Skip to main content

Numerical Techniques in Relaxed Optimization Problems

  • Chapter
Book cover Robust Optimization-Directed Design

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 81))

Summary

Young measures and their various generalizations are a basic analytical tool for extension (=relaxation) of optimization problems that may lack of solutions because of various oscillation/concentration effects. Various numerical techniques designed directly for the relaxed problems are surveyed together with some specific applications.

This research was partly covered by the grants IAA 1075402 (GA AV ČR), and MSM 0021620839 (MŠMT ČR). Special thanks are to dr. Martin Kružík for his comments and for the calculations that have been exploited for Figures 8.3 and 8.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubri, S., Fago, M., Ortiz, M.: A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. Comp. Meth. in Appl Mech. Engr. 192 (2003), 2823–2843.

    Article  Google Scholar 

  2. Balder, E.J.: Lectures on Young measure theory and its applications in eco-nomics. Rend. Ist. Mat. Univ. Trieste 31,Suppl. 1 (2000), 1–69.

    MATH  MathSciNet  Google Scholar 

  3. Ball, J.M.: A version of the fundamental theorem for Young measures. In: PDEs and Continuum Models of Phase Transition. (Eds. M. Rascle, D. Serre, M. Slemrod.) Lecture Notes in Physics 344, Springer, Berlin, 1989, pp.207–215.

    Google Scholar 

  4. Ball, J.M., James, R.D.: Fine phase mixtures as minimizers of energy. Archive Rat. Mech. Anal. 100 (1988), 13–52.

    Article  MathSciNet  Google Scholar 

  5. Bhattacharya, K.: Microstructure of martensite. Why it forms and how it gives rise to the shape-memory effect. Oxford Univ. Press, 2003.

    Google Scholar 

  6. Bartels, S.: Adaptive approximation of Young measure solution in scalar non-convex variational problems. SIAM J. Numer. Anal. 42 (2004), 505–529.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bartels, S., Roubíček, T.: Linear-programming approach to nonconvex variational problems. (Preprint no.74, DFG SPP 1095, Stuttgart, 2002) Numerische Math. 99 (2004), 251–287.

    Article  MATH  Google Scholar 

  8. Carstensen, C., Roubíček, T.: Numerical approximation of Young measure in nonconvex variational problems. Numerische Mathematik 84 (2000), 395–415.

    Article  MathSciNet  MATH  Google Scholar 

  9. Castaing, C., Raynaud de Fitte, P., Valadier, M.: Young Measures on Topological Spaces. With Applications in Control Theory and Probability Theory. To appear.

    Google Scholar 

  10. Chryssoverghi, I., Numerical approximation of nonconvex optimal control problems defined by parabolic equations. J. Optim. Theory Appl. 45 (1985), 73–88.

    Article  MATH  MathSciNet  Google Scholar 

  11. Chryssoverghi, I., Bacopoulos, A., Kokkinis, B., Coletsos, J.: Mixed Frank-Wolfe penalty method with applications to nonconvex optimal control problems. J. Optimization Theory Appl. 94 (1997), 311–334.

    Article  MathSciNet  MATH  Google Scholar 

  12. Chryssoverghi, I.; Coletsos, J.; Kokkinis, B.: Approximate relaxed descent method for optimal control problems. Control Cybern. 30 (2001), 385–404.

    MATH  Google Scholar 

  13. DiPerna, R.J., Majda, A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm. Math. Physics 108 (1987), 667–689.

    Article  MathSciNet  MATH  Google Scholar 

  14. Egozcue, J.J.; Meziat, R.; Pedregal, P.: From a nonlinear, nonconvex variational problem to a linear, convex formulation. Appl. Math. Optimization 47 (2002), 27–44.

    Article  MathSciNet  MATH  Google Scholar 

  15. Fattorini, H.O.: Infinite Dimensional Optimization Theory and Optimal Control. Cambridge Univ. Press, Cambridge, 1999.

    Google Scholar 

  16. Frankowska, H., Rampazzo, F.: Relaxation of control systems under state constraints. SIAM J. Control Optimization 37 (1999), 1291–1309.

    Article  MathSciNet  MATH  Google Scholar 

  17. Gamkrelidze, R.V.: On sliding optimal regimes. Dokl. Akad. Nauk SSSR 143 (1962), 1243–1245; Engl. transl.: Soviet Math. Dokl. 3 (1962), 390–395.

    MATH  MathSciNet  Google Scholar 

  18. Ghouila-Houri, A.: Sur la géneralisation de la notion de commande d’un systéme guidable. Rev. Francaise Informat. Recherche Operationnelle 1 (1967), No.4, 7–32.

    MATH  MathSciNet  Google Scholar 

  19. Hoang, V.H., Schwab, C.: High-dimensional finite elements for elliptic problems with multiples scales. SIAM J. Multiscale Analysis 2004, to appear.

    Google Scholar 

  20. Klerk, E. de: Aspects of Semidefinite Programming. Kluwer Acad Publ., Dordrecht, 2002.

    MATH  Google Scholar 

  21. Kružík, M.: Numerical approach to double-well problem. SIAM J. Numer. Anal. 35 (1998), 1833–1849.

    Article  MathSciNet  MATH  Google Scholar 

  22. Kružík, M.: Maximum principle based algorithm for hysteresis in micromagnetics. Adv. Math. Sci. Appl. 13 (2003), 461–485.

    MathSciNet  MATH  Google Scholar 

  23. Kružík, M., Luskin, M.: The computation of martensitic microstructure with piecewise laminates. J. Sci. Comput. 19 (2003), 293–308.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kružík, M., Prohl, A.: Young measures approximation in micromagnetics, Numer. Math. 90 (2001), 291–307

    Article  MathSciNet  MATH  Google Scholar 

  25. Kružík, M., Roubíček, T.: On the measures of DiPerna and Majda. Mathematica Bohemica 122 (1997), 383–399.

    MathSciNet  MATH  Google Scholar 

  26. Kružík, M., Roubíček, T.: Optimization problems with concentration and oscillation effects: relaxation theory and numerical approximation, Numer. Funct. Anal. Optim. 20 (1999), 511–530.

    MathSciNet  MATH  Google Scholar 

  27. Kružík, M., Roubíček, T.: Specimen shape influence on hysteretic response of bulk ferromagnets. J. Magnetism and Magn. Mater. 256 (2003), 158–167.

    Article  Google Scholar 

  28. Kružík, M., Roubíček, T.: Interactions between demagnetizing field and minor-loop development in bulk ferromagnets. J. Magnetism and Magn. Mater. 277 (2004), 192–200.

    Article  Google Scholar 

  29. Luskin, M.: On the computation of crystalline microstructure. Acta Numerica 5 (1996), 191–257.

    Article  MATH  MathSciNet  Google Scholar 

  30. Mach, J.: Numerical solution of a class of nonconvex variational problems by SQP. Numer. Funct. Anal. Optim. 23 (2002), 573–587.

    Article  MATH  MathSciNet  Google Scholar 

  31. Mach, J.: Methods of numerical solution of a class of non-convex variational problems. PhD thesis, Math.-Phys. Faculty, Charles University, Prague, 2004.

    Google Scholar 

  32. Málek, J., Nečas, J., Rokyta, M., Ružička, M.: Weak and measure-valued solutions to evolution partial differential equations. Chapman & Hall, 1996.

    Google Scholar 

  33. Mataché, A.-M.: Sparse two-scale FEM for homogenization problems. J. Sci. Comput. 17 (2002), 659–669.

    Article  MATH  MathSciNet  Google Scholar 

  34. Mataché, A.-M., Schwab, C.: Two-scale FEM for homogenization problems. RAIRO Anal. Numerique 36 (2002), 537–572.

    MATH  Google Scholar 

  35. Mataché, A.-M., Roubíček, T., Schwab, C.: Higher-order convex approximations of Young measures in optimal control. Adv. in Comput. Math. 19 (2003), 73–91.

    Article  MATH  Google Scholar 

  36. Mataché, A.-M., Schwab, C., at al.: in preparation.

    Google Scholar 

  37. McShane, E.J.: Generalized curves. Duke Math. J. 6 (1940), 513–536.

    Article  MATH  MathSciNet  Google Scholar 

  38. Meziat, R.J.: Analysis of non convex polynomial programs by the method of moments. In: Frontiers in global optimization. (C.A. Floudas et al., eds.) Kluwer, Boston, 2004, pp.353–371.

    Google Scholar 

  39. Meziat, R., Egozcue, J.J., Pedregal, P.: The method of moments for non-convex variational problems. In: Advances in Convex Analysis and Global Optimization (N. Hadjisavvas et al., eds.) Kluwer, Dordrecht, 2001, pp.371–382.

    Google Scholar 

  40. Müller, S.: Variational models for microstructure and phase transitions. (Lect. Notes No.2, Max-Planck-Institut für Math., Leipzig, 1998). In: Calculus of variations and geometric evolution problems. (Eds.: S. Hildebrandt et al.) Lect. Notes in Math. 1713 (1999), Springer, Berlin, pp.85–210.

    Google Scholar 

  41. Nicolaides, R.A., Walkington, N.J.: Computation of microstructure utilizing Young measure representations. J. Intel. Materials System Struct. 4 (1993), 457–462.

    Google Scholar 

  42. Pedregal, P.: Numerical approximation of parametrized measures. Numer. Funct. Anal. Opt. 16 (1995), 1049–1066.

    MATH  MathSciNet  Google Scholar 

  43. Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser, Basel, 1997.

    MATH  Google Scholar 

  44. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976), 877–898.

    Article  MATH  MathSciNet  Google Scholar 

  45. Roubíček, T.: Approximation theory for generalized Young measures. (Preprint 1992 submited to SIAM J. Numer. Anal.) Numer. Funct. Anal. Opt. 16 (1995), 1233–1253.

    MATH  Google Scholar 

  46. Roubíček, T.: Relaxation in Optimization Theory and Variational Calculus, W. de Gruyter, Berlin, 1997.

    MATH  Google Scholar 

  47. Roubíček, T.: Existence results for some nonconvex optimization problems governed by nonlinear processes, In: Proc. 12th Conf. on Variational Calculus, Optimal Control and Applications (W.H. Schmidt, K. Heier, L. Bittner, R. Bulirsch, eds.) Birkäuser, Basel, 1998, pp. 87–96.

    Google Scholar 

  48. Roubíček, T.: Convex locally compact extensions of Lebesgue spaces and their applications. In: Calculus of Variations and Optimal Control. (A. Ioffe, S. Reich, I. Shafrir, eds.) Chapman & Hall / CRC Res. Notes in Math. 411, CRC Press, Boca Raton, FL, 1999, pp.237–250.

    Google Scholar 

  49. Roubíček, T., Kružík, M.: Adaptive approximation algorithm for relaxed optimization problems. In: Fast solution of discretized optimization problems (K.-H. Hoffmann, R.H.W. Hoppe, V. Schultz, eds.), ISNM 138, Birkhäuser, Basel, 2001, pp.242–254.

    Google Scholar 

  50. Roubíček, T., Kružík, M.: Microstructure evolution model in micromagnetics. Zeit. für angew. Math. und Physik, 55 (2004), 159–182.

    MATH  Google Scholar 

  51. Roubíček, T., Kružík, M.: Mesoscopic model of microstructure evolution in shape memory alloys, its numerical analysis and computer implementation. 3rd GAMM Seminar on microstructures 2004. (Ed. C. Miehe), GAMM Mitteilungen, J. Wiley, in print.

    Google Scholar 

  52. Šverák, V.: Rank-one convexity does not imply quasiconvexity. Proc. R. Soc. Edinb. 120 A (1992), 185–189.

    Google Scholar 

  53. Tartar, L.: On mathematical tools for studying partial differential equations of continuum physics: H-measures and Young measures. In: Developments in Partial Differential Equations and Applications to Mathematical Physics. (Eds. G. Butazzo, G.P. Galdi, L. Zanghirati.) Plenum Press, New York, 1992, pp.201–217.

    Google Scholar 

  54. Tartar, L.: Some remarks on separately convex functions. In: Microstructure and Phase Transition. IMA Vol. 54 (Eds. D. Kinderlehrer et al.), Springer, New York, 1993, pp. 192–204.

    Google Scholar 

  55. Valadier, M.: Young measures. In: Methods of Nonconvex Analysis. (A. Cellina, ed.) Lecture Notes in Math. 1446, Springer, Berlin, 1990, pp. 152–188.

    Google Scholar 

  56. Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York, 1972.

    MATH  Google Scholar 

  57. Warga, J.: Steepest descent with relaxed controls. SIAM J. Control Optim. 15 (1977), 674–682.

    Article  MATH  MathSciNet  Google Scholar 

  58. Wolkowicz, H., Saigal, R., Vandenberghe, L., eds: Hindbook of Semidefinite Programming. Kluwer Acad Publishers, Norwell, MA, 2000.

    Google Scholar 

  59. Young, L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937), 212–234.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Roubíček, T. (2006). Numerical Techniques in Relaxed Optimization Problems. In: Kurdila, A.J., Pardalos, P.M., Zabarankin, M. (eds) Robust Optimization-Directed Design. Nonconvex Optimization and Its Applications, vol 81. Springer, Boston, MA. https://doi.org/10.1007/0-387-28654-3_8

Download citation

Publish with us

Policies and ethics