Skip to main content

From Fetal to Fatal

Metabolic adaptation of the heart to environmental stress

  • Chapter

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 21))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Knoop, Der Abbau aromatischer Fettsaeuren im Tierkoerper, Beitr chem Physiol Pathol 6, 150–162 (1904).

    CAS  Google Scholar 

  2. H. Winterstein, Ueber die Sauerstoffatmung des isolierten Saeugetierherzens, Z Allg Physiol 4, 339–359 (1904).

    Google Scholar 

  3. R. J. Bing, A. Siegel, I. Ungar, and M. Gilbert, Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism, Am J Med 16, 504–15 (1954).

    Article  PubMed  CAS  Google Scholar 

  4. F. L. Holmes, Between Biology and Medicine: The Formation of Intermediary Metabolism. Berkeley, CA: University of California at Berkeley; p. 114 (1992).

    Google Scholar 

  5. P. J. Randle, P. B. Garland, C. N. Hales, and E. A. Newsholme, The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus, Lancet 1, 785–789 (1963).

    Article  PubMed  CAS  Google Scholar 

  6. H. Taegtmeyer, R. Hems, and H. A. Krebs, Utilization of energy providing substrates in the isolated working rat heart, Biochem J 186, 701–711 (1980).

    PubMed  CAS  Google Scholar 

  7. J. D. McGany, S. E. Mills, C. S. Long, and D.W. Foster, Observations on the affinity for carnitine and malonyl-CoA sensitivity of carnitine palmitoyl transferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat, Biochem J 214, 21–28 (1983).

    Google Scholar 

  8. M. E. Young, G. W. Goodwin, J. Ying, P. Guthrie, C. R. Wilson, F. A. Laws, and H. Taegtmeyer, Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids, Am J Physiol Endocrinol Metab 280, E471–E479 (2001).

    PubMed  CAS  Google Scholar 

  9. D. G. Hardie, and D. Carling, The AMP-activated protein kinase—fuel gauge of the mammalian cell? Eur J Biochem 246, 259–273 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. N. B. Ruderman, A. K. Saha, D. Vavvas, and L. A. Witters, Malonyl-CoA, fuel sensing, and insulin resistance, Am J Physiol 276, E1–E18 (1999).

    PubMed  CAS  Google Scholar 

  11. P. M. Barger, J. M. Brandt, T. C. Leone, C. J. Weinheimer, and D. P. Kelly, Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth, J Clin Invest 105, 1723–1730 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. M. F. Allard, B. O. Schonekess, S. L. Henning, D. R. English, and G. D. Lopaschuk, Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts, Am J Physiol 267, H742–H750 (1994).

    PubMed  CAS  Google Scholar 

  13. T. Doenst, G. W. Goodwin, A. M. Cedars, M. Wang, S. Stepkowski, and H. Taegtmeyer, Load-induced changes in vivo alter substrate fluxes and insulin responsiveness of rat heart in vitro, Metabolism 50, 1083–1090 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. M. E. Young, S. Patil, J. Ying, C. Depre, H. S. Ahuja, G. L. Shipley, S. M. Stepkowski, P. J. Davies and H. Taegtmeyer, Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart, FASEB J 15, 833–845 (2001).

    Article  PubMed  CAS  Google Scholar 

  15. G. W. Goodwin, C. S. Taylor, and H. Taegtmeyer, Regulation of energy metabolism of the heart during acute increase in heart work, J Biol Chem 273, 29530–29539 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. H. Taegtmeyer, Genetics of energetics: transcriptional responses in cardiac metabolism, Ann Biomed Eng 28, 871–876 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. P. M. Barger, and D. P. Kelly, PPAR signaling in the control of cardiac energy metabolism, Trends Cardiovasc Med 10, 238–45 (2000).

    Article  PubMed  CAS  Google Scholar 

  18. D. P. Kelly, PPARs of the heart: three is a crowd, Circ Res 92, 482–4 (2003).

    Article  PubMed  CAS  Google Scholar 

  19. J. J. Lehman, and D. P. Kelly, Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth, Heart Fail Rev 7, 175–85 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. C. Depre, G. L. Shipley, W. Chen, Q. Han, T. Doenst, M. L. Moore, S. Stepkowski, P. J. Davies and H. Taegtmeyer, Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy, Nature Medicine 4, 1269–1275 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. P. Razeghi, M. E. Young, S. Abbasi, and H. Taegtmeyer, Hypoxia in vivo decreases peroxisome proliferator-activated receptor alpha-regulated gene expression in rat heart, Biochem Biophys Res Commun 287, 5–10 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. M. E. Young, P. Guthrie, S. Stepkowski, and H. Taegtmeyer, Glucose regulation of sarcomeric protein gene expression in the rat heart, J Mol Cell Cardiol 33, A181 (abstract) (2001).

    Google Scholar 

  23. S. Bishop, and R. Altschuld, Increased glycolytic metabolism in cardiac hypertrophy and congestive heart failure, Am J Physiol 218, 153–159 (1970).

    PubMed  CAS  Google Scholar 

  24. H. Taegtmeyer, and M. L. Overturf, Effects of moderate hypertension on cardiac function and metabolism in the rabbit, Hypertension 11, 416–426 (1988).

    PubMed  CAS  Google Scholar 

  25. B. Wittels, and J. F. Spann, Defective lipid metabolism in the failing heart, J Clin Invest 47, 1787–1794 (1968).

    PubMed  CAS  Google Scholar 

  26. M. N. Sack, T. A. Rader, S. Park, J. Bastin, S. A. McCune, and D. P. Kelly, Fatty acid oxidation enzyme gene expression is downregulated in the failing heart, Circulation 94, 2837–2842 (1996).

    PubMed  CAS  Google Scholar 

  27. V. G. Davila-Roman, G. Vedala, P. Herrero, L. de las Fuentes, J. G. Rogers, D. P. Kelly and R. J. Gropler, Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy, J Am Coll Cardiol 40, 271–7 (2002).

    Article  PubMed  CAS  Google Scholar 

  28. H. Taegtmeyer, S. Sharma, L. Golfman, M. Van Arsdall, and P. Razeghi, Linking gene expression to function: metabolic flexibility in normal and diseased heart, Ann N Y Acad Sci 1015, 1–12 (2004).

    Article  CAS  Google Scholar 

  29. L. A. Nikolaidis, A. Sturzu, C. Stolarski, D. Elahi, Y. T. Shen, and R. P. Shannon, The development of myocardial insulin resistance in conscious dogs with advanced dilated cardiomyopathy, Cardiovasc Res 61, 297–306 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. M. E. Young, P. McNulty, and H. Taegtmeyer, Adaptation and maladaptation of the heart in diabetes: Part II: potential mechanisms, Circulation 105, 1861–1870 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. P. Ferre, Regulation of gene expression by glucose, Proc Nutr Soc 58, 621–3 (1999).

    PubMed  CAS  Google Scholar 

  32. K. Uyeda, H. Yamashita, and T. Kawaguchi, Carbohydrate responsive element-binding protein (ChREBP): a key regulator of glucose metabolism and fat storage, Biochem Pharmacol 63, 2075–80 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. J. Girard, P. Ferre, and F. Foufelle, Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes, Annu Rev Nutr 17, 325–352 (1997).

    Article  PubMed  CAS  Google Scholar 

  34. M. Maki, M. Luotolahti, P. Nuutila, H. Iida, L. Voipio-Pulkki, U Ruotsalainen, M. Haaparanta, O. Solin, J. Hartiala, R. Harkonen and J. Knuuti, Glucose uptake in the chronically dysfunctional but viable myocardium, Circulation 93, 1658–66 (1996).

    PubMed  CAS  Google Scholar 

  35. C. Depre, J. L. Vanoverschelde, B. Gerber, M. Borgers, J. A. Melin, and R. Dion, Correlation of functional recovery with myocardial blood flow, glucose uptake, and morphologic features in patients with chronic left ventricular ischemic dysfunction undergoing coronary artery bypass grafting, J Thorac Cardiovasc Surg 113, 82–87 (1997).

    Article  Google Scholar 

  36. C. Depre, and H. Taegtmeyer, Metabolic aspects of programmed cell survival and cell death in the heart, Cardiovasc Res 45, 538–548 (2000).

    Article  PubMed  CAS  Google Scholar 

  37. R. A. Gottlieb, Mitochondria: ignition chamber for apoptosis, Mol Genet Metab 68, 227–231 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. J. Downward, Metabolism meets death, Nature 424, 896–7 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. O. Warburg, On the origin of cancer cells, Science 123, 309–314 (1956).

    PubMed  CAS  Google Scholar 

  40. D. Hanahan, and R. A. Weinberg, The Hallmarks of cancer, Cell 100, 57–70 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. J. A. Fallavollita, B. J. Malm, and J. M. J. Canty, Hibernating myocardiam retains metabolic and contractile reserve despite regional reductions in flow, function, and oxygen consumption at rest, Circ Res 92, 48–55 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. M. N. Sack, and D. M. Yellon, Insulin Therapy as an Adjunct to Reperfusion After Acute Coronary Ischemia, A Proposed Direct Myocardial Cell Survival Effect Independent of Metabolic Modulation, J Am Coll Cardiol 41, 1404–07 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. T. Matsui, T. Nagoshi, and A. Rosenzweig, Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival, Cell Cycle 2, 220–3 (2003).

    PubMed  CAS  Google Scholar 

  44. T. Matsui, L. Li, J. Wu, S. Cook, T. Nagoshi, M. Picard, R. Liao and A. Rosenzweig, Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart, J Biol Chem 277, 22896–901 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. E. Whiteman, H. Cho, and M. Birnbaum, Role of Akt/protein kinase B in metabolism, Trends Endocrinol Metab 13, 444–51 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. K. Gottlob, N. Majewski, S. Kennedy, E. Kandel, R. B. Robey, and N. Hay, Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase, Genes Dev 15, 1406–1418 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. N. Majewski, V. Nogueira, R. B. Robey, and N. Hay, Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases, Mol Cell Biol 24, 730–40 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Taegtmeyer, H. (2006). From Fetal to Fatal. In: Cokkinos, D.V., Pantos, C., Heusch, G., Taegtmeyer, H. (eds) Myocardial Ischemia. Basic Science for the Cardiologist, vol 21. Springer, Boston, MA. https://doi.org/10.1007/0-387-28658-6_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-28658-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28657-0

  • Online ISBN: 978-0-387-28658-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics