Skip to main content

Hormones Signaling and Myocardial Ischemia

  • Chapter
Myocardial Ischemia

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 21))

  • 669 Accesses

Abstract

Although hormones constitute an important component of the adaptive response of the living organism to various stresses, their role in myocardial ischemia has not been adequately explored. However, recent research reveals that hormone signaling is of physiological relevance in the context of ischemia and reperfusion. Furthermore, hormones or hormones’ analogs are suggested as potential therapeutic agents for treating heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.E. Anderson, D.M. Kirkland, A. Beyschau and P.M. Cala, Acute effects of beta—estradiol on myocardial pH, Na and Ca and ischemia and reperfusion, Am. J. Physiol. 288(1), C57–64 (2005)

    CAS  Google Scholar 

  2. E.R. Booth, M. Marchesi, E.J. Kilbourne and B.R. Lucchesi, 17β estradiol as a receptor-mediated cardioprotective agent, J. Pharmacol. Exper: Ther. 307, 395–401 (2003).

    CAS  Google Scholar 

  3. C.H. Tsai, S.F. Su, T.F. Chou and T.M. Lee, Differential effects of sarcolemmal and mitochondria1 K(ATP) channels activated by 17 beta estradiol on reperfusion arrhythmias and infarct sizes in canine hearts, J. Pharmacol. Exp. Ther. 301, 234–240 (2002).

    PubMed  CAS  Google Scholar 

  4. K. Node, M. Kitakaze, H Kosaka, T. Minamino, H. Funaya and M. Hori, Amelioration of ischemia and reperfusion-induced myocardial injury by 17beta-estradiol: role of nitric oxide and calcium activated potassium channels, Circulation 96(6), 1953–1963 (1997).

    PubMed  CAS  Google Scholar 

  5. T.M. Lee, T.F. Chou and C.H. Tsai, Differential role of KATP, channels activated by conjugated estrogens in the regulation of myocardial and coronary protective effects, Circulation 107, 49–54 (2003).

    PubMed  CAS  Google Scholar 

  6. S. Beer, M. Reincke, M. Kral, S.Z. Lie, S. Steinhauer, H.H. Schmidt, B. Allolio and S. Neubauer, Susceptibility to cardiac ischemia/reprfusion injury is modulated by chronic estrogen status, J. Cardiovasc. Pharmacol. 40, 420–428 (2002).

    PubMed  CAS  Google Scholar 

  7. M. Grist, R.B. Wambolt, G.P. Bondy, D.R. English and M.F. Allard, Estrogen replacement stimulates fatty acid oxidation and impairs postischemic recovery of hearts from ovariectomized female rats, Can. J. Physiol. Pharmacol. 80, 1001–1007 (2002).

    PubMed  CAS  Google Scholar 

  8. Y. Xu, S.J. Armstrong, I.A. Arenas, D.J. Pehowich, S.T. Davidge, Cardioprotection by chronic estrogen or superoxide dismutase mimetic treatment in the aged female rat, Am. J. Physiol. 287, H165–H171 (2004).

    CAS  Google Scholar 

  9. T. Shinohara, N. Takahashi, T. Ooie, M. Ishinose, M. Hara, H. Yonemoshi, T. Saikawa and H. Yoshimatsu, Estrogen inhibits hyperthermia —induced expression of heat shock protein 72 and cardioprotection against ischemia/reperfusion injury in female rat heart, J. Mol. Cell. Cardiol. 37, 1053–1061 (2004).

    PubMed  CAS  Google Scholar 

  10. K.L. Hamilton, S. Gupta, A.A. Knowlton, Estrogen and regulation of heat shock protein expression in female cardiomyocytes: cross —talk with NFkB signaling, J. Mol. Cell. Cardiol. 36, 577–584 (2004)

    PubMed  CAS  Google Scholar 

  11. P. Zhai, T.E. Eurell, P.S. Cooke, D.B. Lubahn and D.R. Gross, Myocardial ischemia and reperfusion injury in estrogen receptor-alpha knockout and wild-type mice, Am. J. Physiol. 278(5), H1640–H1647 (2000).

    CAS  Google Scholar 

  12. H. Ogita, K. Node, H. Asanuma, S. Sanada, Y. Liao, S. Takashima, M. Asakura, H. Mori, Y. Shinozaki, M. Hori and M. Kitakaze, Amelioration of ischemia and reperfusion induced myocardial injury by the selective estrogen receptor modulator, raloxifene, in the canine heart, J. Am. Coll. Cardiol. 40, 998–1005 (2002).

    PubMed  CAS  Google Scholar 

  13. F. Er, G. Michels, N. Gassanov, F. Rivero and U.C. Hoppe, Testosterone induces cytoprotection by activating ATP-sensitive K+ channels in the cardiac mitochondria1 inner membrane, Circulation 110(19), 3100–3107 (2004).

    PubMed  CAS  Google Scholar 

  14. F. Callies, H. Stromer, R. Schwinger, B. Bolck, K. Hu, S. Frantz, A. Leupold, S. Beer, B. Allolio and A.W. Bonz, Administration of testosterone is associated with a reduced susceptibility to myocardial ischemia, Endocrinology 144, 4478–4483 (2004).

    Google Scholar 

  15. M. Wang, B.M. Tsai, A. Kher, L.B. Baker, G.M. Wairiuko, D.R. Meldrum, The role of endogenous testosterone in myocardial proinflammatory and proapoptotic signaling after acute ischemia and reperfusion, Am. J. Physiol. 288(1), H221–226 (2005).

    CAS  Google Scholar 

  16. E.F. Du Toit, E. Rossouw, J. Van Rooyen and A. Lochner, Proposed mechanism for the anabolic steroid induced increase in myocardial susceptibility to ischemia/reperfusion injury, Cardiovasc. J. S. Afr. 16(1), 21–28 (2005).

    PubMed  Google Scholar 

  17. V. De Gennaro Colonna, G. Rossoni, M. Bernareggi, E.E. Muller and F. Berti, Cardiac ischemia and impairment of vascular endothelium function in hearts from growth hormone-deficient rats: protection by hexarelin, Eur, J, Pharmacol. 334(2–3), 201–207 (1997).

    Google Scholar 

  18. G. Rossoni, V. De Gennaro Colonna, M. Bernareggi, G.L. Polvani, E.E. Muller and F. Berti, Protectant activity of hexarelin or growth hormone against postischemic ventricular dysfunction in hearts from aged rats, J. Cardiovasc. Pharmacol. 32(2), 260–265 (1998).

    PubMed  CAS  Google Scholar 

  19. F. Weekers, E. van Herck, J. Isgaard and G. van den Berghe, Pretreatment with growth hormone releasing peptide-2 directly protects against the diastolic dysfunction of myocardial stunning in an isolated, blood—perfused rabbit heart model, Endocrinology 141, 3993–3999 (2000).

    PubMed  CAS  Google Scholar 

  20. S. Frascarelli, S. Ghelardoni, S. Ronca-Testoni and R. Zucchi, Effect of ghrelin and synthetic growth hormone secretagogues in normal and ischemic rat heart, Basic Res. Cardiol. 98, 401–405 (2003).

    PubMed  CAS  Google Scholar 

  21. L. Chang, Y. Ren, X. Liu W.G. Li, J. Yang, B. Geng, N.L. Weintraub and C. Tang, Protective effects of ghrelin on ischemia/reperfusion injury in the isolated rat heart, J. Cardiovasc. Phannacol. 43, 165–170 (2004).

    CAS  Google Scholar 

  22. G. Baldanzi, N. Filigheddu, S. Cutrupi, F. Catapano, S. Bonissoni, A. Fubini, D. Malan, G. Baj, R. Granata, F. Broglio, M. Papotti, N. Surico, F. Bussolino, J. Isgaard, R. Deghenghi, F. Sinigaglia, M. Prat, G. Muccioli, E. Ghigo and A. Graziani, Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI3-kinase/Akt, J. Cell. Biol. 159(6), 1029–1037 (2002).

    PubMed  CAS  Google Scholar 

  23. A. Bourbon, M. Vionnet, P. Leprince, E. Vaissier, J Copeland, P. McDonagh, P. Debre and I. Gandjbakhch, The effect of methylprednisolone treatment on the cardiopulmonary bypass-induced systemic inflammatory response, Eur. J. Cardiothorac. Surg. 26(5), 932–938 (2004).

    PubMed  CAS  Google Scholar 

  24. D.E. Sholter and P.W. Armstrong, Adverse effects of corticosteroids on the cardiovascular system, Can. J. Cardiol. 16(4), 505–511 (2000).

    PubMed  CAS  Google Scholar 

  25. G. Valen, T. Kawakami, Tahepold, A. Dumitrescu, C. Lowbeer and J. Vaage, Clucocorticoid pretreatment protects cardiac function and induces cardiac heat shock protein 72, Am. J. Physiol. 279, H836–H843 (2000).

    CAS  Google Scholar 

  26. E. Varga, N. Nagy, J. Lazar, G. Czifra, I. Bak, T. Biro and A. Tosaki, Inhibition of ischemia/reperfusion—induced damage by dexamethasone in isolated working rat hearts: the role of cytochrome c release, Life Sci. 75, 2411–2423 (2004).

    PubMed  CAS  Google Scholar 

  27. B.K. Brar, A.K. Jonassen, A. Stephanou, G. Santilli, J. Railson, R.A. Knight, D.M. Yellon and D.S. Latchman, Urocortin protects against ischemic and reperfusion injury via a MAPK-dependent pathway, J. Biol. Chem. 275(12), 8508–8514 (2000).

    PubMed  CAS  Google Scholar 

  28. D.J. Hausenloy and D.M. Yellon, New directions for protecting the heart against ischemia and reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway, Cardiovasc. Res. 61, 448–460 (2004).

    PubMed  CAS  Google Scholar 

  29. C. Bazzani, S. Guarini, A. Botticelli, D. Zaffe, A. Tomasi, A. Bini, M.C. Cainazzo, G. Ferrazza, C. Mioni and A. Bertolini, Protective effect of melanocortin peptides in rat myocardial ischemia. J. Pharmacol. Experimental. Therapeutics 297, 1082–1087 (2001).

    CAS  Google Scholar 

  30. R.J. Reiter and D.X. Tan, Melatonin: a novel protective agent against oxidative injury of the ischemic/reperfused heart, Cardiovasc. Res. 58, 10–19 (2003).

    PubMed  CAS  Google Scholar 

  31. S. Kaneko, K. Okumura, Y. Numaguchi, H. Matsui, K. Murase, S. Mokuno, I. Morishima, K. Hira, Y. Toki, T. Ito and T. Hayakawa, Melatonin scavenges hydroxyl radical and protects isolated rat hearts from ischemic reperfusion injury, Life Sci. 67(2), 101–112 (2000).

    PubMed  CAS  Google Scholar 

  32. E. Sahna, A. Acet, M.K. Ozer and E. Olmez, Myocardial ischemia and reperfusion in rats: reduction of infarct size by either supplemental physiological or pharmacological doses of melatonin, J. Pineal Res. 33(4), 234–238 (2002).

    PubMed  CAS  Google Scholar 

  33. D.J. Duncker and P.D. Verdouw, Has melatonin a future as a cardioprotective agent? Cardiovasc. Drugs Thex 15, 205–207, (2001).

    CAS  Google Scholar 

  34. P. Van der Meer, E. Lipsic, R.H. Henning, R.A. de Boer, A.J.H. Suurmeijer, D.J. van Veldhuisen and W.H. van Gilst, Erythropoietin improves left ventricular function and coronary flow in an experimental model of ischemia and reperfusion injury, Eur: J. Heart Fail. 6, 853–859 (2004).

    Google Scholar 

  35. A.F. Tramontano, R. Muniyappa, A.D. Black, M.C. Blendea, I. Cohen, L. Deng, J.R. Sowers, M.V. Cutaia and N. El-Sherif, Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway Biochem. Biophys. Res. Commun. 308, 990–994 (2003).

    PubMed  CAS  Google Scholar 

  36. C.J. Parsa, A. Matsumoto, J. Kim, R.U. Reil, L.S. Pascal, G.B. Walton, R.B. Thompson, J.A. Petrofski, B.H. Annex, J.S. Stamler and W.J. Koch, A novel protective effect of erythropoietin in the infracted heart, J. Clin. Invest. 112, 999–1007 (2003).

    PubMed  CAS  Google Scholar 

  37. G. Baxter, Natriuretic peptides and myocardial ischemia, Basic Res. Cardiol. 99, 90–93 (2004).

    PubMed  CAS  Google Scholar 

  38. S.P. D’souza, M. Davis and G.F. Baxter, Autocrine and paracrine actions of natriuretic peptides in the heart, Pharmacol, Ther. 101(2), 113–129 (2004).

    CAS  Google Scholar 

  39. M.A. Rastegar, A. Vegh, J.G. Papp and J.R. Paratt, Atrial natriuretic peptide reduces the severe consequences of coronary artery occlusion in anaesthetized dogs, Cardiovasc. Drugs Ther 14(5), 471–479 (2000).

    PubMed  CAS  Google Scholar 

  40. A. Halapas, R. Tenta, C. Pantos, D.V. Cokkinos and M. Koutsilieris, Parathyroid hormone-related peptide and cardiovascular system, Vivo 17(5), 425–32 (2003).

    CAS  Google Scholar 

  41. K.L. Laugwitz, H.J. Weig, A. Moretti, E. Hoffmann, P. Ueblacker, I. Pragst, K. Rosport, A. Schomig and M. Ungerer, Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility, Circ Res. 88(7), 688–95 (2001).

    PubMed  CAS  Google Scholar 

  42. K.D. Schluter, M. Weber and H.M. Piper, Effects of PTH-rP(107–11 I) and PTH-rP(7–34) on adult cardiomyocytes, J. Mol. Cell. Cardiol. 29(11), 3057–65 (1997).

    PubMed  CAS  Google Scholar 

  43. K. Schluter, C. Katzer, K. Frischkopf, S. Wenzel, G. Taimor and H.M. Piper, Expression, release, and biological activity of parathyroid hormone-related peptide from coronary endothelial cells, Circ Res. 86(9), 946–51 (2000).

    PubMed  CAS  Google Scholar 

  44. J. Jansen, P. Gres, C. Umschlag, F.R. Heinzel, H. Degenhardt, K.D. Schluter, G. Heusch and R. Schulz, Parathyroid hormonerelated peptide improves contractile function of stunned myocardium in rats and pigs, Am. J. Physiol. 284, H49–H55 (2003).

    CAS  Google Scholar 

  45. A. Rochetaing, C. Chapon, L. Marescaux, A. Le Boui1, A. Furber, P. Kreher. Potential beneficial as well as detrimental effects of chronic treatment with lisinopril and (or) spironolactone on isolated hearts following low-flow ischemia in normal and infarcted rats, Can. J. Physiol. Pharmacol. 81, 864–872 (2003).

    PubMed  CAS  Google Scholar 

  46. D.M. Purdham, M.X. Zou, V. Rajapurohitam and M. Karmazyn, Rat heart is a site of leptin production and action. Am. J. Physiol. Heart 287(6), H2877–84 (2004).

    CAS  Google Scholar 

  47. M.W. Nickola, L.E. Wold, P.B. Colligan, G.J. Wang, W.K. Samson and J. Ren, Leptin attenuates cardiac contraction in rat ventricular myocytes. Role of NO, Hypertension 36(4), 501–5 (2000).

    PubMed  CAS  Google Scholar 

  48. V. Rajapurohitam, X.T. Gan, L.A. Kirshenbaum and M. Karmazyn, The obesity-associated peptide leptin induces hypertrophy in neonatal rat ventricular myocytes, Circ Res. 93(4), 277–279 (2003).

    PubMed  CAS  Google Scholar 

  49. L.L. Atkinson, M.A. Fischer and G.D. Lopaschuk, Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis, J. Biol. Chem. 277(33), 29424–29430 (2002).

    PubMed  CAS  Google Scholar 

  50. S.R. Meisel, M. Ellis, C. Pariente, H. Paumer, M. Liebowitz, D. David and I. Shimon, Serum leptin levels increase following acute myocardial infarction, Cardiology 95(4), 206–11 (2001).

    PubMed  CAS  Google Scholar 

  51. E.D. Abel, Insulin signaling in heart muscle: lessons from genetically engineered mouse models, Curr. Hypertens. Rep. 6, 416–423 (2004).

    PubMed  Google Scholar 

  52. L. Hue, C. Beauloye, A.S. Marsin, L. Bertrand, S. Horman and M.H. Rider, Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways, J. Mol. Cell Cardiol. 34, 109I–1097 (2002).

    Google Scholar 

  53. J. Deprez, L. Bertrand, D.R. Alessi, U. Krause, L. Hue and M.H. Rider, Partial purification and characterization of a wortmannin-sensitive and insulin-stimulated protein kinase that activates heart 6-phos-phofructo-2-kinase, Biochem. J. 347, 305–312 (2000).

    PubMed  CAS  Google Scholar 

  54. C. Beauloye, A.S. Marsin, L. Bertrand, U. Krause, D.G. Hardie, J.L. Vanoverschelde and L. Hue, Insulin antagonizes AMP-activated protein kinase activation by ischemia or anoxia in rat hearts, without affecting total adenine nucleotides, FEBS Lett. 505(3), 348–352 (2001).

    PubMed  CAS  Google Scholar 

  55. C. Beauloye, L. Bertrand, U. Krause, A.S. Marsin, T. Dresselaers, F. Vanstapel, Vanoverschelde and L. Hue, No-flow ischemia inhibits insulin signalling in heart by decreasing intracellular pH, Circ. Res. 88(5), 513–519 (2001).

    PubMed  CAS  Google Scholar 

  56. A.K. Jonassen, M.N. Sack, O.D. Mjos and D.M. Yellon, Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ. Res. 89, 1191–1198 (2001).

    PubMed  CAS  Google Scholar 

  57. F. Gao, E. Gao, T.L. Yue, E.H. Ohlstein, B.L. Lopez, T.A. Christopher and X.L. Ma, Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia and reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation, Circulation 105(12), 1497–502 (2002).

    PubMed  CAS  Google Scholar 

  58. F. Fath-Ordoubadi and K.J. Beatt, Glucose-insulin-potassium therapy for treatment of acute myocardial infarction: an overview of randomized placebo-controlled trials, Circulation 96(4), 1152–1156 (1997).

    PubMed  CAS  Google Scholar 

  59. S. Gradinac, G.M. Coleman, H. Taegtmeyer, M.S. Sweeney and O.H. Frazier, Improved cardiac function with glucose-insulin-potassium after aortocoronary bypass grafting, Ann. Thorac. Surg. 48(4), 484–489 (1989).

    PubMed  CAS  Google Scholar 

  60. M.N. Sack and D. Yellon, Insulin therapy as an adjunct to reperfusion after acute coronary ischemia, J. Am. Coll. Cardiol. 41, 1404–1407 (2003).

    PubMed  CAS  Google Scholar 

  61. A.K. Jonassen, E. Aasum, R.A. Riemersma, O.D. Mjos and T.S. Larsen, Glucose—insulin—potassium reduces infarct size when administered during reperfusion, Cardiovasc. Drugs Thex 14, 615–623 (2000).

    CAS  Google Scholar 

  62. H.F. Zhang, Q. Fan, X.X. Qian, B.L. Lopez, T.A. Christopher, X.L. Ma and F. Gao, Role of insulin in the antiapoptotic effect of glucose—insulin—potassium in rabbits with acute myocardial ischemia and reperfusion. Apoptosis 9, 777–783 (2004).

    PubMed  CAS  Google Scholar 

  63. A.K. Jonassen, B.K. bar, O.D. Mjos, M.N. Sack, D.S. Latchman and D.M. Yellon, Insulin administered at reoxygenation exerts a cardioprotective effect in myocytes by a possible anti-apoptotic mechanism, J. Moll. Cel. Cardiol. 32(5), 757–764 (2000).

    CAS  Google Scholar 

  64. L.H. Opie, The glucose hypothesis: relation to acute myocardial ischemia, J. Mol. Cell Cardiol. 1, 107–114 (1970).

    Google Scholar 

  65. Y. Fujio, T. Nguyen, D. Wencker, R.N. Kitsis and K. Walsh, Akt promotes survival of cardiomyocytes in vitro and protects against ischemia and reperfusion injury in mouse heart, Circulation 101(6), 660–467 (2000).

    PubMed  CAS  Google Scholar 

  66. M. Parrizas, A.R. Saltiel and D. LeRoith, Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xL gene product. Endocrinology 138(3), 1355–1358 (1997).

    PubMed  CAS  Google Scholar 

  67. K. Yamashita, J. Kajstura, D.J. Discher, B.J. Wasserlauf, N.H. Bishopric, P. Anversa and K.A. Webster, Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor-1, Circ. Res. 88, 609–614 (2001).

    PubMed  CAS  Google Scholar 

  68. D.P. Kelly and R.C. Scarpulla, Transcriptional regulatory circuits controlling mitochondria1 biogenesis and function, Genes Dev. 18, 357–368 (2004).

    PubMed  CAS  Google Scholar 

  69. N.S. Wayman, Y. Hattori, M.C. Mc Donald, H. Mota-Filipe, S. Cuzzocrea, B. Pisano, P.K. Chatterjee and C. Thiemermann, Ligands of the peroxisome proliferator activated receptors (PPAR-γ and PPAR-α) reduce myocardial infarct size, FASEB J. 16, 1027–1040 (2002).

    PubMed  CAS  Google Scholar 

  70. H.R. Liu, L. Tao, E. Gao, B.L. Lopez, T.A. Christopher, R.N. Willette, E.H. Ohlstein, T.L. Yue and X.L. Ma, Antiapoptotic effects of rosiglitazone in hypercholesterolemic rabbits subjected to myocardial ischaemia and reperfusion, Cardiovasc. Res. 62, 135–144 (2004).

    PubMed  CAS  Google Scholar 

  71. Y. Xu, M. Gen, J. Fox, S.O. Weiss, R.D. Brown, D. Perlov, H. Ahmad, P. Zhu, C. Greyson, C.S. Long and G.G. Schwartz, PPAR-gamma activation fails to provide myocardial protection in ischemia and reperfusion in pigs, Am. J. Physiol. 288(30), H1314–H1323, 2005.

    CAS  Google Scholar 

  72. M.E. Young, F.A. Laws, G.W. Goodwin and H. Taegtmeyer, Reactivation of PPAR-alpha is associated with contractile dysfunction in hypertrophied rat heart, Biol. Chem. 276(48), 44390–44395 (2001).

    CAS  Google Scholar 

  73. C. Pantos, V. Malliopoulou, D. Varonos and D.V. Cokkinos, Thyroid hormone and phenotypes of cardioprotection, Basic Res. Cardiol. 99, 101–120 (2004).

    PubMed  CAS  Google Scholar 

  74. Q. Liu, A.S. Clanachan and G.D. Lopaschuk, Acute effects of hi-iodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts, Am. J. Physiol. 275(3), E392–399 (1998).

    PubMed  CAS  Google Scholar 

  75. P.T. Buser, J. Wikman-Coffelt, S.T. Wu, N. Derugin, W.W. Parmley and C.B. Higgins, Postischemic recovery of mechanical performance and energy metabolism in the presence of left ventricular hypertrophy. A 31P-MRS study, Circ. Res. 66(3), 735–746 (1990).

    PubMed  CAS  Google Scholar 

  76. C. Pantos, V. Malliopoulou, I. Mourouzis, E. Karamanoli, S.M. Tzeis, H. Carageorgiou, D. Varonos and D.V. Cokkinos, Long-term thyroxine administration increases Hsp70 mRNA expression and attenuates p38 MAP kinase activity in response to ischemia, J. Endocrinol. 170, 207–215 (2001).

    PubMed  CAS  Google Scholar 

  77. C. Pantos, D.D. Cokkinos, S. Tzeis, V. Malliopoulou, I. Mourouzis, H. Carageorgiou, C. Limas, D. Varonos and D.V. Cokkinos, Hyperthyroidism is associated with preserved preconditioning capacity but intensified and accelerated ischemic contracture in rat heart, Basic Res. Cardiol. 94, 254–260 (1999).

    PubMed  CAS  Google Scholar 

  78. K.G. Kolocassides, M. Galinanes and D.J. Hearse, Dichotomy of ischemic preconditioning. Improved postischemic contractile function despite intensification of ischemic contracture, Circulation 93, 1725–1733 (1996).

    PubMed  CAS  Google Scholar 

  79. T. Asahi, M. Shimabukuro, Y. Oshiro, H. Yoshida and N. Takasu, Cilazapril prevents cardiac hypertrophy and postischemic myocardial dysfunction in hyperthyroid rats, Thyroid 11(11), 1009–1015 (2001).

    PubMed  CAS  Google Scholar 

  80. J.A. Lahorra, D.F. Torchiana, C. Hahn, C.A. Bashour, A.G. Denenberg, J.S. Titus, W.M. Daggett and G.A. Geffin, Recovery after cardioplegia in the hypertrophic rat heart, J. Surg. Res. 88(2), 88–96 (2000)

    PubMed  CAS  Google Scholar 

  81. P. Venditti, C. Agnisola and S. Di Meo, Effect of ischemia and reperfusion on heart mitochondria from hyperthyroid rats, Cardiovasc. Res. 56(1), 76–85 (2002).

    PubMed  CAS  Google Scholar 

  82. C.M. Dyke, T. Yeh Jr, J.D. Lehman, A. Abd-Elfattah, M. Ding, A.S. Wechsler and D.R. Salter, Tri-iodothyronine-enhanced left ventricular function after ischemic injury, Ann. Thorac. Surg. 52(1), 14–19 (1991).

    PubMed  CAS  Google Scholar 

  83. F.W. Holland 2nd, P.S. Brown Jr and R.E. Clark, Acute severe postischemic myocardial depression reversed by tri-iodothyronine, Ann. Thorac. Surg. 54(2), 301–305 (1992).

    PubMed  Google Scholar 

  84. M. Kadletz, P.G. Mullen, M. Ding, L.G. Wolfe and AS. Wechsler, Effect of tri-iodothyronine on postischemic myocardial function in the isolated heart, Ann. Thorac. Surg. 57(3), 657–662 (1994).

    PubMed  CAS  Google Scholar 

  85. C.M. Dyke, M. Ding, A.S. Abd-Elfattah, K. Loesser, R.J. Dignan, A.S. Wechsler and D.R. Salter, Effects of tri-iodothyronine supplementation after myocardial ischemia, Ann. Thorac. Surg. 56(2), 215–222 (1993).

    PubMed  CAS  Google Scholar 

  86. D. Novitzky, N. Matthews, D. Shawley, D.K. Cooper and N. Zuhdi, Tri-iodothyronine in the recovery of stunned myocardium in dogs, Ann. Thorac. Surg. 51(1), 10–16 (1991).

    PubMed  CAS  Google Scholar 

  87. J.D. Klemperer, I. Klein, M. Gomez, R.E. Helm, K. Ojamaa, S.J. Thomas, O.W. Isom and K. Krieger, Thyroid hormone treatment after coronary-artery bypass surgery, N Engl. J. Med. 333(23), 1522–1527 (1995).

    PubMed  CAS  Google Scholar 

  88. D. Novitzky, D.K. Cooper and A. Swanepoel, Inotropic effect of tri-iodothyronine (T3) in low cardiac output following cardioplegic arrest and cardiopulmonary bypass: an initial experience in patients undergoing open heart surgery, Eur. J. Cardiothorac. Surg. 3(2), 140–145 (1989).

    PubMed  CAS  Google Scholar 

  89. K. Ojamaa, A. Kenessey, R. Shenoy and I. Klein, Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat, Am. J. Physiol. 279, E1319–E1324 (2000).

    CAS  Google Scholar 

  90. K.W. Mahaffey, T.E. Raya, G.D. Pennock, E. Morkin and S. Goldman, Left ventricular performance and remodeling in rabbits after myocardial infarction: effects of a thyroid hormone analogue, Circulation 91(3), 794–801 (1995).

    PubMed  CAS  Google Scholar 

  91. A.T. Saurin, J.L. Martin, R.J. Heads, C. Foley, J.W. Mockridge, M.J. Wright, Y. Wang and M.S. Marber, The role of differential activation of p38-mitogen-activated protein kinase in preconditioned ventricular myocytes, FASEB J. 14(14), 2237–2246 (2000).

    PubMed  CAS  Google Scholar 

  92. E.T. Maizels, C.A. Peters, M. Kline, R.E. Cutler and M. Shanmugam, Heat-shock protein—25/27 phosphorylation by the δ isoform of protein kinase C, Biochem. J. 332, 703–712 (1998)

    PubMed  CAS  Google Scholar 

  93. C. Pantos, V. Malliopoulou, I. Mourouzis, E. Karamanoli, P. Moraitis, S. Tzeis, I. Paizis, H. Carageorgiou, D. Varonos and D.V. Cokkinos, Thyroxine pretreatment increases basal myocardial Hsp27 expression and accelerates translocation and phosphorylation of this protein upon ischemia, Eur. J. Pharmacol. 478, 53–60 (2003).

    PubMed  CAS  Google Scholar 

  94. C. Pantos, V. Malliopoulou, I. Mourouzis, E. Karamanoli, I. Paizis, N. Steimberg, D. Varonos and D.V. Cokkinos, Long-term Thyroxine Administration Protects the Heart in a Similar Pattern as Ischemic Preconditioning, Thyroid 12, 325–329 (2002).

    PubMed  CAS  Google Scholar 

  95. C. Pantos, V. Malliopoulou, I. Paizis, P. Moraitis, I. Mourouzis, S. Tzeis, E. Karamanoli, D.D. Cokkinos, H. Carageorgiou, D. Varonos and D.V. Cokkinos, Thyroid hormone and cardioprotection; study of p38 MAPK and JNKs during ischemia and at reperfusion in isolated rat heart, Mol. Cell Biochem. 242, 173–180 (2003).

    PubMed  CAS  Google Scholar 

  96. E. Marais, S. Genade, R. Salie, B. Huisamen, S. Maritz, J.A. Moolman and A. Lochner, The temporal relationship between p38 MAPK and Hsp27 activation in ischemic and pharmacological preconditioning, Basic Res. Cardiol. 100(1), 35–47 (2005).

    PubMed  CAS  Google Scholar 

  97. C. Pantos, V. Malliopoulou, I. Mourouzis, K. Sfakianoudis, S. Tzeis, P. Doumha, C. Xinaris, A.D. Cokkinos, H. Carageorgiou, D. Varonos and D.V. Cokkinos, Propylthiouracil induced hypothyroidism is associated with increased tolerance of the isolated rat heart to ischemia and reperfusion. J. Endocrinol. 178(3), 427–435 (2003).

    PubMed  CAS  Google Scholar 

  98. M. Abe, H. Obata and H. Tanaka, Functional and metabolic responses to ischemia in the isolated perfused hypothyroid rat heart, Jpn. Circ. J. 56(7), 671–680 (1992).

    PubMed  CAS  Google Scholar 

  99. L.S. Carter, R.A. Mueller, E.A. Norfleet, F.B. Payne and L.S. Saltzman, Hypothyroidism delays ischemia-induced contracture and adenine nucleotide depletion in rat myocardium, Circ. Res. 60(5), 649–652 (1987).

    PubMed  CAS  Google Scholar 

  100. M. Eynan, T. Knubuvetz, U. Meiri, G. Navon, G. Gerstenblith, Z. Bromberg, Y. Hasin and M. Horowitz, Heat acclimation-induced elevated glycogen, glycolysis, and low thyroxine improve heart ischemic tolerance, J. Appl. Physiol. 93(6), 2095–2104 (2002).

    PubMed  CAS  Google Scholar 

  101. L. Zhang, J.R. Parratt, G.H. Beastall, N.J. Pyne and B.L. Furman, Streptozotocin diabetes protects against arrhythmias in rat isolated hearts: role of hypothyroidism, Euc J. Pharmacol. 435(2–3), 269–276 (2002).

    CAS  Google Scholar 

  102. L. Friberg, S. Werner, G. Eggertsen and S. Ahnve, Rapid down-regulation of thyroid hormones in acute myocardial infarction: is it cardioprotective in patients with angina? Arch. Intern. Med. 162(12), 1388–1394 (2002).

    PubMed  CAS  Google Scholar 

  103. K. Kinugawa, K. Yonekura, R.C. Ribeiro, Y. Eto, T. Aoyagi, J.D. Baxter, S.A. Camacho, M.R. Bristow, C.S. Long and P.C. Simpson, Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy, Circ. Res. 89(7), 591–598 (2001).

    PubMed  CAS  Google Scholar 

  104. C. Pantos, I. Mourouzis, T. Saranteas, I. Paizis, C. Xinaris, V. Malliopoulou and D.V. Cokkinos, Thyroid hormone receptors α1 and β1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperhion, Bas. Res. Cardiol. (2005), in press.

    Google Scholar 

  105. V. Drvota, M. Bronnegard, J. Hagglad, T. Barkhem and C. Sylven, Downregulation of thyroid hormone receptor subtype mRNA levels by amiodarone during catecholamine stress in vitro, Biochem. Biophys. Res. Commun. 211(3), 991–996 (1995).

    PubMed  CAS  Google Scholar 

  106. 0. Bakker, H.C. van Beeren and W.M. Wiersinga, Desethylamiodarone is a noncompetitive inhibitor of the binding of thyroid hormone to the thyroid hormone beta 1-receptor protein, Endocrinology 134(4), 1665–1670 (1994).

    PubMed  CAS  Google Scholar 

  107. H.C. Van Beeren, O. Bakker and W.M. Wiersinga, Desethylamiodarone is a competitive inhibitor of the binding of thyroid hormone to the thyroid hormone alpha 1-receptor protein, Mol. Cell Endocrinol. 112(1), 15–19 (1995).

    PubMed  Google Scholar 

  108. H.C. Van Beeren, W.M. Jong, E. Kaptein, T.J. Visser, O. Bakker and W.M. Wiersinga, Dronerarone acts as a selective inhibitor of 3,5,3’-tri-iodothyronine binding to thyroid hormone receptor-alpha1: in vitro and in vivo evidence. Endocrinology 144(2), 552–558 (2003).

    PubMed  Google Scholar 

  109. C. Pantos, I. Mourouzis, V. Malliopoulou, I. Paizis, S. Tzeis, P. Moraitis, K. Sfakianoudis, D. Varonos and D.V. Cokkinos, Dronedarone administration prevents body weight gain and increases tolerance of the heart to ischemic stress: a possible involvement of thyroid hormone receptor αl, Thyroid 15, 16–23 (2005).

    PubMed  CAS  Google Scholar 

  110. S.U. Trost, E. Swanson, B. Gloss, D.B. Wang-Iverson, H. Zhang, T. Volodarsky, G.J. Grover, J.D. Baxter, G. Chiellini, T.S. Scanlan and W.H. Dillmann, The thyroid hormone receptor-beta-selective agonist GC-1 differentially affects plasma lipids and cardiac activity, Endocrinology 141(9), 3057–3064 (2000).

    PubMed  CAS  Google Scholar 

  111. C. Pantos, I. Mourouzis, I. Paizis, P. Moraitis, A.D. Cokkinos and D.V. Cokkinos, Blockade of thyroid hormone receptor alpha 1: a new strategy for body weight reduction? Obes. Rev. 6(1), P146 (2005).

    Google Scholar 

  112. J.D. Baxter, D.H. Dillman, B.L. West, R. Huber, J.D. Furlow, R.J. Fletterick, P. Webb, J.W. Apriletti and T.S. Scanlan, Selective modulation of thyroid hormone receptor action, J. Ster. Biochem. Mol. Biol. 76, 31–42 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Pantos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Pantos, C., Cokkinos, D.V. (2006). Hormones Signaling and Myocardial Ischemia. In: Cokkinos, D.V., Pantos, C., Heusch, G., Taegtmeyer, H. (eds) Myocardial Ischemia. Basic Science for the Cardiologist, vol 21. Springer, Boston, MA. https://doi.org/10.1007/0-387-28658-6_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-28658-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28657-0

  • Online ISBN: 978-0-387-28658-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics