Skip to main content

Myocardial Ischemia

Basic Concepts

  • Chapter
Myocardial Ischemia

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 21))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z.Q. Zhao, D.A. Velez, N.P. Wang, K.O. Hewan-Lowe, M. Nakamura, R.A. Guyton and J. Vinten-Johansen, Progressively developed myocardial apoptotic cell death during late phase of reperfusion, Apoptosis 6(4), 279–90 (2001).

    PubMed  CAS  Google Scholar 

  2. H. Yaoita, K. Ogawa, K. Maehara and Y. Maruyama, Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor, Circulation 97(3), 276–281 (1998).

    PubMed  CAS  Google Scholar 

  3. Z.Q. Zhao, C.D. Morris, J.M. Budde, N.P. Wang, S. Muraki, H.Y. Sun and R.A. Guyton, Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion, Cardiovasc Res. 59(1), 132–142 (2003).

    PubMed  CAS  Google Scholar 

  4. C. Ganote and S. Armstrong, Ischemia and the myocyte cytoskeleton: review and speculation, Cardiovasc. Res. 27, 1387–1403 (1993).

    PubMed  CAS  Google Scholar 

  5. V. Borutaite, A. Budriunaite, R. Morkuniene and G.C. Brown, Release of mitochondrial cytochrome c and activation of cytosolic caspases induced by myocardial ischemia, Biochim. Biophys. Acta 1537, 101–109 (2001).

    PubMed  CAS  Google Scholar 

  6. R.A. Gottlieb, K.O. Burleson, R.A. Kloner, B.M. Babior and R.L. Engler, Reperfusion injury induces apoptosis in rabbit cardiomyocytes, J. Clin. Invest. 94, 1621–1628 (1994).

    PubMed  CAS  Google Scholar 

  7. S. Nagata, Apoptosis by death factor, Cell 88, 355–365 (1997).

    PubMed  CAS  Google Scholar 

  8. M.Y. Heinke, M. Yao, D. Chang, R. Einstein and dos Remedios, Apoptosis of ventricular and atrial myocytes from pacing-induced canine heart failure, Cardiovasc. Res. 49, 127–134 (2001).

    PubMed  CAS  Google Scholar 

  9. P. Lee, M. Sata, D.J. Lefer, S.M. Factor, K. Walsh and R.N. Kitsis, Fas pathway is a critical mediator of cardiac myocyte death and MI dyring ischemia-reperfusion in vivo, J. Physiol. 284, H456–463 (2003)

    CAS  Google Scholar 

  10. J. Yang, X. Liu, K. Bhala, C.N. Kim, A.M. Ibrado, J. Cai, T.I. Peng, D.P. Jones and X. Wang, Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked, Science 275, 1129–1132 (1997).

    PubMed  CAS  Google Scholar 

  11. N. Zamzani and G. Kroemer, The mitochondrion in apoptosis: how Pandora’s box opens, Nut. Rev. Mol. Cell. Biol. 2, 67–71 (2001).

    Google Scholar 

  12. A.P. Halestrap, S.J. Clarke and S.A. Javadov, Mitochondria1 permeability transition pore opening during myocardial reperfusion—a target for cardioprotection, Cardiovasc. Res. 61, 372–385 (2004).

    PubMed  CAS  Google Scholar 

  13. A.M. Verhagen and D.L. Vaux, Cell death regulation by the mammalian IAP antagonist DIABLO/smac, Apoptosis 7, 163–166 (2002).

    PubMed  CAS  Google Scholar 

  14. C. Cande, I. Cohen, E. Daugas, L. Ravagnan, N. Larochette, N. Zamzami and G. Kroemer, Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria, Biochimie 84(23), 215–222 (2002).

    PubMed  CAS  Google Scholar 

  15. C. Adrain and S.J. Martin, The mitochondrial apoptosome: a killer unleashed by the cytochrome seas, Trends Biochem. Sci. 26, 390–397 (2001).

    PubMed  CAS  Google Scholar 

  16. A. Gross, J.M. McDonnell and S.J. Korsmeyer, Bcl-2 family members and the mitochondria in apoptosis, Genes Dev. 13, 1899–1911 (1999).

    PubMed  CAS  Google Scholar 

  17. M.P. Mattson and G. Kroemer, Mitochondria in cell death: novel targets for neuroprotection and cardioprotection, Trends Mol. Med. 9, 196–205 (2003).

    PubMed  CAS  Google Scholar 

  18. X.M. Yin, Signal transduction mediated by Bid, a pro-death Bcl-2 family protein, connects the death receptor and mitochondria apoptosis pathway. Cell Res. 10, 161–167 (2000).

    PubMed  CAS  Google Scholar 

  19. A. Bergmann, Survival signaling goes BAD, Dev Cell. 3(5), 607–8 (2002). Review.

    PubMed  CAS  Google Scholar 

  20. R. Ley, K. Balmanno, K. Hadfield, C. Weston and S.J. Cook, Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J. Biol. Chem. 278, 18811–18816 (2003).

    CAS  Google Scholar 

  21. A.L. Harris, Emerging issues of connexin channels: biophysics fills the gap, Q. Rev. Biophys. 34, 325–472 (2001).

    PubMed  CAS  Google Scholar 

  22. D. Garcia-Dorado, A. Rodriguez-Sinovas and M. Ruiz-Meana, Gap junction—mediated spread of cell injury and death during myocardial ischemia-reperfusion, Cardiovasc Res 61, 386–401 (2004).

    PubMed  CAS  Google Scholar 

  23. W. Schlack, B. Preckel, H. Barthel, D. Obal and V. Thamer, Halothane reduces reperfusion injury atter regional ischemia in the rabbit heart in vivo, Br J. Anaesth. 79, 88–96 (1997).

    PubMed  CAS  Google Scholar 

  24. W. Schlack, B. Preckel, D. Stunneck, and V. Thamer, Effects of halothane, enflurane, isoflurane, sevoflurane and desflurane on myocardial reperfusion injury in the isolated rat heart, Br J. Anaesth. 81, 913–919 (1998).

    PubMed  CAS  Google Scholar 

  25. R. Schulz, P. Gres and A. Skyschally, Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo, FASEB. J. 17, 1355–1357 (2003).

    PubMed  CAS  Google Scholar 

  26. K. Yasui, K. Kada, M. Hozo, J.K. Lee, K. Kamiya, J. Toyama, T. Opthof and I. Kodama, Cell-to-cell interaction prevents cell death in cultured neonatal rat ventricular myocytes, Cardiovasc. Res. 48, 68–76 (2000).

    PubMed  CAS  Google Scholar 

  27. N.G. Frangogiannis, Chemokines in the ischemic myocardium: from inflammation to fibrosis, Inflamm Res. 53(11), 585–95 (2004).

    PubMed  CAS  Google Scholar 

  28. O. Dewald, N.G. Frangogiannis, M. Zoerlein, G.D. Duerr, C. Klemm, P. Knuefermann, G. Taffet, L.H. Michael, J.D. Crapo, A. Welz and M.L. Entman, Development of murine ischemic cardiomyopathy is associated with a transient inflammatory reaction and depends on reactive oxygen species, Proc. Natl. Acad. Sci. USA. 100(5), 2700–2705 (2003).

    PubMed  CAS  Google Scholar 

  29. G. Ren, O. Dewald and N.G. Frangogiannis, Inflammatory mechanisms in myocardial infarction, Curr Drug Targets Inflamm Allergy 2, 242–256 (2003).

    PubMed  CAS  Google Scholar 

  30. M. La, A. Tailor, M. D’Amico, R.J. Flower and M. Perretti, Analysis of the protection afforded by annexin-1 in ischemia reperfusion injury: focus on neutrophil recruitment, Eux J. Pharmacol. 429(13), 263–278 (2001).

    CAS  Google Scholar 

  31. G. Baxter, The neutrophil as a mediator of myocardial ischemia-reperfusion injury: time to move on, Basic Res. Cardiol. 97, 268–275 (2002).

    PubMed  Google Scholar 

  32. V. Stangl, G. Baumann, K. Stangl and S.B. Felix, Negative inotropic mediators released from the heart after myocardial ischemia-reperfusion, Cardiovasc. Res. 53, 12–30 (2002).

    PubMed  CAS  Google Scholar 

  33. S. Gilles, S. Zahler, U. Welsch, C.P. Sommerhoff and B.F. Becker, Release of TNF-α during myocardial reperfusion depends on oxidative stress and is prevented by mast cell stabilizers, Cardiovasc. Res. 60, 608–616 (2003).

    PubMed  CAS  Google Scholar 

  34. S. Lecour, P. Owira, C. Vergely, L. Rochette and L. Opie, TNF-alpha confers cardioprotection: A reactive oxygen species—mediated event, Cardiovasc. J. S. Afr., S8 (2004).

    Google Scholar 

  35. R. Schulz, E. Nava and S. Moncada, Induction and potential biological relevance of a Ca2+-independent nitric oxide synthase in the myocardium, Br. J. Pharmacol. 105, 575–580 (1992).

    PubMed  CAS  Google Scholar 

  36. C.M. Thaik, A. Calderone, N. Takahashi and W.S. Colucci, Interleukin-1β modulates the growth and phenotype of neonatal rat cardiac myocytes, J. Clin. Invest. 96, 1093–1099 (1995).

    PubMed  CAS  Google Scholar 

  37. K. Yamauchi-Takihara, Y. Ihara, A. Ogata, K. Yoshizaki, J. Azuma and T. Kishimoto, Hypoxic stress induces cardiac myocyte-derived interleukin-6, Circulation 91(5), 1520–1524 (1995).

    PubMed  CAS  Google Scholar 

  38. R.K. Chan, S.I. Ibrahim, N. Vema, M. Caroll, F.D. Moore Jr and H.B. Hechtman, Ischemia-reperfusion is an event triggered by immune complexes and complement, British J Surgery 90, 1470–1478 (2003).

    CAS  Google Scholar 

  39. G. Montrucchio, G. Alloati and G. Camussi, Role of platelet-activating factor in cardiovascular pathophysiology, Physiol. Rev. 80, 1669–1699 (2000).

    PubMed  CAS  Google Scholar 

  40. B. Dawn, A.B. Stein, K. Urbanek, M. Rota, B. Whang, R. Rastaldo, D. Torella, X.L. Tang, A. Rezazadeh, J. Kajstura, A. Len, G. Hunt, J. Varma, S.D. Prabhu, P. Anversa and R. Bolli, Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function, Proc Natl Acad Sci USA 102(10), 3766–71 (2005).

    PubMed  CAS  Google Scholar 

  41. C.L. Wainwright, Matrix metalloproteinases, oxidative stress and the acute response to acute myocardial ischemia-reperfusion, Curr Opin Pharmacol 4, 132–138 (2004).

    PubMed  CAS  Google Scholar 

  42. G. Sawicki, V. Menon and B.I. Jugdutt, Improved balance between TIMP-3 and MMP-9 after regional myocardial ischemia-reperfusion during AT1 receptor blockade, J. Card. Fail. 10(5), 442–449 (2004).

    PubMed  CAS  Google Scholar 

  43. T. Reffemann and R.A. Kloner, Microvascular alterations after temporary coronary artery occlusion: the no-reflow phenomenon, Cardiovasc. Pharmacol. The 9(3), 163–172 (2004).

    Google Scholar 

  44. R.R. Russell, J. Li, D.L. Coven, M. Pypaert, C. Zechner, M. Palmeri, F.J. Giordano, J. Mu, M.J. Birnbaum and L.H. Young, AMP-activated protein kinase mediates glucose uptake and prevents postischemic cardiac dysfunction, apoptosis and injury, J CIin Invest 114(4), 465–468 (2004).

    Google Scholar 

  45. L.H. Opie and M.N. Sack, Metabolic plasticity and the promotion of cardiac protection in ischemia and ischemic preconditioning, J. Mol. Cell. Cardiol. 34, 1077–1089 (2002).

    PubMed  CAS  Google Scholar 

  46. E.J. Lesnefsky, S. Moghaddas, B. Tandler, J. Kerner and C.L. Hoppel, Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging,and heart failure, J. Mol. Cell. Cardiol. 33, 1065–1089 (2001).

    PubMed  CAS  Google Scholar 

  47. D.T. Lucas and L.I. Szweda, Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase, Proc. Natl. Acad Sci. USA. 96(12), 6689–6693 (1999).

    PubMed  CAS  Google Scholar 

  48. H.A. Sadek, K.M. Humphries, P.A. Szweda and L.I. Szweda, Selective inactivation of redox-sensitive mitochondrial enzymes during cardiac reperfusion, Arch. Biochem. Biophys, 406(2), 222–228 (2002).

    PubMed  CAS  Google Scholar 

  49. G.D. Lopaschuk, Alterations in fatty acid oxidation during reperfusion of the heart after myocardial ischemia, Am J Cardiol 80(3A), 11A–16A (1997). Review.

    PubMed  CAS  Google Scholar 

  50. M. Avkiran and R. Haworth, Regulatory effects of G protein —coupled receptors on cardiac sarcolemmal Na+/H+ exchanger activity: signaling and significance, Cardiovasc. Res. 57, 942–952 (2003).

    PubMed  CAS  Google Scholar 

  51. T. Gan, C. Subrata and K. Morris, Modulation of Na+/H+ exchanger isoform 1 m-RNA expression in isolated rat hearts, Am. J. Physiol. 277, H993–H998 (1999).

    PubMed  CAS  Google Scholar 

  52. H.Y. Sun, N.P. Wang, M.E. Halkos, F. Kerendi, H. Kin, R.X. Wang, R.A. Guyton and Z.Q. Zhao, Involvement of Na+/H+ exchanger in hypoxia Ire-oxygenation—induced neonatal rat cardiomyocyte apoptosis, Eur. J. Pharmacol. 486, 121–131 (2004).

    PubMed  CAS  Google Scholar 

  53. T. Shimohama, Y. Suzuki, C. Noda, H. Niwano, K. Sato, T. Masuda, K. Kawahara and T. Izumi, Decreased expression of Na+/H+ exchanger isoform 1 (NHE1) in non-infarcted myocardium after acute myocardial infarction, Jpn. Heart J. 43, 273–282 (2002).

    PubMed  CAS  Google Scholar 

  54. Y. Wang, J.W. Meyer, M. Ashraf and G.E. Shull, Mice with a null mutation in the NHEl Na+-H+ exchanger are resistant to cardiac ischemia-reperfusion injury, Circ Res 93(8), 776–782 (2003).

    PubMed  CAS  Google Scholar 

  55. E. Carmeliet, Cardiac ionic currents and acute ischemia: From channels to arrhythmias, Physiol. Rev. 79, 917–1017 (1999).

    PubMed  CAS  Google Scholar 

  56. K.D. Garlid, A.D. Kosta, M.V. Cohen, J.M. Downey and S.D. Critz, Cyclic GMP and PKG activate mito K(ATP) channels in isolated mitochondria, Cardiovasc. J. S. Afr. 15(4), S5 (2004).

    CAS  Google Scholar 

  57. R.J. Solaro, Integration of myofilament response to Ca2+ with cardiac pump regulation and pump dynamics, Am JPhysiol 277(6 Pt 2), S155–63 (1999).

    CAS  Google Scholar 

  58. M.T. Stapleton and A.P. Allshire, Modulation of rigor and myosin ATPase activity in rat cardiomyocytes, J. Mol. Cell. Cardiol. 30, 1349–1358 (1998).

    PubMed  CAS  Google Scholar 

  59. M.L. Entman, M.A. Goldstein and A. Schwartz, The cardiac sarcoplasmic reticulum-glycogenolytic complex, an internal beta adrenergic receptor, Life Sci 19(11), 1623–30 (1976). Review.

    PubMed  CAS  Google Scholar 

  60. C. Pantos, V. Malliopoulou, D. Varonos and D.V. Cokkinos, Thyroid hormone and phenotypes of cardioprotection, Basic Res. Cardiol. 99, 101–120 (2004).

    PubMed  CAS  Google Scholar 

  61. K.G. Kolocassides, M. Galinanes and D.J. Hearse, Dichotomy of ischemic preconditioning. Improved postischemic contractile function despite intensification of ischemic contracture, Circulation 93, 1725–1733 (1996).

    PubMed  CAS  Google Scholar 

  62. Piper HM, Abdallah Y, Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc. Res. 61, 365–371 (2004).

    PubMed  CAS  Google Scholar 

  63. H Fujiwara, T. Onodera, M. Tanaka, S. Miyazaki, D.J. Wu, M. Matsuda, A. Kawamura, M. Ishida, G. Takemura, Y. Fujiwara, et al., Acceleration of cell necrosis following reperfusion after ischemia in the pig heart without collateral circulation, Am J Cardiol 63(10), 14E–18E (1989).

    PubMed  CAS  Google Scholar 

  64. D. Garcia-Dorado, P. Theroux, J.M. Duran, J. Solares, J. Alonso, E. Sanz, R. Munoz, J. Elizaga, J. Botas, F. Fernandez-Aviles, et al., Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion, Circulation 85(3), 1160–1174 (1992).

    PubMed  CAS  Google Scholar 

  65. J.A. Barrabes, D. Garcia-Dorado, M. Ruiz-Meana, H.M. Piper, J. Solares, M.A. Gonzalez, J. Oliveras, M.P. Herrejon and J. Soler Soler, Myocardial segment shrinkage during coronary reperfusion in situ. Relation to hypercontracture and myocardial necrosis, Pflugers Arch. 431(4), 519–526 (1996).

    PubMed  CAS  Google Scholar 

  66. E. Braunwald and R.A. Kloner, Myocardial reperfusion: a double-edged sword? J Clin Invest 76, 1713–1719 (1985).

    PubMed  CAS  Google Scholar 

  67. S.J. Kim, C. Depre and S. Vatner, Novel mechanisms mediating stunned myocardium, Heart Failure Reviews 8, 143–153 (2003).

    PubMed  CAS  Google Scholar 

  68. R Bolli and E Marban, Molecular and cellular mechanisms of myocardial stunning. Physiol. Rev. 79, 609–634 (1999).

    PubMed  CAS  Google Scholar 

  69. R. Bolli, M. Zughaib, X.Y. Li, X.L. Tang, J.Z. Sun, J.F. Triana and P.B. McCay, Recurrent ischemia in the canine heart causes recurrent bursts of free radical production that have a cumulative effect on contractile function. A pathophysiological basis for chronic myocardial stunning. J. Clin. Invest. 96, 1066–1084 (1995).

    PubMed  CAS  Google Scholar 

  70. S. Sekili, P.B. McCay, X.Y. Li, M. Zughaib, J.Z. Sun, L. Tang, J.I. Thornby and R. Bolli, Direct evidence that the hydroxyl radical plays a pathogenetic role in myocardial “stunning” in the conscious dog and demonstration that stunning can be markedly attenuated without subsequent adverse effects, Circ. Res. 73(4), 705–723 (1993).

    PubMed  CAS  Google Scholar 

  71. K. Przyklenk, P. Whittaker and R.A. Kloner, In vivo infusion of oxygen free radical substrates causes myocardial systolic but not diastolic dysfunction, Am. Heart J. 119, 807–815 (1990).

    PubMed  CAS  Google Scholar 

  72. M.C. Corretti, Y. Koretsune, H. Kusuoka, V.P. Chacko, J.L. Zweier and E. Marban, Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts, J. Clin. Invest. 88(3), 1014–1025 (1991).

    PubMed  CAS  Google Scholar 

  73. P.M. Grinwald, Calcium uptake during post-ischemic reperfusion in the isolated rat heart: influence of extracellular sodium, J Mol Cell Cardiol 14(6), 359–365 (1982).

    PubMed  CAS  Google Scholar 

  74. H. Kusuoka, J.K. Porterfield, H.F. Weisman, M.L. Weisfeldtand and E. Marban, Pathophysiology and pathogenesis of stunned myocardium. Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts, J. Clin. Invest. 79(3), 950–961 (1987).

    PubMed  CAS  Google Scholar 

  75. W.D. Gao, D. Atar, Y. Liu, N.G. Perez, A.M. Murphy and E. Marban, Role of troponin I proteolysis in the pathogenesis of stunned myocardium, Circ. Res. 80(3), 393–399 (1997).

    PubMed  CAS  Google Scholar 

  76. W.D. Gao, Y. Liu and E. Marban, Mechanism of decreased myofilament Ca2+ responsiveness in stunned rat ventricular myocardium: relative roles of soluble cytosolic factors versus structural alterations, Circ. Res. 78, 455–465 (1996).

    PubMed  CAS  Google Scholar 

  77. A. M. Murphy, H. Kogler, D. Georgakopoulos, J.L. McDonough, D.A Kass, J.E. Van Eyk and E. Marban, Transgenic mouse model of stunned myocardium, Science 287, 488–491 (2000).

    PubMed  CAS  Google Scholar 

  78. S.J. Kim, R.K. Kudej, A. Yatani, Y.K. Kim, G. Takagi, R. Honda, D.A. Colantonio, J.E. Van Eyk, D.E. Vatner, R.L. Rasmusson and S.F. Vatner, A novel mechanism for myocardial stunning involving impaired Ca(2+) handling, Circ. Res. 89, 831–837 (2001).

    PubMed  CAS  Google Scholar 

  79. C. Depre, J. Tomlinson, R.K. Kudej, V. Gaussin, E. Thompson, S.J. kim, D. Vatner, J. Topper and S. Vatner, Gene program for cardiac cell survival induced by transient ischemia in conscious pig, Proc. Natl. Acad. Sci. USA. 98, 9336–9341 (2001).

    PubMed  CAS  Google Scholar 

  80. G. Heusch, R. Schulz and S.H. Rahimtoola, Myocardial hibernation — a delicate balance, Am. J. Physiol. 288, H984–H999 (2005).

    CAS  Google Scholar 

  81. J.A. Fallavollita and J.M. Canty Jr, Differential 18F-2-deoxyglucose uptake in viable dysfunctional myocardium with normal resting perfusion: evidence for chronic stunning in pigs, Circulation 99(21), 2798–2805 (1999).

    PubMed  CAS  Google Scholar 

  82. C. Depre, J.L. Vanoverschelde, J.A. Melin, M. Borgers, A. Bol, J. Ausma, R. Dion and W. Wijns, Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans, Am J Physiol 268, H 1265–1275 (1995).

    CAS  Google Scholar 

  83. G. Heusch, J. Rose, A. Skyschally, H. Post and R. Schulz, Calcium responsiveness in regional myocardial short-term hibernation and stunning in the in situ porcine heart. Inotropic responses to postextrasystolic potentiation and intracoronary calcium, Circulation 93(8), 155–66 (1996).

    Google Scholar 

  84. C. Depre, S.J. Kim, A.S. John, Y. Huang, O.E. Rimoldi, J.R. Pepper, G.D. Dreyfus, V. Gaussin, D.J. Pennell, D.E. Vatner, P.G. Camici and S.F. Vatner, Program of cell survival underlying human and experimental hibernating myocardium, Circ. Res. 95(4), 433–440 (2004).

    PubMed  CAS  Google Scholar 

  85. C.S. Baker, D.P. Dutka, D. Pagano, O. Rimoldi, M. Pitt, R.J. Hall, J.M. Polak, R.S. Bonser and P.G. Camici, Immunocytochemical evidence for inducible nitric oxide synthase and cyclooxygenase-2 expression with nitrotyrosine formation in human hibernating myocardium, Basic Res Cardiol 97(5), 409–415 (2002).

    PubMed  CAS  Google Scholar 

  86. D.K. Kalra, X. Zhu, M.K. Ramchandani, G. Lawrie, M.J. Reardon, D. Lee-Jackson, W.L. Winters, N. Sivasubramanian, D.L. Mann and W.A. Zoghbi, Increased myocardial gene expression of tumor necrosis factor-alpha and nitric oxide synthase-2: a potential mechanism for depressed myocardial function in hibernating myocardium in humans, Circulation 105(13), 1537–1540 (2002).

    PubMed  CAS  Google Scholar 

  87. M. Thielmann, H. Dorge, C. Martin, S. Belosjorow, U. Schwanke, A. van De Sand, I. Konietzka, A. Buchert, A. Kruger, R. Schulz and Heusch G, Myocardial dysfunction with coronary microembolization: signal transduction through a sequence of nitric oxide, tumor necrosis factor-alpha, and sphingosine, Circ. Res. 90(7), 807–813 (2002).

    PubMed  CAS  Google Scholar 

  88. V. Bito, F.R. Heinzel, F. Weidemann, C. Dommke, J. van der Velden, E. Verbeken, P. Claus, B. Bijnens, I. De Scheerder, G.J. Stienen, G.R. Sutherland and K.R. Sipido, Cellular mechanisms of contractile dysfunction in hibernating myocardium, Circ. Res. 94(6), 794–801 (2004).

    PubMed  CAS  Google Scholar 

  89. J.M. Canty, G. Suzuki Jr, M.D. Banas, F. Verheyen, M. Borgers J.A. Fallavollita, Hibernating myocardium chronically adapted to ischemia but vulnerable to sudden death, Circ. Res. 94, 507–516 (2004).

    Google Scholar 

  90. G. Simonis, R. Marquetant, J. Rothele and R.H. Strasser, The cardiac adrenergic system in ischemia: differential role of acidosis and energy depletion, Cardiovasc. Res. 38, 646–654 (1998).

    PubMed  CAS  Google Scholar 

  91. C. Communal, K. Singh, D.B. Sawyer and W.S. Colucci, Opposing effects of β1-and β2-adrenergic receptors on cardiac myocyte apoptosis, Circulation 100, 2210–2212 (1999).

    PubMed  CAS  Google Scholar 

  92. C. Frances, P. Nazeyrollas, A. prevost, F. Moreau, J. Pisani, S. Davani, J.P. Kantelip and H. Millart, Role of β1-and β2-adrenoceptor subtypes in preconditioning against myocardial dysfunction after ischemia-reperfusion, J. Cardiovasc. Pharmacol. 41, 396–405 (2003).

    PubMed  CAS  Google Scholar 

  93. C. Pantos, I. Mourouzis, S. Tzeis, P. Moraitis, V. Malliopoulou, D.D. Cokkinos, H. Carageorgiou, D. Varonos, D.V. Cokkinos, Dobutamine administration exacerbates postischemic myocardial dysfunction in isolated rat hearts; An effect reversed by thyroxine pre-treatment, Eur J Phamacol 460, 155–161 (2003).

    CAS  Google Scholar 

  94. X. Meng, B.D. Shames, E.J. Pulido D.R. Meldrum, L. Ao, K.S. Joo, A.H. Harken and A. Banerjee, Adrenergic induction of bimodal myocardial protection: signal transduction and cardiac gene reprogramming, Am. J. Physiol. 276, R1525–R1533 (1999).

    PubMed  CAS  Google Scholar 

  95. O. Oldenburg, S.D. Critz, M.V. Cohen and J.M. Downey, Acetylcholine—induced production of reactive oxygen species in adult rabbit ventricular myocytes is dependent on phosphatidyl inositol 3 and Src—kinase activation and mitochondrial KATP channel opening, J. Mol. Cell. Cardiol. 35, 653–660 (2003).

    PubMed  CAS  Google Scholar 

  96. F.E. Rey, M.E. Cifuentes, A. Kiarash, M.T. Quinn and P.J. Pagano, Novel competitive inhibitor of NAPH oxidase assembly attenuates vascular O2-and systolic blood pressure in mice, Circ. Res. 89, 408–414 (2001).

    PubMed  CAS  Google Scholar 

  97. M. Ushio-Fukai, R.W. Alexander, M. Akers, Q. Yin, Y. Fujio, K. Walsh and K.K. Griendling, Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells, J. Biol. Chem. 274(32), 22699–704 (1999).

    PubMed  CAS  Google Scholar 

  98. W.R. Ford, AS. Clanachan, C.R. Hiley and B.I. Jugdutt, Angiotensin II reduces infarct size and has no effect on post-ischemic contractile dysfunction in isolated rat hearts, Br. J. Pharmacol. 134, 38–45 (2001).

    PubMed  CAS  Google Scholar 

  99. G. Baxter and Z. Ebrahim, Role of bradykinin in preconditioning and protection of the ischemic myocardium, Br. J. Pharmacol. 135, 843–854 (2002).

    PubMed  CAS  Google Scholar 

  100. M. Yanagisawa, H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto and T. Masaki, A novel potent vasoconstrictor peptide produced by vascular endothelial cells, Nature 332(6163): 411–415 (1988).

    PubMed  CAS  Google Scholar 

  101. E. Bugge and K. Ytrehus, Endothelin-1 can reduce infarct size through protein kinase C and KATP channels in the isolated rat heart, Cardiovasc. Res. 32, 920–929 (1996).

    PubMed  CAS  Google Scholar 

  102. T. Kakita, K. Hasegawa, E. Iwai-Kanai, S. Adachi, T. Morimoto, H. Wada, T. Kawamura, T. Yanazume and S. Sasayama, Calcineurin pathway is required for endothelin-1-mediated protection against oxidant stress-induced apoptosis in cardiac myocytes, Circ. Res. 88(12), 1239–1246 (2001).

    PubMed  CAS  Google Scholar 

  103. A.T. Gonon, A.V. Gourine, R.J.M. Middelveld, K. Alving and J. Pernow, Limitation of infarct size and attenuation of myeloperoxidase activity by an endothelin A receptor antagonist following ischemia and reperfusion, Bas. Res. Cardiol. 96, 454–462 (2001).

    CAS  Google Scholar 

  104. G. Rossoni, M.N. Muscara, G. Cirino, J.L. Wallace, Inhibition of cyclo-oxygenase-2 exacerbates ischemia—induced acute myocardial dysfunction in the rabbit, BK J. Pharmacol. 135, 1540–1546 (2002).

    CAS  Google Scholar 

  105. M.A. Romano, E.M. Seymour, J.A. Berry, R.A. Mc Nish and S.E Bolling, Relative contribution of endogenous opioids to myocardial ischemic tolerance, J. Surg. Res. 118, 32–37 (2004).

    PubMed  CAS  Google Scholar 

  106. S. Okubo, Y. Tanabe, K. Takeda, M. Kitayama, S. Kanemitsu, R.C. Kukreja and N. Takekoshi, Ischemic preconditioning and morphine attenuate apoptosis and infarction after ischemia-reperfusion in rabbits: role of delta-opioid receptor, Am. J. Physiol. 287(4), H1786–H1791 (2004).

    CAS  Google Scholar 

  107. D.A. Mei, K. Nithipatikom, R.D. Lasley and G.J. Gross, Myocardial preconditioning produced by ischemia, hypoxia and a K(ATP) channel opener: effects on intestitial adenosine in dogs, J. Mol. Cell. Cardiol. 30, 1225–1236 (1998).

    PubMed  CAS  Google Scholar 

  108. M. Kitakaze and M. Hori, It is time to ask what adenosine can do for cardioprotection, Heart Vessels 13(5), 211–228 (1998).

    PubMed  CAS  Google Scholar 

  109. G.S. Liu, J. Thornton, D.M. Van Winkle, A.W. Stanley, R.A. Olsson and J.M. Downey, Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart, Circulation 84(1), 350–356 (1991).

    PubMed  CAS  Google Scholar 

  110. G.S. Liu, S.C. Richards, R.A. Olsson, K. Mullane, R.S. Walsh and J.M. Downey, Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart, Cardiovasc Res. 28(7), 1057–1061 (1994).

    PubMed  CAS  Google Scholar 

  111. M. Koyarna, P.M. Heerdt and R. Levi, Increased severity of reperfusion arrhythmias in mouse hearts lacking histamine H3 receptors, Biochem. Biophys. Res. Commun. 306, 792–796 (2003).

    Google Scholar 

  112. N. Haramaki, D.B. Stewart, S. Agganval, H. Ikeda, A.Z. Reznick and L. Packer, Networking antioxidants in the isolated rat heart are selectively depleted by ischemia-reperfusion, Free Radic Biol Med 25(3), 329–339 (1998).

    PubMed  CAS  Google Scholar 

  113. L.B. Becker, New concepts in reactive oxygen species and cardiovascular reperfusion physiology, Cardiovasc. Res. 61, 461–470 (2004).

    PubMed  CAS  Google Scholar 

  114. T. Miura, J.M. Downey, D. Hotta and O. Iimura, Effect of superoxide dismutase plus catalase on myocardial infarct size in rabbits, Can. J. Cardiol. 4(8), 407–411 (1988).

    PubMed  CAS  Google Scholar 

  115. G.K. Asimakis, S. Lick and C. Patterson, Postischemic recovery of contractile function is impaired in SOD2(+/-) but not SOD1(+/-) mouse hearts, Circulation 105(8), 981–986 (2002).

    PubMed  CAS  Google Scholar 

  116. T. Miki, M.V. Cohen and J.M. Downey, Failure of N-2-mercaptopropionyl glycine to reduce myocardial infarction after 3 days of reperfusion in rabbits, Basic Res. Cardiol. 94(3), 180–187 (1999).

    PubMed  CAS  Google Scholar 

  117. J. Sochman, N-acetylcysteine in acute cardiology: 10 years later: what do we know and what would we like to know? J. Am. Coll. Cardiol. 39(9), 1422–1428 (2002).

    PubMed  CAS  Google Scholar 

  118. H. He, M. Chen, N.K. Scheftler, B.W. Gibson, L.L. Spremulli and R.A. Gottlieb, Phosphorylation of mitochondrial elongation factor Tu in ischemic myocardium: basis for chloramphenicol-mediated cardioprotection. Circ. Res. 89(5), 461–467 (2001).

    PubMed  CAS  Google Scholar 

  119. D.K. Das and N. Maulik, Preconditioning potentiates redox signalling and converts death signal into survival signal, Arch. Biochem. Biophys. 420, 305–311 (2003).

    PubMed  CAS  Google Scholar 

  120. D.K. Das, N. Maulik, M. Sato and P. Ray, Reactive oxygen species function as second messengers during ischemic preconditioning of heart, Mol. Cell. Biochem. 196, 59–67 (1999).

    PubMed  CAS  Google Scholar 

  121. R. Schulz, M. Kelm and G. Heusch, Nitric oxide in myocardial ischemia/reperfusion injury, Cardiovasc. Res. 61, 402–413 (2004).

    PubMed  CAS  Google Scholar 

  122. Y. Shizukuda and P.M. Buttrick, Subtype specific roles of β-adrenergic receptors in apoptosis of adult rat ventricular myocytes, J. Mot. Celt. Cardiol. 34, 823–831 (2002).

    CAS  Google Scholar 

  123. Y.J. Geng, Y. Ishikawa, D.E. Vatner, T.E. Wagner, S.P. Bishop, S.F. Vatner and C.J. Homcy, Apoptosis of cardiac myocytes in Gsalpha transgenic mice, Circ. Res. 84(1), 34–42 (1999).

    PubMed  CAS  Google Scholar 

  124. C. Communal, K. Singh, D.R. Pimentel and W.S. Colucci, Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the β-adrenergic pathway, Circulation 98, 1329–1334 (1998).

    PubMed  CAS  Google Scholar 

  125. D.M. Valks, S.A. Cook, F.H. Pham, P.R. Morrison, A. Clerk and P.H. Sugden, Phenylephrine promotes phosphorylation of Bad in cardiac myocytes through the extracellular signal regulated kinases 1/2 and protein kinase A, J. Mot. Cell. Cardiol. 34, 749–763 (2002)

    CAS  Google Scholar 

  126. S. Sanada, H. Asanuma, O. Tsukamoto, T. Minamino, K. Node, S. Takashima, T. Fukushima, A. Ogai, Y. Shinozaki, M. Fujita, A. Hirata, H. Okuda, H. Shimokawa, H. Tomoike, M. Hori and Kitakaze M, Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C, Circulation 110(1), 51–7 (2004).

    PubMed  CAS  Google Scholar 

  127. S. Makaula, A. Lochner, S. Genade, M.N. Sack, M.M. Awan and L.H. Opie, H-89, a non-specific inhibitor of protein kinase a, promotes post-ischemic cardiac contractile recovery and reduces infarct size, J Cardiovasc Pharmacol 45(4), 341–347 (2005).

    PubMed  CAS  Google Scholar 

  128. K. Mackay and D. Mochly-Rosen, Localization, anchoring and functions of protein kinase C isozymes in the heart, J. Mot. Cell. Cardiol. 33, 1301–1307 (2001).

    CAS  Google Scholar 

  129. C.P. Baines and J.D. Molkentin, Stress signaling pathways that modulate cardiac myocyte apoptosis, J. Mol. Cell. Cardiol. 38, 47–62 (2005).

    PubMed  CAS  Google Scholar 

  130. K. Yoshida, T. Hirata, Y. Akita, Y. Mizukami, K. Yamaguchi, Y. Sorimachi, T. Ishihara and S Kawashiama, Translocation of protein kinase C—α, δ and ε isoforms in ischemic rat heart, Biochim. Biophys. Acta 1317, 36–44 (1996).

    PubMed  Google Scholar 

  131. M.B. Mitchell, X. Meng, L. Ao, J.M. Brown, A.H. Harken and A. Banerjee, Preconditioning of isolated rat heart is mediated by protein kinase C, Circ. Res. 76(1), 73–81 (1995).

    PubMed  CAS  Google Scholar 

  132. P. Ping, J. Zhang, Y. Qiu, X.L. Tang, S. Manchikalapudi, X. Cao and R. Bolli, Ischemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity, Circ. Res. 81(3), 404–14 (1997).

    PubMed  CAS  Google Scholar 

  133. A.T. Saurin, D.J. Pennington, N.J. Raat, D.S. Latchman, M.J. Owen, M.S. Marber, Targeted disruption of protein kinase C epsilon gene abolishes the infarct size reduction that follows ischemic preconditioning of isolated buffer-perfused mouse hearts, Cardiovasc. Res. 55, 672–680 (2002).

    PubMed  CAS  Google Scholar 

  134. H.R. Cross, E. Murphy, R. Bolli, P. Ping and C. Steenbergen, Expression of activated PKC epsilon (PKC epsilon) protects the ischemic heart, without attenuating ischemic H(+) production, J Mol Cell Cardiol 34(3), 361–367 (2002).

    PubMed  CAS  Google Scholar 

  135. R.M. Fryer, P.F. Pratt, A.K. Hsu and G.J. Gross, Differential activation of ERK isoforms in preconditioning and opioid-induced cardioprotection, J. Pharmacol. Exp. Ther 296, 642–649 (2001).

    PubMed  CAS  Google Scholar 

  136. Y. Wang, K. Hirai and M. Ashraf, Activation of mitochondrial ATP-sensitive K(+) channel for cardiac protection against ischemic injury is dependent on protein kinase C activity, Circ Res 85(8), 731–741 (1999).

    PubMed  CAS  Google Scholar 

  137. J. Zhao, O. Renner, L. Wightman, P.H. Sugden, L. Stewart, A.D. Miller, D.S. Latchman and M.S. Marber, The expression of constitutively active isotypes of protein kinase C to investigate preconditioning, J. Biol. Chem. 273, 23072–23079 (1998).

    PubMed  CAS  Google Scholar 

  138. C. Pantos, V. Malliopoulou, I. Mourouzis, E. Karamanoli, I. Paizis, N. Steimberg, D. Varonos and D.V. Cokkinos, Long-term Thyroxine Administration Protects the Heart in a Similar Pattern as Ischemic Preconditioning, Thyroid 12, 325–329 (2002).

    PubMed  CAS  Google Scholar 

  139. M. Mayr, B. Metzler, Y.L. Chung, E. mcGregor, U. Mayr, H. troy, Y. Hu, M. Leitges, O. Pachinger, J.R. Griffiths, M.J. Dunn and Q. Xu, Ischemic preconditioning exaggerates cardiac damage in PKC-δ null mice, Am. J. Physiol. 287, H946–H956 (2004).

    CAS  Google Scholar 

  140. K. Yamanaka, N. Takahashi, T. Ooie, K. Kaneda, H. Yoshimatsu and T. Saikawa, Role of protein kinase C in geranylgeranylacetone-induced expression of heat-shock protein 72 and cardioprotection in the rat heart, J. Mol. Cell. Cardiol. 35(7), 785–794 (2003).

    PubMed  CAS  Google Scholar 

  141. Chen L, Hahn H, Wu G, Chen C-H, Liron T, Schechtman D, Cavallaro G, Banci. L., Guo Y, Bolli R, Dorn GWI and D. Mochly-Rosen, Opposing cardioprotective actions and parallel hypertrophic effects of δPKC and εPKC, Proc. Natl. Acad. Sci. 98, 11114–11119 (2001).

    PubMed  CAS  Google Scholar 

  142. H.E. Hoover D.J. Thuerauf, J.J Martindale and C.C. Glembotski, αB-crystallin gene induction and phosphorylation by MKK6-activated p38. A potential role for αB-crystallin as a target of the p38 branch of the cardiac stress response, J. Biol. Chem. 275, 23825–23833 (2000).

    PubMed  CAS  Google Scholar 

  143. H. Aoki, P.M. Kang, J. Hampe, K. Yoshimura, T. Noma, M. Matzuzaki and S. Izumo, Direct activation of mitochondria1 apoptosis machinery by c-Jun N— terminal kinase in adult cardiac myocytes, J. Biol. Chem. 277, 10244–10250 (2002).

    PubMed  CAS  Google Scholar 

  144. K. Mackay and D. Mochly-Rosen, An inhibitor of p38 MAPK protects neonatal cardiac myocytes from ischemia, J. Biol. Chem. 274, 627–6279 (1999)

    Google Scholar 

  145. X.L. Ma, S. Kumar, F. Gao, C.S. Louden, B.L. Lopez, T.A. Christopher, C. Wang, J.C. Lee, G.Z. Feuerstein and T.L. Yue, Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99(13), 1685–1691 (1999).

    PubMed  CAS  Google Scholar 

  146. S. Schneider, W. Chen, J. Hou, C. Steenbergen and E. Murphy, Inhibition of p38 MAPK alphdbeta reduces ischemic injury and does not block protective effects of preconditioning, Am. J. Physiol. 280(2), H499–508 (2001).

    CAS  Google Scholar 

  147. C. Pantos, V. Malliopoulou, I. Paizis, P. Moraitis, I. Mourouzis, S. Tzeis, E. Karamanoli, D.D. Cokkinos, H. Carageorgiou, D. Varonos and D.V. Cokkinos, Thyroid hormone and cardioprotection; study of p38 MAPK and JNKs during ischemia and at reperfusion in isolated rat heart, Mol. CeN Biochem. 242, 173–180 (2003).

    CAS  Google Scholar 

  148. E. Marais, S. Genade, R. Salie, B. Huisamen, S. Maritz, J.A. Moolman and A. Lochner, The temporal relationship between p38 MAPK and Hsp27 activation in ischemic and pharmacological preconditioning, Basic Res. Cardiol. 100(1), 35–47 (2005).

    PubMed  CAS  Google Scholar 

  149. S. Sanada, M. Kitakaze, P.J. Papst, K. Hatanaka, H. Asanuma, T. Aki, Y. Shinizaki, H. Ogita, K. Node, S. Takashima, M. Asakura, T. Yamada, T. Fukushima, A. Ogai, T. Kuzuya, H. Mori, N. Terada, K. Yoshida and M. Hori, Role of phasic dynamism of p38 MAPK activation in ischemic preconditioning of canine heart, Circ. Res. 88, 175–180 (2001).

    PubMed  CAS  Google Scholar 

  150. R.A. Kaiser, O.F. Bueno, D.J. Lips, P.A. Doevendans, F. Jones, T.F. Kimball and J.D. Molkentin, Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfitsion in vivo, J Biol Chem 279(15), 15524–15530 (2004).

    PubMed  CAS  Google Scholar 

  151. H. He, H.L. Li, A. Lin and R.A. Gottlieb, Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia, Cell Death Differ 6, 987–991 (1999).

    PubMed  CAS  Google Scholar 

  152. C. Pantos, V. Malliopoulou, I. Mourouzis, P. Moraitis, S. Tzeis, A. Thempeyioti, I. Paizis, A.D. Cokkinos, H. Carageorgiou, D. Varonos, D.V. Cokkinos, Involvement of p38 MAPK and JNK in the heat stress induced cardioprotection, Bas Res Cardiol 98, 158–164 (2003).

    CAS  Google Scholar 

  153. T.L. Yue, C. Yang, J.L. Gu, X.L. Ma, S. Kumar, J.C. Lee, G.Z. Feuerstein, H. Thomas, B. Maleeff and E.H. Ohlstein, Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart, Circ. Res. 86, 692–699 (2000).

    PubMed  CAS  Google Scholar 

  154. M.M. Mocanu, R.M. Bell and D.M. Yellon, PI3 Kinase and not p42/p44 appears to be implicated in the protection conferred by ischemic preconditioning. J. Mol. Cell. Cardiol. 34, 661–668 (2002).

    PubMed  CAS  Google Scholar 

  155. E.D. Abel, Insulin signaling in heart muscle: lessons from genetically engineered mouse models, Cum Hypertens. Rep. 6, 416–423 (2004).

    Google Scholar 

  156. M. Ceci, J. Ross and G. Condorelli, Molecular determinants of the physiological adaptation to stress in the cardiomyocyte: a focus on Akt, J. Mol. Cell. Cardiol. 37, 905–912 (2004).

    PubMed  CAS  Google Scholar 

  157. A.H. Kim, G. Khursigara, X. Sun, T.F. Franke and M.V. Chao, Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1, Mol. Cell. Biol. 21(3), 893–901 (2001).

    PubMed  CAS  Google Scholar 

  158. D.J. Hausenloy, M.M. Mocanu D.M. and Yellon, Cross talk between the survival kinases during early reperfusion: its contribution to ischemic preconditioning, Cardiovasc. Res. 63, 305–3 12 (2004).

    PubMed  CAS  Google Scholar 

  159. A. Stephanou, B.K. Brar, T.M. Scarabelli, A.K. Jonassen, D.M. Yellon, M.S. Marber, R.A. Knight and D.S. Latchman, Ischemia-induced STAT-1 expression and activation play a critical role in cardiomyocyte apoptosis, J. Biol. Chem. 275(14), 10002–10008 (2000).

    PubMed  CAS  Google Scholar 

  160. R. Bolli, B. Dawn and Y.T. Xuan, Role of the JAK-STAT pathway in protection against myocardial ischemia/reperfusion injury, Trends Cardiovasc. Med. 13, 72–79 (2003).

    PubMed  CAS  Google Scholar 

  161. O.F. Bueno, D.J. Lips, R.A. Kaiser, B.J. Wilkins, Y.S. Dai, B.J. Glascock, R. Klevitsky, T.E. Hewett, T.R. Kimball, B.J. Aronow, P.A. Doevendans and J.D. Molkentin, Calcineurin Abeta gene targeting predisposes the myocardium to acute ischemia-induced apoptosis and dysfunction. Circ. Res. 94(1), 91–99 (2004).

    PubMed  CAS  Google Scholar 

  162. G. Valen, Z. Yan and G.K. Hanson, Nuclear factor kappa —B and the heart, J. Am. Coll. Cardiol. 38, 307–314 (2001).

    PubMed  CAS  Google Scholar 

  163. Y. Sawa, R. Morishita, K. Suzuki, K. Kagisaki, Y. Kaneda, K. Maeda, K. Kadoba and H. Matsuda, A novel strategy for myocardial protection using in vivo transfection of cis element ‘decoy’ against NFkappaB binding site: evidence for a role of NFkappaB in ischemia-reperfusion injury, Circulation 96(9Suppl), 280–284 (1997).

    CAS  Google Scholar 

  164. N. Maulik, M. Sato, B.D. Price and D.K. Das, An essential role of NfkappaB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia, FEBS Lett. 429(3), 365–369 (1998).

    PubMed  CAS  Google Scholar 

  165. D.K. Das, Redox regulation of cardiomyocyte survival and death, Antioxid. Redox Signal. 3, 23–37 (2001).

    PubMed  CAS  Google Scholar 

  166. Y.J. Suzuki, H. Nagase, R.M. Day and D.K. Das, GATA-4 regulation of myocardial survival in the preconditioned heart, J. Mol. Cell. Cardiol. 37, 1195–1203 (2004).

    PubMed  CAS  Google Scholar 

  167. G.L. Semenza, Hydroxylation of HIF-1: oxygen sensing at the molecular level, Physiology 19, 176–182 (2004).

    PubMed  CAS  Google Scholar 

  168. M.C. Dery, M.D. Michaud and D.E. Richard, Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators, Int. J. Biochem. Cell Biol. 37, 535–540 (2005).

    PubMed  CAS  Google Scholar 

  169. T. Schmid, J. Zhou and B. Brune, HIF-1 and p53: communication of transcription factors under hypoxia, J. Cell. Mol. Med. 8(4), 423–431 (2004).

    PubMed  CAS  Google Scholar 

  170. Z. Cai, D.J. Manalo, G. Wei, E.R. Rodriguez, K. Fox-Talbot, H. Lu, J.L. Zweier and G.L. Semenza, Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury, Circulation 108, 79–85 (2003).

    PubMed  CAS  Google Scholar 

  171. N.C. Chi and J.S. Karliner, Molecular determinants of responses to myocardial ischemia/reperhsion injury: focus on hypoxia-inducible and heat shock factors, Cardiovasc Res 61(3), 437–447 (2004). Review.

    PubMed  CAS  Google Scholar 

  172. M.S. Marber, J.M. Walker, D.S. Latchman and D.M. Yellon, Myocardial protection following whole body heat stress in the rabbit is dependent on metabolic substrate and is related to the amount of the inducible 70 kb Dalton heat shock protein, J. Clin. Invest. 93, 1087–1094 (1994).

    PubMed  CAS  Google Scholar 

  173. S. Okubo, O. Wildner, M.R. Shah, J.C. Chelliah, M.L. Hess and R.C. Kukreja, Gene transfer of heat-shock protein 70 reduces infarct size in vivo after ischemia/reperfusion in the rabbit heart, Circulation. 103(6), 877–881 (2001).

    PubMed  CAS  Google Scholar 

  174. J.J. Zhou, J.M. Pei, G.Y. Wang, S. Wu, W.P. Wang, C.H. Cho and T.M. Wong, Inducible Hsp70 mediates delayed cardioprotection via U-50488H pretreatment in rat ventricular myocytes, Am JPhysiol 281(1), H40–47 (2001).

    CAS  Google Scholar 

  175. D.S. Latchman, Heat shock proteins and cardiac protection, Cardiovasc. Res. 51, 637–646 (2001).

    PubMed  CAS  Google Scholar 

  176. J.M. Bruey, C. Ducasse, P. Bonniaud, L. Ravagnan, S.A. Susin, C. Diaz-Latoud, S. Gurbuxani, A.P. Amgo, G. Kroemer, E. Solary and C. Garrido, Hsp27 negatively regulates cell death by interacting with cytochrome c, Nat. Cell. Biol. 2(9), 645–652 (2000).

    PubMed  CAS  Google Scholar 

  177. W.F. Bluhm, J.L. Martin, R. Mestril and W.H. Dillmann, Specific heat shock proteins protect microtubules during simulated ischemia in cardiac myocytes, Am. J. Physiol. 275, H2243–H2249 (1998).

    PubMed  CAS  Google Scholar 

  178. S.A. Loktionova, O.P. Ilyinskaya and A.E. kabakov, Early and delayed tolerance to simulated ischemia in heat-preconditioned endothelial cells: a role for Hsp27, Am. J. Physiol. 275, H2147–H2158 (1998).

    PubMed  CAS  Google Scholar 

  179. A. Clerk, A. Michael and P.H. Sugden, Stimulation of multiple mitogen-activated protein kinase sub-families by oxidative stress and phosphorylation of heat shock protein Hsp25/27, in neonatal ventricular myocytes, Biochem. J. 333, 581–589 (1998).

    PubMed  CAS  Google Scholar 

  180. E.T. Maizels, C.A. Peters, M. Kline, R.E. Cutler and M. Shanmugam, Heat-shock protein-25/27 phosphorylation by the delta isoform of protein kinase C, Biochem. J. 332, 703–712 (1998).

    PubMed  CAS  Google Scholar 

  181. R.S. Vander Heide, Increased expression of Hsp27 protects canine myocytes from simulated ischemia-reperfusion injury, Am. J. Physiol. 282, H935–H941 (2002).

    Google Scholar 

  182. J.L. Martin, R. Mestril, R. Hilal-Dandan, L.L. Brunton and W.H. Dillmann, Small heat shock proteins and protection against ischemic injury in cardiac myocytes, Circulation 96(12), 4343–4348 (1997).

    PubMed  CAS  Google Scholar 

  183. P.S. Ray, J.L. Martin, E.A. Swanson, H. Otani, W.H. Dillmann and D.K. Das, Transgene overexpression of alphaB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion, FASEB J. 15(2), 393–402 (2001).

    PubMed  CAS  Google Scholar 

  184. P. Eaton, W. Fuller, J.R. Bell and M.J. Shattock, αB crystallin translocation and phosphorylation: signal transduction pathways and preconditioning in the isolated rat heart, J. Mol. Cell. Cardiol. 33, 1659–1671 (2001).

    PubMed  CAS  Google Scholar 

  185. C. Pantos, V. Malliopoulou, I. Mourouzis, E. Karamanoli, P. Moraitis, S. Tzeis, I. Paizis, H. Carageorgiou, D. Varonos and D.V. Cokkinos, Thyroxine pretreatment increases basal myocardial Hsp27 expression and accelerates translocation and phosphorylation of this protein upon ischemia, Eur. J. Pharmacol. 478, 53–60 (2003).

    PubMed  CAS  Google Scholar 

  186. K.M. Lin, B. Lin, I.Y. Lian, R. Mestril, I.E. Schemer and W.H. Dillmann, Combined and individual mitochondrial Hsp60 and Hsp10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation, Circulation 103(13), 1787–1792 (2001).

    PubMed  CAS  Google Scholar 

  187. S.R. Kirchhoff, S. Gupta and A.A. Kwolton, Cytosolic heat shock protein 60, apoptosis and myocardial injury, Circulation 105, 2899–2904 (2002).

    PubMed  CAS  Google Scholar 

  188. A.A. Knowlton and S. Gupta, Hsp60, Bax, and cardiac apoptosis, Cardiovasc Toxicol. 3(3), 263–268 (2003). Review.

    PubMed  CAS  Google Scholar 

  189. A.A. Knowlton and L. Sun, Heat shock factor-1, steroid hormones, and regulation of heat shock protein expression in the heart, Am. J. Physiol. 280(1), H455–H464 (2001).

    CAS  Google Scholar 

  190. J.S. Isaacs, Y.J. Jung, E.G. Mimnaugh, A. Martinez, F. Cuttitta and L.M. Neckers, Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway, Biol. Chem. 277(33), 29936–29944 (2002).

    CAS  Google Scholar 

  191. B.K. Brar, J. Railson, A. Stephanou, R.A. Knight and D.S. Latchman, Urocortin increases the expression of heat shock protein 90 in rat cardiac myocytes in a MEK1/2-dependent manner, J. Endocrinol. 172(2), 283–93 (2002).

    PubMed  CAS  Google Scholar 

  192. C.E. Murry, R.B. Jennings and K.A. Reimer, Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium, Circulation 74(5), 1124–1136 (1986).

    PubMed  CAS  Google Scholar 

  193. R.S. Schulz, M.V. Cohen, M. Behrends, J.M. Downey, G. Heusch, Signal transduction of ischemic preconditioning, Cardiovasc. Res. 52, 181–198 (2001).

    PubMed  CAS  Google Scholar 

  194. G. Valen, Cellular signaling mechanisms in adaptation to ischemia-induced myocardial damage, Ann. Med. 35, 300–307 (2003).

    PubMed  CAS  Google Scholar 

  195. M. Joyeux-Faure, C. Arnaud, D. Godin-Ribuot and C. Ribuot, Heat stress preconditioning and delayed myocardial protection: what is new? Cardiovasc Res 60, 469–477 (2003).

    PubMed  CAS  Google Scholar 

  196. F. Kolar and B. Ostadal, Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia. Physiol. Res. 53, S3–S13 (2004).

    PubMed  CAS  Google Scholar 

  197. J. Neckar, I. Markova, F. Novak, O. Novakova, O. Szarszoi, B. Ostadal and F. Kolar, Increased expression and altered subcellular distribution of PKC isoform delta in chronically hypoxic rat myocardium: involvement in cardioprotection, Am. J. Physiol. 288(4), H 1566–72 (2004)

    Google Scholar 

  198. P. Razeghi, M.E. Young, S. Abbasi and H. Taegtmeyer, Hypoxia in vivo decreases peroxisome proliferator-activated receptor alpha-regulated gene expression in rat heart, Biochem Biophys Res Commun. 287(1), 5–10 (2001).

    PubMed  CAS  Google Scholar 

  199. P. Razeghi, M.F. Essop, J.M. Huss, S. Abbasi, N. Manga and H. Taegtmeyer, Hypoxia-induced switches of myosin heavy chain iso-gene expression in rat heart, Biochem Biophys Res Commun. 303(4), 1024–1027 (2003).

    PubMed  CAS  Google Scholar 

  200. I. Friehs and P.J. del Nido, Increased susceptibility of hypertrophied hearts to ischemic injury, Ann. Thorac. Surg. 75, S678–S684 (2003).

    PubMed  Google Scholar 

  201. M.F. Allard, Energy substrate metabolism in cardiac hypertrophy, Curr. Hyperten. Rep. 6, 430–435 (2004).

    Google Scholar 

  202. A. Bril, M.C. Forest and B. Gout, Ischemia and reperfusion induced arrhythmias in rabbits with chronic heart failure, Am. J. Physiol. 261, H301–H307 (1991).

    PubMed  CAS  Google Scholar 

  203. P.K. Podesser, J. Schimhofer, O.Y. Bemecker, A. Kroner, M. Franz, S. Semsroth, B. Fellner, J. Neumuller, S. Hallstrom and E. Wolner, Optimizing ischemia/reperfusion in the failing rat heart: improved myocardial protection with acute ACE inhibition, Circulation 106(12 Suppl 1), 1277–83 (2002).

    Google Scholar 

  204. S. Ghosh, N.B. Standen and M. Galinanes, Failure to precondition pathological myocardium, J. Am. Coll. Cardiol. 37, 711–718 (2001).

    PubMed  CAS  Google Scholar 

  205. D.J. Paulson, The diabetic heart is more sensitive to ischemic injury, Cardiovasc. Res. 34, 104–112 (1997).

    PubMed  CAS  Google Scholar 

  206. D. Feuvray and G.D. Lopaschuk, Controversies on the sensitivity of the diabetic heart to ischemic injury: the sensitivity of the diabetic heart to ischemic injury is decreased, Cardiovasc. Res. 34, 113–120 (1997).

    PubMed  CAS  Google Scholar 

  207. T. Ooie, N. Takahashi, T. Nawata, M. Arikawa, K. Yamanaka, M. Kajimoto, T. Shinohara, S. Shigematsu, M. Hara, H. Yoshimatsu and T. Saikawa, Ischemia-induced translocation of protein kinase C-epsilon mediates cardioprotection in the streptozotocin-induced diabetic rat, Circ. J. 67(11), 955–961 (2003).

    PubMed  CAS  Google Scholar 

  208. L. Zhang, J.R. Parratt, G. H. Beastall, N. J. Pyne and B.L. Furman, Streptozotocin diabetes protects against arrhythmias in rat isolated hearts: role of hypothyroidism, Eur J. Pharmacol. 435, 269–276 (2002).

    PubMed  CAS  Google Scholar 

  209. P. Golino, P.R. Maroko and T.E. Carew, The effect of acute hypercholesterolaemia on myocardial infarct size and the no-reflow phenomenon, during coronary occlusion-reperfusion, Circulation 75, 292–298 (1987).

    PubMed  CAS  Google Scholar 

  210. W.G. Girod, S.P. Jones, N. Sieber, T.Y. Aw and D.J. Lefer, Effect of hypercholesterolaemia on myocardial ischemia-reperfusion injury in LDL receptor-deficient mice, Arterioscler. Thromb. Vasc. Biol. 19, 2776–2781 (1999).

    PubMed  CAS  Google Scholar 

  211. B. Le Grand, B. Vie, P. Faure, A.D. Degryse, P. Mouillard and G.W. John, Increased resistance to ischemic injury in the isolated perfused atherosclerotic heart of the cholesterol-fed rabbit, Cardiovasc Res 30(5), 689–696 (1995).

    PubMed  Google Scholar 

  212. T.D. Wang, W.J. Chen, T.J. Mau, J.W. Lin, W.W. Lin and Y.T. Lee, Attenuation of increased myocardial ischemia-reperfusion injury conferred by hypercholesterolemia through pharmacological inhibition of the caspase-1, Br. J. Pharmacol. 138, 291–300 (2003).

    PubMed  CAS  Google Scholar 

  213. O. Jung, W. Jung, T. Malinski, G. Wiemer, B.A. Schoelkens and W. Linz, Ischemic preconditioning and infarct mass: the effect of hypercholesterolemia and endothelial dysfunction Clin. Exp. Hypertens. 22(2), 165–79 (2000).

    CAS  Google Scholar 

  214. X.L. Tang, A.B. Stein, G. Shirk and R. Bolli, Hypercholesterolemia blunts NO donor-induced late preconditioning against myocardial infarction in conscious rabbits, Basic Res Cardiol 99(6), 395–403 (2004).

    PubMed  Google Scholar 

  215. C. Pantos, I. Mourouzis, T. Saranteas, I. Paizis, C. Xinaris, V. Malliopoulou and D.V. Cokkinos, Thyroid hormone receptors α1 and β1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperfusion, Basic Res Cardiol (2005), in press.

    Google Scholar 

  216. W.I. Awad, M.J. Shattock and D.J. Chambers, Ischemic preconditioning in immature myocardium, Circulation, 98, 206–213 (1998).

    Google Scholar 

  217. S. Besse, S. Tanguy, F. Boucher, C. Le Page, S. Rozenberg, B. Riou, J. Leiris and B. Swynghedauw, Cardioprotection with cariporide, a sodium-proton exchanger inhibitor, after prolonged ischemia and reperfusion in senescent rats, Exp. Gerontol. 39(9), 1307–14 (2004).

    PubMed  CAS  Google Scholar 

  218. F. Boucher, S. Tanguy, S. Besse, N. Tresallet, A. Favier and J. de Leiris, Age dependent changes in myocardial susceptibility to zero flow ischemia and reperfusion in isolated perfused rat hearts: relation to antioxidant status, Mechanisms Ageing Develop. 103, 301–316 (1998).

    CAS  Google Scholar 

  219. P. Liu, B. Xu, T.A. Cavalieru and C.E. Hock, Attenuation of Anti-oxidative capacity enhances reperfusion-injury in aged rat myocardium, Am. J. Physiol 9, 287(6), H2719–2727 (2004)

    Google Scholar 

  220. B.Z. Simkhovich, P. Marjoram, C. Poizat, L. Kedes and R.A. Kloner, Age-related changes of cardiac gene expression following myocardial ischemia/reperfusion, Arch Biochem Biophys. 420(2), 268–278 (2003).

    PubMed  CAS  Google Scholar 

  221. O. Dewald, G. Ren, G. Duerr, M. Zoerlein, C. Klemm, C. Gersch, S. Tinsey, L.H. Michael, M.L. Entman and N.G. Frangogiamis, Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction, Am. J. Path., 164, 665–677 (2004)

    PubMed  CAS  Google Scholar 

  222. M. Wang, L. Baker, B.M. Tsai, K.K. Meldrum and D.R. Meldrum, Sex differences in the myocardial inflammatory response to ischemia/reperfusion injury, J. Physiol. Endocrinol. Metab. 288(2), E321–326 (2005).

    CAS  Google Scholar 

  223. K. Imahashi, R.E. London, C. Steenbergen and E. Murphy, Male/female differences in intracellular Na(+) regulation during ischemia/reperfusion in mouse heart, J. Mol. Cell. Cardiol. 37, 747–753 (2004).

    PubMed  CAS  Google Scholar 

  224. F.J. Sutherland and D. Hearse, The isolated blood and perfusion fluid perfused heart, Pharmacol. Res. 41, 613–627 (2000).

    PubMed  CAS  Google Scholar 

  225. D. Hearse and F.J. Sutherland, Experimental models for the the study of cardiovascular function and disease, Pharmacol Res 4, 597–603 (2000).

    Google Scholar 

  226. J.E. Baker, E.A. Konorev, G.J. Gross, W.M. Chilian and H.J. Jacob, Resistance to myocardial ischemia in five rat strains: is there a genetic component of cardioprotection? Am. J. Physiol. 278, H1395–H1400 (2000).

    CAS  Google Scholar 

  227. J.M. Pass, Y. Zheng, W.B. Wead, J. Zhang, R.C. Li, R. Bolli and P. Ping, PKCepsilon activation induces dichotomous cardiac phenotypes and modulates PKCepsilon-RACK interactions and RACK expression, Am. J. Physiol. 280(3), H946–H955 (2001).

    CAS  Google Scholar 

  228. S. Ghosh and M. Galinanes, Protection of the human heart with ischemic preconditioning during cardiac surgery: role of cardiopulmonary bypass, J. Thorac Cardiovasc. Surg. 126, 133–142 (2003).

    PubMed  Google Scholar 

  229. K. Shinmura, E. Kodani, Y.T. Xuan, B. Dawn, X.L. Tang and R. Bolli, Effect of aspirin on late preconditioning against myocardial stunning in conscious rabbits, J. Am. Coll. Cardiol. 41(7), 1183–1194 (2003).

    PubMed  CAS  Google Scholar 

  230. Y. Suematsu, V. Anttila, S. Takamoto and P.J. del Nido, Cardioprotection afforded by ischemic preconditioning interferes with chronic beta-blocker treatment, Scan. Cardiovasc. J. 38, 293–299, (2004).

    CAS  Google Scholar 

  231. S.L. Kopecky, R.J. Aviles, M.R. Bell, J.K. Lobl, D. Tipping, G. Frommell, K. Ramsey, A.E. Holland, M. Midei, A. Jain, M. Kellett and R.J. Gibbons, A randomized, double-blinded, placebo-controlled, dose-ranging study measuring the effect of an adenosine agonist on infarct size reduction in patients undergoing primary percutaneous transluminal coronary angioplasty: the ADMIRE (Amp579 Delivery for Myocardial Infarction REduction) study, Am. Heart J. 146(1), 146–152 (2003).

    PubMed  CAS  Google Scholar 

  232. A. Ross, R. Gibbons, R.A. Kloner, V.J. Marder, G.W. Stone and R.W. Alexander, Acute myocardial infarction study of adenosine (AMISTAD II), J. Am. Coll. Cardiol. 39(Suppl A), 338A (2002).

    Google Scholar 

  233. IONA study group, Effect of nicorandil on coronary events in patients with stable angina: the impact of nicorandil in angina (IONA) randomized trial, Lancet 359, 1269–1275 (2002).

    Google Scholar 

  234. T Miura and T. Miki, ATP-sensitive K+ channel openers: old drugs with new clinical benefits for the heart, Cum Vasc. Pharmacol. 1(3), 251–258 (2003).

    CAS  Google Scholar 

  235. P. Theroux, B.R. Chaitman, L. Erhardt, A. Jessel, T. Meinertz, W.U. Nickel, J.S. Schroeder, G. Tognoni, H. White and J.T. Willerson, Design of a trial evaluating myocardial cell protection with cariporide, an inhibitor of the transmembrane sodium-hydrogen exchanger: the Guard During Ischemia Against Necrosis (GUARDIAN) trial, Curr Control Trials Cardiovasc Med. 1(1), 59–67 (2000).

    PubMed  CAS  Google Scholar 

  236. R.M. Mentzer Jr, Sodium-proton exchange inhibition to prevent coronary events in acute cardiac conditions trial, Paper presented at the American Heart Association Scientific Sessions. November 12, (2003).

    Google Scholar 

  237. H. Tadokoro, A. Miyazaki, K. Satomura, L. Ryden, S. Kaul, S. Kar, E. Corday, and K. Drury, Infarct size reduction with coronary venous retroinfusion of diltiazem in the acute occlusion/reperfusion porcine heart model, J Cardiovasc Pharmacol. 28(1), 134–141 (1996).

    PubMed  CAS  Google Scholar 

  238. P. Theroux, J. Gregoire, C. Chin, G. Pelletier, P. de Guise and M. Juneau, Intravenous diltiazem in acute myocardial infarction. Diltiazem as adjunctive therapy to activase (DATA) trial, J Am Coll Cardiol. 32(3), 620–628 (1998).

    PubMed  CAS  Google Scholar 

  239. G. Pizzetti, A. Mailhac, L. Li Volsi, F. Di Marco, C. Lu, A. Margonato and S.L. Chierchia, Beneficial effects of diltiazem during myocardial reperfusion: a randomized trial in acute myocardial infarction, Ital Heart J. 2(10), 757–765 (2001).

    PubMed  CAS  Google Scholar 

  240. V. Marangelli, C. Memmola, M.S. Brigiani, L. Boni, M.G. Biasco, D. Scrutinio, S. Iliceto and P. Rizzon, Early administration of veraparnil after thrombolysis in acute anterior myocardial infarction. Effect on left ventricular remodeling and clinical outcome. VAMI Study Group. Verapamil Acute Myocardial Infarction, Ital Heart J. 1(5), 336–343 (2000).

    PubMed  CAS  Google Scholar 

  241. J. Sochman, J. Vrbska, B. Musilova and M. Rocek, Infarct Size Limitation: acute N-acetylcysteine defense (ISLAND trial): preliminary analysis and report after the first 30 patients, Clin Cardiol. 19(2), 94–100 (1996).

    PubMed  CAS  Google Scholar 

  242. C. de Zwaan, A.H. Kleine, J.H. Diris, J.F. Glatz, H.J. Wellens, P.F. Strengers, M. Tissing, C.E. Hack, M.P. van Dieijen-Visser and W.T. Hermens, Continuous 48-h C1-inhibitor treatment, following reperfusion therapy, in patients with acute myocardial infarction, Eur. Heart J. 23(21), 1670–1677 (2002).

    PubMed  Google Scholar 

  243. J.C. Fitch, S. Rollins, L. Matis, B. Alford, S. Aranki, C.D. Collard, M. Dewar, J. Elefteriades, R. Hines, G. Kopf, P. baker, L. Li, R. O’Hara, C. Rinder, H. Rinder, R. Shaw, B. Smith, G. Stahl and S.K. Shernan, Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass, Circulation 100(25), 2499–2506 (1999).

    PubMed  CAS  Google Scholar 

  244. T. Force, K. Kuida, M. Namchuk, K. Parang and J.M. Kyriakis, Inhibitors of protein kinase signaling pathways; Emerging therapies for cardiovascular disease, Circulation 109, 1196–1205 (2004).

    PubMed  CAS  Google Scholar 

  245. C. Willam, N. Masson, Y.M. Tian, S.A. Mahmood, M.I. Wilson, R. Bicknell, K.U. Eckardt, P.H. Maxwell, P.J. Ratcliffe and C.W. Pugh, Peptide blockade of HIFalpha degradation modulates cellular metabolism and angiogenesis. Proc. Natl. Acad. Sci. USA. 99(16), 10423–10428 (2002).

    PubMed  CAS  Google Scholar 

  246. N.L. Lubbers, J.S. Polakowski, C.D. Wegner, S.E. Burke, G.J. Diaz, K.M. Daniell and B.F. Cox, Oral bimoclomol elevates heat shock protein 70 and reduces myocardial infarct size in rats, Eur. J. Pharmacol. 435(1), 79–83 (2002).

    PubMed  CAS  Google Scholar 

  247. L.G. Melo, A.S. Pachori, D. Kong, M. Gnecchi, K. Wang, R.E. Pratt and V.J. Dzau, Gene and cell-based therapies for heart disease, FASEB J. 18(6), 648–663 (2004).

    PubMed  CAS  Google Scholar 

  248. M.J. Wright, L.M. Wightman, D.S. Latchman and M.S. Marber, In vivo myocardial gene transfer: optimization and evaluation of intracoronary gene delivery in vivo, Gene Ther 8(24), 1833–1839 (2001).

    PubMed  CAS  Google Scholar 

  249. P.D. Robbins and S.C. Ghivizzani, Viral vectors for gene therapy, Pharmacol Ther. 80(1), 35–47 (1998). Review.

    PubMed  CAS  Google Scholar 

  250. K. Suzuki, Y. Sawa, Y. Kaneda, H. Ichikawa, R. Shirakura and H. Matsuda, In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat, J Clin Invest. 99(7), 1645–1650 (1997).

    PubMed  CAS  Google Scholar 

  251. H.L. Zhu, A.S. Stewart, M.D. Taylor, C. Vijayasarathy, T.J. Gardner and H.L. Sweeney, Blocking free radical production via adenoviral gene transfer decreases cardiac ischemia-reperfusion injury, Mol Ther. 2(5), 470–475 (2000).

    PubMed  CAS  Google Scholar 

  252. W. Miao, Z. Luo, R.N. Kitsis and K. Walsh, Intracoronary, adenovirus-mediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo, J Mol Cell Cardiol. 32(12), 2397–2402 (2000).

    PubMed  CAS  Google Scholar 

  253. Y. Tang, M. Jackson, K. Qian and M.I. Phillips, Hypoxia inducible double plasmid system for myocardial ischemia gene therapy, Hypertension 39(2), 695–698 (2002).

    PubMed  CAS  Google Scholar 

  254. S. Davani, F. Deschaseaux, D. Chalmers, P. Tiberghien and J-P. Kantelip, Can stem cells mend a broken heart? Cardiovasc Res 65, 305–316 (2005).

    PubMed  CAS  Google Scholar 

  255. P. Menasche, Cell transplantation in myocardium, Ann Thorac Sue. 75(6 Suppl), S20–28 (2003). Review.

    Google Scholar 

  256. K.C. Wollert, G.P. Meyer, J. Lotz, S. Ringes-Lichtenberg, P. Lippolt, C. Breidenbach, S. Fichtner, T. Korte, B. Hornig, D. Messinger, L. Arseniev, B. Hertenstein, A. Ganser and H. Drexler, Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial, Lancet 364(9429), 141–148 (2004).

    PubMed  Google Scholar 

  257. A.M. Davidoff, C.Y. Ng, P. Brown, M.A. Leary, W.W. Spurbeck, J. Zhou, E. Honvitz, E.F. Vanin and A.W. Nienhuis, Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice, Clin Cancer Res. 7(9), 2870–2879 (2001).

    PubMed  CAS  Google Scholar 

  258. H.J. Kang, H.S. Kim, S.Y. Zhang, K.W. Park, H.J. Cho, B.K. Koo, Y.J. Kim, D. Soo Lee, D.W. Sohn, K.S. Han, B.H. Oh, M.M. Lee and Y.B. Park, Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial, Lancet Mar 363(9411), 751–756 (2004).

    CAS  Google Scholar 

  259. A.P. Beltrami, L. Barlucchi, D. Torella, M. Baker, F. Limana, S. Chimenti, H. Kasahara, M. Rota, E. Musso, K. Urbanek, A. Len, J. Kajstura, B. Nadal-Ginard and P. Anversa, Adult cardiac stem cells are multipotent and support myocardial regeneration, Cell 114(6), 763–776 (2003).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Pantos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Pantos, C., Mourouzis, I., Cokkinos, D.V. (2006). Myocardial Ischemia. In: Cokkinos, D.V., Pantos, C., Heusch, G., Taegtmeyer, H. (eds) Myocardial Ischemia. Basic Science for the Cardiologist, vol 21. Springer, Boston, MA. https://doi.org/10.1007/0-387-28658-6_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-28658-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28657-0

  • Online ISBN: 978-0-387-28658-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics