Skip to main content

FPGA Implementation of Very Large Associative Memories

Application to Automatic Speech Recognition

  • Chapter
Book cover FPGA Implementations of Neural Networks

Abstract

Associative networks have a number of properties, including a rapid, compute efficient best-match and intrinsic fault tolerance, that make them ideal for many applications. However, large networks can be slow to emulate because of their storage and bandwidth requirements. In this chapter we present a simple but effective model of association and then discuss a performance analysis we have done in implementing this model on a single high-end PC workstation, a PC cluster, and FPGA hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari S., 1997. The neural Theory of Association and Concept Formation, Biol. cyber. 26, pp. 175–185

    Article  Google Scholar 

  2. Anderson J. A. and others, 1999. Radar Signal Categorization Using a Neural Network, Proceedings of the IEEE, 1990, August.

    Google Scholar 

  3. Anderson J. A., 1995. Introduction to Neural Networks, MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  4. Batcher K. E., 1977. The Multi-dimensional access in STARAN, IEEE Transactions on Computers, Special Issue on Parallel Processing, pp. 174–177

    Google Scholar 

  5. Braitenberg V., 2001. Brain Size and Number of Neurons: An Exercise in Synthetic Neuroanatomy, Journal of Computational Neuroscience, 10, pp. 71–77

    Article  Google Scholar 

  6. Braitenberg V. and A. Schuz, 1998. Cortex: Statistics and Geometry of Neuronal Connectivity, Springer-Verlag.

    Google Scholar 

  7. Buckingham J. T. and D. J. Willshaw, 1992. Performance characteristics of the associative net, Network, 3, pp. 407–414

    Article  Google Scholar 

  8. Field D. J., 1999. What is the goal of sensory coding? Unsupervised Learning, MIT Press, pp. 101–143.

    Google Scholar 

  9. Gropp W., E. Lusk et al., 1999. Using MPI Portable Parallel Programming with the Message Passing Interface, MIT Press, Cambridge, MA.

    Google Scholar 

  10. Hebb D. O., 1999. The Organization of Behavior, Wiley, New York.

    Google Scholar 

  11. Hecht-Nielsen R. Tutorial: Cortronic Neural Networks, 1999, International Joint Conference on Neural Networks, Washington, DC.

    Google Scholar 

  12. Hopfield J., 1982. Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79.

    Google Scholar 

  13. Kerr J. R. C. H. Luk et al., 2003. Advanced integrated enhanced vision systems, SPIE.

    Google Scholar 

  14. Kohonen T., 1984. Self-Organization and Associative Memory, SpringerVerlag, Heidelberg

    MATH  Google Scholar 

  15. Lansner A. and A. Holst, 1996. A Higher Order Bayesian Neural Network with Spiking Units, Int. J. Neural Systems, 7(2), pp. 115–128.

    Article  Google Scholar 

  16. Lansner A. and others, 1997. Detailed Simulation of Large Scale Neural Networks. Computational Neuroscience: Trends in Research 1997, Plenum Press, J. M. Bower. Boston, MA, pp. 931–935.

    Google Scholar 

  17. Maass W. and C. M. Bishop, Pulsed Neural Networks, MIT Press, 1999, address=Cambridge MA

    Google Scholar 

  18. Omohundro S. M., 1990. Bumptrees for efficient function, constraint, and classification learning, Advances in Neural Information Processing Systems, 3, Denver, Colorado, Morgan Kauffmann.

    Google Scholar 

  19. O’Reilly R. and Y. Munakata, 2000. Computational Explorations in Cognitive Neuroscience-Understanding the Mind by Simulating the Brain, MIT Press., Cambridge, MA

    Google Scholar 

  20. Palm G., 1980. On Associative Memory, Biological Cybernetics, 36, pp. 19–31

    Article  MATH  Google Scholar 

  21. Palm G. F. Schwenker et al., 1997. Neural Associative Memories. Associative Processing and Processors, IEEE Computer Society, pp. 284–306, Los Alamitos, CA.

    Google Scholar 

  22. Reschke C. T. Sterling et al. A Design Study of Alternative Network Topologies for the Beowulf Parallel Workstation, High Performance and Distributed Computing, 1996

    Google Scholar 

  23. Steinbuch K., 1967. Die Lernmatrix., Kybernetik, 1.

    Google Scholar 

  24. Willshaw D. and B. Graham, 1995. Improving Recall From An Associative Memory, Biological Cybernetics, 72, pp. 337–346.

    MATH  Google Scholar 

  25. Zhu S. and D. Hammerstrom, 2002. Simulation of Associative Neural Networks, ICONIP, Singapore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Hammerstrom, D., Gao, C., Zhu, S., Butts, M. (2006). FPGA Implementation of Very Large Associative Memories. In: Omondi, A.R., Rajapakse, J.C. (eds) FPGA Implementations of Neural Networks. Springer, Boston, MA . https://doi.org/10.1007/0-387-28487-7_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-28487-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28485-9

  • Online ISBN: 978-0-387-28487-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics