Skip to main content

Lossless Predictive Compression of Hyperspectral Images

  • Chapter
Hyperspectral Data Compression

6 Conclusion

We have presented a number of different predictive coding schemes for the compression of hyperspectral images. While the schemes differ in the details of their implementation their outline is essentially the same. Each algorithm tries to approximate the ideal case of stationary data for which optimal predictors can be computed. The approximations can be viewed as attempting to partition the data space into sets within which the stationarity assumption can be applied with some level of plausibility. The extent to which these algorithms function or fail depends upon the validity of their assumption. There is clearly much more work to be done before we can claim that the problem of predictive lossless compression has been solved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Sayood. Data Compression in Remote Sensing Applications. IEEE Geoscience and Remote Sensing Newsletter, (84):7–15, September 1992.

    Google Scholar 

  2. M.J. Ryan and J.F. Arnold. The Lossless Compression of AVIRIS Images by Vector Quantization. IEEE Transactions on Geoscience and Remote Sensing, Vol 35:546–550, March 1997.

    Article  Google Scholar 

  3. G. Motta, F. Rizzo, and J.A. Storer. Compression of Hyperspectral Imagery. In Proceedings of the Data Compression Conference, DCC’ 03. IEEE, 2003.

    Google Scholar 

  4. X. Wu, N.D. Memon, and K. Sayood. A Context Based Adaptive Lossless/Nearly-Lossless Coding Scheme for Continuous Tone Images. ISO Working Document ISO/IEC SC29/WG1/N256, 1995.

    Google Scholar 

  5. X. Wu and N.D. Memon. CALIC-A Context Based Adaptive Lossless Image Coding Scheme. IEEE Transactions on Communications, May 1996.

    Google Scholar 

  6. M. Weinberger, G. Seroussi, and G. Sapiro. The LOCO-I Lossless Compression Algorithm: Principles and Standardization into JPEG-LS. Technical Report HPL-98-193, Hewlett-Packard Laboratory, November 1998.

    Google Scholar 

  7. J.M. Shapiro. Embedded Image Coding Using Zerotrees of Wavelet Coefficients. IEEE Transactions on Signal Processing, SP-41:3445–3462, December 1993.

    Article  Google Scholar 

  8. A. Said and W.A. Pearlman. A New Fast and Efficient Coder Based on Set Partitioning in Hierarchical Trees. IEEE Transactions on Circuits and Systems for Video Technologies, pages 243–250, June 1996.

    Google Scholar 

  9. A.C. Miguel, A.R. Askew, A. Chang, S. Hauck, R.E. Ladner, and E.A. Riskin. Reduced Complexity Wavelet-Based Predictive Coding of Hyper-spectral Images for FPGA Implementation. In Proceedings of the Data Compression Conference, DCC’ 04. IEEE, 2004.

    Google Scholar 

  10. S.R. Tate. Band Ordering in Lossless Compression of Multispectral Images. IEEE Transactions on Computers, pages 477–483, April 1997.

    Google Scholar 

  11. R.E. Roger and M.C. Cavenor. Lossless Compression of AVIRIS Images. IEEE Transactions on Image Processing, pages 713–719, May 1996.

    Google Scholar 

  12. R. F. Rice, P. S. Yeh, and W. Miller. Algorithms for a very high speed universal noiseless coding module. Technical Report 91-1, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California., February 1991.

    Google Scholar 

  13. G. K. Wallace. The JPEG still picture compression standard. Communications of the ACM, 34:31–44, April 1991.

    Article  Google Scholar 

  14. N.D. Memon, K. Sayood, and S.S. Magliveras. Lossless Compression of Multispectral Image Data. IEEE Transactions on Geoscience and Remote Sensing, 32:282–289, March 1994.

    Article  Google Scholar 

  15. X. Wu and N.D. Memon. Context Based Lossless Intraband Adaptive Compression-Extending CALIC. IEEE Transactions on Image Processing, 9:994–1001, June 2000.

    Article  Google Scholar 

  16. E. Magli, G. Olmo, and E. Quacchio. Optimized Onboard Lossless and Near-Lossless Compression of Hyperspectral Data Using CALIC. IEEE Geoscience and Remote Sensing Letters, 1:21–25, January 2004.

    Article  Google Scholar 

  17. B. Aiazzi, P. Alba, L. alparone, and S. Baronti. Lossless Compression of Multi/Hyper-spectral Imagery Based on 3-D Fuzzy Prediction. IEEE Transactions on Geoscience and Remote Sensing, 37:2287–2294, September 1999.

    Article  Google Scholar 

  18. J. Mielikainen, P. Toivanen, and A. Kaarna. Linear Prediction in Lossless Compression of Hyperspectral Images. Optical Engineering, 42:1013–1017, April 2003.

    Article  Google Scholar 

  19. Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantization design. IEEE Transactions on Communications, COM-28:84–95, Jan. 1980.

    Article  Google Scholar 

  20. F. Rizzo, B. Carpentieri, G. Motta, and J.A. Storer. High Performance Compression of Hyperspectral Imagery with Reduced Search Complexity in the Compressed Domain. In Proceedings of the Data Compression Conference, DCC’ 04. IEEE, 2004.

    Google Scholar 

  21. N.D. Memon and K. Sayood. Lossless Compression of Video Sequences. IEEE Transactions on Communications, Vol 44:1340–1345, October 1996.

    Article  Google Scholar 

  22. M.J. Slyz and D.L. Neuhoff. A Nonlinear VQ-based Predictive Lossless Image Coder. In Proceedings of the Data Compression Conference, DCC’ 94. IEEE, 1994.

    Google Scholar 

  23. J. G. Cleary and I. H. Witten. Data compression using adaptive coding and partial string matching. IEEE Transactions on Communications, 32(4):396–402, 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Wang, H., Sayood, K. (2006). Lossless Predictive Compression of Hyperspectral Images. In: Motta, G., Rizzo, F., Storer, J.A. (eds) Hyperspectral Data Compression. Springer, Boston, MA. https://doi.org/10.1007/0-387-28600-4_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-28600-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28579-5

  • Online ISBN: 978-0-387-28600-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics