen, D. Yellon, Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection, Circulation 109, 1714–1717 (2004).

    PubMed  CAS  Google Scholar 

  111. K. Böngler, G. Dodoni, M. Ruiz-Maena, A. Cabestrero, A. Rodriguez-Sinovas, D. Garcia-Dorado, P. Gres, F. Di Lisa, G. Heusch, R. Schulz, Mitochondrial localization of connexin 43 in cardiomyocytes and its enhancement by ischemic preconditioning, Circulation 110, III–236 (Abstract) (2004)

    Google Scholar 

  112. G. Heusch, Nitroglycerin and delayed preconditioning in humans. Yet another new mechanism for an old drug? Circulation 103, 2876–2878 (2001).

    PubMed  CAS  Google Scholar 

  113. T. Miki, T. Miura, M. Tanno, J. Sakamoto, A. Kuno, S. Genda, T. Matsumoto, Y. Ichikawa, K. Shimamoto, Interruption of signal transduction between G protein and PKC-epsilon underlies the impaired myocardial response to ischemic preconditioning in postinfarct remodeled hearts, Mol Cell Biochem 247, 185–193 (2003).

    PubMed  CAS  Google Scholar 

  114. S. Ghosh, N.B. Standen, M. Galinanes, Failure to precondition pathological human myocardium, J Am Coll Cardiol 37, 711–718 (2001).

    PubMed  CAS  Google Scholar 

  115. E. DuPont, T. Matsushita, R.A. Kaba, C. Vozzi, S.R. Coppen, N. Khan, R. Kaprielian, M.H. NJ. Yacoub, Severs, Altered connexin expression in human congestive heart failure, J Mol Cell Cardiol 33, 359–371 (2001).

    PubMed  CAS  Google Scholar 

  116. D.D. Spragg, C. Leclercq, M. Loghmani, O.P. Faris, R.S. Tunin, D. DiSilvestre, E.R. McVeigh, G.F. Tomaselli, DA. Kass, Regional alterations in protein expression in the dyssynchronous failing heart, Circulation 108, 929–932 (2003).

    PubMed  CAS  Google Scholar 

  117. S. Kostin, M. Rieger, S. Dammer, S. Hein, M. Richter, W.P. Klovekorn, E.P. Bauer, J. Schaper, Gap junction remodeling and altered connexin43 expression in the failing human heart, Mol Cell Biochem 242, 135–144 (2003).

    PubMed  CAS  Google Scholar 

  118. H. Kitamura, Y. Ohnishi, A. Yoshida, K. Okajima, H. Azumi, A. Ishida, E.J. Galeano, S. Kubo, Y. Hayashi, H. Itoh, M. Yokoyama, Heterogeneous loss of connexin43 protein in nonischemic dilated cardiomyopathy with ventricular tachycardia, J Cardiovasc Elechophysiol 13, 865–870 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Schulz M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Schulz, R., Heusch, G. (2006). Connexin 43 and Ischemic Preconditioning. In: Cokkinos, D.V., Pantos, C., Heusch, G., Taegtmeyer, H. (eds) Myocardial Ischemia. Basic Science for the Cardiologist, vol 21. Springer, Boston, MA. https://doi.org/10.1007/0-387-28658-6_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-28658-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28657-0

  • Online ISBN: 978-0-387-28658-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics