Skip to main content

An Architecture for the Compression of Hyperspectral Imagery

  • Chapter
Hyperspectral Data Compression

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. Jelinek F., Probabilistic Information Theory, Chapter 4, McGraw Hill, New York, 1968.

    MATH  Google Scholar 

  2. Seyler A. and Budrikis Z., “Detail Perception after Scale Change in Television Image Processing”, IEEE Transactions on Information Theory, IT-11, pp. 31–43, 1965.

    Article  Google Scholar 

  3. Hall C. and Hall E., “A Non-linear Model for the Spatial Characteristics of the Human Visual System”, IEEE Transactions on Systems, Man and Cybernetics, SMC-7, pp. 161–170, Mar. 1977.

    Google Scholar 

  4. Pratt W., Digital Image Processing, Wiley, New York, 1978.

    Google Scholar 

  5. Budrikis Z., “Visual Fidelity Criterion and Modeling”, Proceedings of the IEEE, vol. 60, no 7, pp. 771–779, Jul. 1972.

    Google Scholar 

  6. Pratt W.K, Image Transmission Techniques, Academic Press, New York, 1979.

    Google Scholar 

  7. Hecht S., “The Visual Discrimination of Intensity and the Weber-Fechner Law”, Journal of General Physiology, pp. 235–267, 1924.

    Google Scholar 

  8. Sakrison D., “On the Role of the Observer and a Distortion Measure in Image Transmission”, IEEE Transactions on Communications, COM-25, pp. 1251–1266, 1977.

    Article  Google Scholar 

  9. Limb J. and Rubinstein C., “On the Design of a Quantizer for DPCM Coders: A Functional Relationship Between Visibility, Probability and Masking”, IEEE Transactions on Communications, COM-26, pp. 573–578, 1978.

    Article  Google Scholar 

  10. Netravali A. and Prasada B., “Adaptive Quantization of Picture Signals Using Spatial Masking”, Proceedings of the IEEE, vol. 65, pp. 536–548, 1977.

    Google Scholar 

  11. Stromeyer C. and Julesz B., “Spatial-Frequency Masking in Vision: Critical Bands and Spread of Marking”, Journal of the Optical Society of America, vol. 62, no. 10, pp. 1221–1232, Oct. 1972.

    Article  Google Scholar 

  12. Campbell F., “Visual Acuity Via Linear Analysis”, Proceedings of the Symposium on Information Processing in Sight Sensory Systems, Pasadena, CA, Nov. 1965.

    Google Scholar 

  13. Davidson M., “Perturbation Approach to Spatial Brightness Interaction in Human Vision”, Journal of the Optical Society of America, vol. 58, pp. 1300–1309, 1968.

    Google Scholar 

  14. Stockham T., “Image Processing in the Context of a Visual Model”, Proceedings of the IEEE, vol. 60, no. 7, pp. 828–842, Jul. 1972.

    Google Scholar 

  15. Mannos J. and Sakrison D., “The Effects of a Visual Fidelity Criterion on the Encoding of Images”, IEEE Transactions of Information Theory, IT-20, no. 4, pp. 525–536, Jul. 1974.

    Article  Google Scholar 

  16. Murakami T., et al, “Vector Quantizer of Video Signals”, Electronic Letters, vol. 7, pp. 1005–1006, Nov. 1982.

    Google Scholar 

  17. Netravali A. and Limb J., “Picture Coding: A Review”, Proceedings of the IEEE, vol. 68, no. 3, pp. 366–406, Mar. 1980.

    Google Scholar 

  18. Chen S. and Wang Y., “Vector Quantization of Pitch Information in Mandarin Speech”, IEEE Transactions on Communications, vol. 38, no. 9, pp. 1317–1320, Sep. 1990.

    Article  Google Scholar 

  19. CCIR, Method for Subjective Assessment of the Quality of Television Pictures, 13th Plenary Assembly, Recommendation 500, vol. 11, pp. 65–68, 1974.

    Google Scholar 

  20. Limb J., “Distortion Criteria of the Human Viewer”, IEEE Transactions on Systems, Man and Cybernetics, SMC-9, no. 12, pp. 778–793, 1979.

    Article  Google Scholar 

  21. Ryan M. and Arnold J, “Lossy Compression Of Hyperspectral Data Using Vector Quantization”, Remote Sensing of Environment, vol. 61, no. 3, pp. 419–436, Sep. 1997.

    Article  Google Scholar 

  22. Gray R., et al, “Distortion Measures for Speech Processing”, IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-28, no. 4, pp. 367–376, Aug. 1980.

    Article  Google Scholar 

  23. Motta G., Rizzo F., and Storer J., “Compression Of Hyperspectral Imagery”, Data Compression Conference, pp. 333–342, 25–27 Mar. 2003.

    Google Scholar 

  24. Murakami T., Asai K. and Yamazaki E., “Vector Quantizer of Video Signals”, Electronic Letters, vol. 7, pp. 1005–1006, Nov. 1982.

    Google Scholar 

  25. Boucher P. and Goldberg M., “Colour Image Compression by Adaptive Vector Quantization”, Proceedings IEEE International Conference on Acoustics Speech and Signal Processing, San Diego, pp. 29.6.1–29.6.4, Mar. 1984.

    Google Scholar 

  26. Goldberg M. and Sun H., “Image Sequence Coding by Three-dimensional Block Vector Quantization”, IEE Proceedings, vol. 135, pt. F, no. 5, pp. 482–487, Aug. 1986.

    Google Scholar 

  27. Baker R. and Gray R., “Image Compression Using Non-adaptive Spatial Vector Quantization”, Conference Record of the 16th Asilomar Conference on Circuits, Systems, Computers, pp. 55–61, Oct. 1982.

    Google Scholar 

  28. Baker R. and Gray R., “Differential Vector Quantization of Achromatic Imagery”, Proceedings of the International Picture Coding Symposium, pp. 105–106, Mar 1983.

    Google Scholar 

  29. Budge S. and Baker R., “Compression of Colour Digital Images Using Vector Quantization in Product Codes”, Proceedings IEEE International Conference on Acoustics, Speech, Signal Processing, pp. 129–132, Mar. 1985.

    Google Scholar 

  30. Blain M. and Fischer T., “A Comparison of Vector Quantization Techniques in Transform and Subband Coding of Imagery”, Image Communication, vol. 3, pp. 91–105, 1991.

    Article  Google Scholar 

  31. Sun H. and Goldberg M., “Image Coding using LPC with Vector Quantization”, Proceedings of the IEEE International Conference on Digital Signal Processing, Florence, pp. 508–512, Sep. 1984.

    Google Scholar 

  32. Murakami T. et al, “Interframe Vector Coding of Colour Video Signals”, Proceedings of the International Picture Coding Symposium, Jul. 1984.

    Google Scholar 

  33. Ramamurthi B. and Gersho A., “Classified Vector Quantization of Images”, IEEE Transactions on Communications, vol. 34, no. 11, pp. 1105–1115, Nov. 1986.

    Article  Google Scholar 

  34. Tate S., “Band Ordering In Lossless Compression Of Multispectral Images,” IEEE Transactions on Computing, vol. 46, pp. 477–483, Apr. 1997.

    Article  MathSciNet  Google Scholar 

  35. Chulhee Lee and Euisun Choi, “Compression Of Hyperspectral Images With Enhanced Discriminant Features”, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, pp. 76–79, 27–28 Oct. 2003.

    Google Scholar 

  36. Kim, B., Xiong, Z., and Pearlman, W. A., “Low Bit-rate Scalable Video Coding With 3-D Set Partition in Hierarchical Trees (3-D SPIHT),” IEEE Tranactions on Circuits and Systems for Video Technology, vol. 10, pp. 1374–1387, Dec. 2000.

    Article  Google Scholar 

  37. Roger R. and Cavenor M., “Lossless Compression of AVIRIS Images”, IEEE Transactions on Image Processing, vol. 5, no. 5, pp. 713–719, May 1996.

    Article  Google Scholar 

  38. Weinberger M., Seroussi G., and Sapiro G., “The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization into JPEG-LS,” IEEE Transactions on Image Processing, vol. 9, pp. 1309–1324, Aug. 2000.

    Article  Google Scholar 

  39. Aiazzi B., Alba P., Alparone L., and Baronti S., “Lossless Compression Of Multi/Hyper-Spectral Imagery Based On A 3-D Fuzzy Prediction”, IEEE Transactions on Geoscience and Remote Sensing, vol. 37, no. 5, pp. 2287–2294, Sept. 1999.

    Article  Google Scholar 

  40. Wu X. and Memon N., “Context-based, Adaptive, Lossless Image Coding,” IEEE Transactions on Communications, vol. 45, pp. 437–444, Apr. 1997.

    Article  Google Scholar 

  41. Wu X. and Memon N., “Context-based Lossless Interband Compression—Extending CALIC,” IEEE Transactions on Image Processing, vol. 9, pp. 994–1001, Jun. 2000.

    Article  Google Scholar 

  42. Mielikainen J. and Toivanen P., “Clustered DPCM for The Lossless Compression of Hyperspectral Images”, IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 12, pp. 2943–2946, Dec. 2003.

    Article  Google Scholar 

  43. Gersho A. and Gray R., Vector Quantization and Signal Compression, Kluwer Academic Publishers, Norwell MA, 1990.

    Google Scholar 

  44. Hilbert E., “Joint Pattern Recognition / Data Compression Concept for ERTS Hyperspectral Data”, Efficient Transmission of Pictorial Information, SPIE, vol. 66, pp. 122–137, Aug. 1975.

    Google Scholar 

  45. Ryan M. and Arnold J., “The Lossless Compression of AVIRIS Images by Vector Quantization”, IEEE Transactions on Geoscience and Remote Sensing, vol. 35, no. 3, pp. 546–550, May 1997.

    Article  Google Scholar 

  46. Ramamurthi B. and Gersho A., “Image Vector Quantization With a Perceptually Based Classifier”, in Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, San Diego, CA, vol. 2, pp. 32.10.1–32.10.4, Mar. 1984.

    Google Scholar 

  47. Lee C. and Landgrebe D., “Feature Extraction on Decision Boundaries”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 4, pp. 388–400, 1993.

    Article  Google Scholar 

  48. Rizzo F., Carpentieri B., Motta G., and Storer J., “High Performance Compression of Hyperspectral Imagery With Reduced Search Complexity In The Compressed Domain”, Data Compression Conference, pp. 479–488, 23–25 March 2004.

    Google Scholar 

  49. Pickering M. and Ryan M., “Efficient Spatial-Spectral Compression Of Hyperspectral Data”, IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 7, pp. 1536–1539, Jul. 2001.

    Article  Google Scholar 

  50. Jia X., Ryan M., and Pickering M., “Fast Classification of V-Q Compressed Hyperspectral Data”, IEEE Geoscience and Remote Sensing Symposium IGARSS’ 01, vol. 4, pp. 1862–1864, 9–13 Jul. 2001.

    Google Scholar 

  51. Ramasubramanian D. and Kanal, L., “Classification of Remotely Sensed Images in Compressed Domain”, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, pp. 249–253, 27–28 Oct. 2003.

    Google Scholar 

  52. Jia X. and Richards J., “Efficient Transmission and Classification of Hyperspectral Image Data”, IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 5, pp. 1129–1131, May 2003.

    Article  Google Scholar 

  53. Canta G. and Poggi G., “Kronecker-Product Gain-Shape Vector Quantization For Multispectral And Hyperspectral Image Coding”, IEEE Transactions on Image Processing, vol. 7, no. 5, pp. 668–678, May 1998.

    Article  MathSciNet  MATH  Google Scholar 

  54. Shen-En Qian, Hollinger A.B, Williams D., and Manak D., “Vector Quantization Using Spectral Index-Based Multiple Subcodebooks For Hyperspectral Data Compression”, IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 3, pp. 1183–1190, May 2000.

    Article  Google Scholar 

  55. Qian S.-E., “Hyperspectral Data Compression Using a Fast Vector Quantization Algorithm”, IEEE Transactions on Geoscience and Remote Sensing, accepted for future publication, 2004.

    Google Scholar 

  56. Baizert P., Pickering M. and Ryan M., “Compression of Hyperspectral Data By Spatial/Spectral Discrete Cosine Transform”, IEEE Geoscience and Remote Sensing Symposium IGARSS’ 01, vol. 4, pp. 1859–1861, 9–13 Jul. 2001.

    Google Scholar 

  57. Said A. and Pearlman, W., “A New, Fast, And Efficient Image Codec Based On Set Partitioning In Hierarchical Trees,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, pp. 243–250, Jun. 1996.

    Article  Google Scholar 

  58. Taubman, D. and Marcellin, M., “JPEG2000: Image Compression Fundamentals, Standards and Practice” Boston, MA, Kluwer, 2002.

    Google Scholar 

  59. Pal M., Brislawn C. and Brumby S., “Feature Extraction From Hyperspectral Images Compressed Using The JPEG-2000 Standard”, Fifth IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 168–172, 7–9 Apr. 2002.

    Google Scholar 

  60. Sunghyun Lim, Kwang Hoon Sohn and Chulhee Lee, “Principal Component Analysis for Compression of Hyperspectral Images”, IEEE Geoscience and Remote Sensing Symposium IGARSS’ 01, vol. 1, pp.97–99, vol.1, 9–13 Jul. 2001.

    Google Scholar 

  61. Sunghyun Lim, Kwanghoon Sohn and Chulhee Lee, “Compression For Hyperspectral Images Using Three Dimensional Wavelet Transform”, IEEE Geoscience and Remote Sensing Symposium IGARSS’ 01, vol. 1, pp. 109–111, 9–13 Jul. 2001

    Google Scholar 

  62. Lee, H., Younan N. and King R., “Hyperspectral Image Cube Compression Combining JPEG-2000 and Spectral Decorrelation”, IEEE Geoscience and Remote Sensing Symposium IGARSS’ 02, vol. 6, pp. 3317–3319, 24–28 Jun. 2002.

    Article  Google Scholar 

  63. Tang X., Cho S. and Pearlman W., “3D Set Partitioning Coding Methods In Hyperspectral Image Compression”, International Conference on Image Processing, vol. 2, pp. 239–242, 14–17 Sept. 2003

    Google Scholar 

  64. Yonghui Wang, Rucker J. and Fowler J., “Three-dimensional Tarp Coding For The Compression Of Hyperspectral Images”, IEEE Geoscience and Remote Sensing Letters, vol. 1, no. 2, pp. 136–140, Apr. 2004.

    Article  Google Scholar 

  65. Rupert S., Sharp M., Sweet J. and Cincotta E., “Noise Constrained Hyperspectral Data Compression”, IEEE Geoscience and Remote Sensing Symposium IGARSS’ 01, vol. 1, pp. 94–96 vol. 19–13, Jul. 2001.

    Google Scholar 

  66. Bowles J., Wei Chen and Gillis D., “ORASIS Framework—Benefits To Working Within The Linear Mixing Model”, IEEE Geoscience and Remote Sensing Symposium IGARSS’ 03, vol. 1, pp.96–98, 21–25 July 2003.

    Google Scholar 

  67. Plaza A., Martinez P., Perez R. and Plaza J., “A New Approach To Mixed Pixel Classification Of Hyperspectral Imagery Based On Extended Morphological Profiles”, Pattern Recognition, vol. 37, no. 6, pp. 1097–1116, Jun. 2004.

    Article  Google Scholar 

  68. Du Q. and Chang C-I, “Linear Mixture Analysis-based Compression for Hyperspectral Image Analysis”, IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 4, pp. 875–891, Apr. 2004.

    Article  Google Scholar 

  69. Faulconbridge R., Pickering M., Ryan M., and Jia X., “A New Approach to Controlling Compression-Induced Distortion of Hyperspectral Images”, IEEE Geoscience and Remote Sensing Symposium IGARSS’ 03, vol. 3, pp. 1830–1832, 21–25 Jul. 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Pickering, M.R., Ryan, M.J. (2006). An Architecture for the Compression of Hyperspectral Imagery. In: Motta, G., Rizzo, F., Storer, J.A. (eds) Hyperspectral Data Compression. Springer, Boston, MA. https://doi.org/10.1007/0-387-28600-4_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-28600-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28579-5

  • Online ISBN: 978-0-387-28600-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics