Skip to main content

Machine Tools and Manufacturing Equipment

  • Chapter
Manufacturing Systems: Theory and Practice

Part of the book series: Mechanical Engineering Series ((MES))

  • 5445 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weck, M., Handbook of Machine Tools, John Wiley & Sons, New York 1984.

    Google Scholar 

  2. The Working Papers of the MIT Commission on Industrial Productivity, MIT Press, Cambridge, MA 1989.

    Google Scholar 

  3. Lange, K., Handbook of Metal Forming, McGraw Hill, New York, 1985.

    Google Scholar 

  4. Kalpakjian, S., Manufacturing Engineering and Technology, 4th Edition, Prentice Hall, 2000.

    Google Scholar 

  5. Wick, C. and R. F. Veilleux, Tool and Manufacturing Engineers Handbook, Vol. 3-Materials, Finishing and Coating, Society of Manufacturing Materials, Michigan, 1985

    Google Scholar 

  6. Kawahara, O., S. Audo and H. Khara, “Internal grinding machine with magnetic bearing spindle”, Proc. Jap. Soc. of Grinding Eng. Conf., (1997) pp. 39–42.

    Google Scholar 

  7. Slocum, A. H., Precision Machine Design, SME, Prentice-Hall Inc, 1992.

    Google Scholar 

  8. Chryssolouris, G., Laser Machining: Theory and Practice, Springer-Verlag, Mechanical Engineering Series, New York, 1991.

    Google Scholar 

  9. Basov, N.G., Danilychev, V.A., “Industrial High-Power Lasers. Science and Mankind”, Znanie, Moscow (1985), pp.261–278.

    Google Scholar 

  10. Prokhorov, A.M. (ed.), Laser Handbook, Vol. 1, Sov. Radio, Moscow, 1978.

    Google Scholar 

  11. Prokhorov, A.M. (ed.), Laser Handbook Vol. 2, Sov. Radio, Moscow, 1978.

    Google Scholar 

  12. Ready, J.F., LIA Handbook of Laser Materials Processing, Laser Institute of America, Magnolia Publishing, Inc., 2001.

    Google Scholar 

  13. Grigoryants, A. G., Basics of Laser Material Processing, Mir Publishers, Moscow, 1994.

    Google Scholar 

  14. Giesen, A. et al, “Einflu, der Optik auf den Bearbeitungsproze”, Opto Elektronik Magazin, (Vol. 4, No 1, 1988).

    Google Scholar 

  15. Week, M. et al, “Analyse des Verformungsverhaltens optischer Systeme während der Lasermaterialbearbeitung” Laser und Optoelektronik, (Vol. 26, No.2, 1994).

    Google Scholar 

  16. Borik, S., “Einflu, optischer Komponenten auf die Fokussierbarkeit”, Laser und Optoelektronik, (Vol. 26, No.2, 1994).

    Google Scholar 

  17. Week, M. et al, “Betriebsverhalten transmissiver Optiken bei der Laser-Materialbearbeitung”, Laser und Optoelektronik, (Vol. 26, No.2, 1994).

    Google Scholar 

  18. Week, M. et al, “Laser-A Tool for Turning Centres” Proceedings of the LANE’ 94, Meisenbach Bamberg, (Vol. I, 1994), pp. 427–437.

    Google Scholar 

  19. Tsoukantas, G., K. Salonitis, P. Stavropoulos and G. Chryssolouris, “An overview of 3D Laser Materials’ Processing Concepts”, Proceeding of the 3 rd GR-I Conference on New Laser Technologies and Applications (2001)

    Google Scholar 

  20. Chryssolouris G., N. Anastasia and P. Sheng, “Three-Dimensional Laser Machining for Flexible Manufacturing”, Proc. Symposium on Intelligent Design and Manufacturing for Prototyping, ASME Winter Annual Meeting, Atlanta, GA, (December 1991).

    Google Scholar 

  21. Chryssolouris G., “3-D Laser Machining: A Perspective”, Proceedings of the LANE’ 94, Meisenbach Bamberg, (Vol.1, 1994).

    Google Scholar 

  22. Wiedmaier M., E. Meiners, T. Rudlaff, F. Dausinger and H. Hugel, “Integration of Materials Processing with YAG-Lasers in a Turning Center”, Laser Treatment of Materials, Informationsgesellschaft-Verlag, (1992), pp.559–564

    Google Scholar 

  23. Wiedmaier M., E. Meiners, T. Rudlaff, F. Dausinger and H. Hugel, “Integration of Materials Processing with YAG-Lasers in a Turning Center”, Laser Treatment of Materials, Informationsgesellschaft-Verlag, (1992), pp.559–564

    Google Scholar 

  24. Salem B.W., G. Marot, A. Moisan, J. P. Longuemard, “Laser Assisted Turning during Finishing Operation Applied to Hardened Steels and Inconel 718”, Proceedings of the LANE’ 94, Meisenbach Bamberg, (Vol.1, 1994).

    Google Scholar 

  25. Salonitis, K., G. Tsoukantas, P. Stavropoulos and A. Stournaras, “A critical review of stereolithography process modeling”, Proceedings of the International Conference on Advanced Research in Virtual and Rapid Prototyping-VR@P, Leiria, Portugal (October 2003), pp. 377–384.

    Google Scholar 

  26. Agarwala, M., D. Klosterman, N. Osborne and A. Lightman, “Hard metal tooling via SFF of ceramics and powder metallurgy”, SFF Symposium, Austin, TX (1999).

    Google Scholar 

  27. Jacobson, D.M., “Metal layer object manufacturing”, State of the Art Report of the RAPTIA Thematic Network (2002).

    Google Scholar 

  28. Suh, J.D., Lee, D.G., “Composite machine tool structures for High Speed Milling Machines”, Annals of the CIRP, (Vol. 51, No.1, 2002), pp. 285–288.

    Google Scholar 

  29. Crandall, S.H., N. Dahl, T.J. Lardner, An Introduction to the Mechanics of Solids, McGraw-Hill, Inc., New York, 1978.

    Google Scholar 

  30. Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1982.

    Google Scholar 

  31. Boothroyd, G. and W. A. Knight, Fundamentals of Machining and Machine Tools, 2nd edition, Marcel Dekker, Inc., New York, 1989.

    Google Scholar 

  32. Ogata, K., Modern Control Engineering, Prentice-Hall, Inc., New Jersey, 1970.

    Google Scholar 

  33. Meirovitch, L., Introduction to Dynamics and Control, John Wiley & Sons, Inc., New York, 1985.

    Google Scholar 

  34. Inasaki, I., B. Karpuschewski and H.-S. Lee, “Grinding Chatter — Origin and Supresión”, Annals of the CIRP, (Vol. 50, No.2, 2001), pp. 525–534.

    Google Scholar 

  35. Govekar, E., A. Baus, J. Gradisek, F. Klocke and I. Grabec, “A new method for chatter detection in grinding”, Annals of the CIRP, (Vol.51, No.1, 2002), pp. 267–270.

    Google Scholar 

  36. Week, M., P. McKeown, R. Bonse and U. Herbst, “Reduction and compensation of thermal errors in machine tools”, Annals of the CIRP, (Vol. 44, No. 2, 1995), pp. 589–598.

    Google Scholar 

  37. Bryan, J., “International Status of Thermal Error research”, Annals of the CIRP, (Vol. 39, No.2, 1990), pp. 645–656.

    MathSciNet  Google Scholar 

  38. Spur, G., E. Hoffman, Z. Paluncic, K. Bensinger and H. Nymoen, “Thermal behaviour optimization of machine tools”, Annals of the CIRP, (Vol. 37, No. 1, 1998) pp. 401–405.

    Google Scholar 

  39. Tamisier, V., S. Font, M. Lacour, F. Carrere and D. Dumur, “Attenuation of vibrations due to unbalance of an Active Magnetic bearings Milling Electro-Spindle”, Annals of the CIRP, (Vol.50, No.1, 2001).

    Google Scholar 

  40. Week, M. and U. Wahner, “Linear magnetic bearing and levitation system for machine tools”, Annals of the CIRP, (Vol. 47, No.1, 1998), pp. 311–314.

    Google Scholar 

  41. Koren, Y., Computer Control of Manufacturing Systems, McGraw-Hill, Inc., New York, 1983.

    Google Scholar 

  42. Acherkan, N., et al., Machine Tool Design, U.S.S.R., 1973.

    Google Scholar 

  43. Pritschow, G., “A comparison of linear and conventional electromechanical drives”, Annals of the CIRP, (Vol. 47, No.2, 1998), pp. 541–548.

    Google Scholar 

  44. Sava, M. and J. Pusztai, Computer Numerical Control Programming, Prentice Hall, 1990.

    Google Scholar 

  45. Koren, Y., “The Optimal Locus Approach With Machining Applications,” ASME Journal of Dynamic Systems, Measurement and Control, (Vol. 111, 1989), pp. 260–267.

    Google Scholar 

  46. Kunwoo Lee, Principles of CAD/CAM/CAE Systems, Addison-Wesley, 1999.

    Google Scholar 

  47. Sutherland, I.E., “SKETCHPAD: A Man-Machine Graphical Communication System,” SJCC 1963, Spartan Books, Baltimore, (1963) pg. 329 and MIT Lincoln Lab. Tech. Rep. (May 1965) pg.296.

    Google Scholar 

  48. Amirouche, M. L. F., Computer-Aided Design and Manufacturing, Prentice Hall, New Jersey, 1993.

    Google Scholar 

  49. Van Houten, F. J. A. M., PART: A Computer Aided Process Planning System, PhD Thesis Report, (1991).

    Google Scholar 

  50. Knox, C.S., CAD/CAM Systems-Planning and Implementation, Marcel-Dekker, New York, 1983.

    Google Scholar 

  51. Onosato, M., and K. Iwata., “Development of a Virtual Manufacturing System by Integrating Product Models and Factory Models”, Annals of the CIRP, (Vol.42, No.1, 1993), pp. 475–478.

    Article  Google Scholar 

  52. Aukstakalnis S. and D. Blatner, Silicon Mirage, The Art and Science of Virtual Reality, Peachpit-Press, 1992.

    Google Scholar 

  53. National Research Council, Virtual Reality: Scientific and Technological Challenges, National Academy Press Washington, 1995.

    Google Scholar 

  54. Astheimer, P., W. Felger and S. Mueller, “Virtual Design: A Generic VR System for Industrial Applications”, Computers & Graphics, (Vol. 17, No. 6, 1993), pp. 671–677.

    Article  Google Scholar 

  55. Bowyer, A., G. Bayliss; R. Taylor and P. Willis. “A Virtual Factory” International Journal of Shape Modeling, (Vol. 2, No. 4, 1996), pp.215–226.

    Article  Google Scholar 

  56. Chryssolouris G., D. Mavrikios, D. Mourtzis, K. Pistiolis and D. Fragos. “An Integrated Virtual Manufacturing Environment for Interactive Process Design and Training-The Virtual Machine Shop”, Proceedings of the 32nd CIRP International Seminar on Manufacturing Systems, (2001) pp. 409–415.

    Google Scholar 

  57. Tomizuka, M. and S. Zhang, “Modelling and Conventional Adaptive PI Control of a Lathe Cutting Process”, ASME, Journal of Dynamic Systems, Measurements and Control, (Vol. 110, 1988), pp. 350–354.

    Article  Google Scholar 

  58. Wright, P.K., Manufacturing Intelligence, Addison-Wesley, Reading, MA., 1988.

    Google Scholar 

  59. Lister, P.M., and G. Barrow, “Tool Condition Monitoring Systems”, Proceedings of the Twenty-sixth International Machine Tool Design and Research Conference, (1984).

    Google Scholar 

  60. Giusti, F., M. Santochi and G. Tantussi, “On-Line Sensing of Flank and Crater Wear of Cutting Tools”, Annals of CIRP, (1987) pp. 41–44.

    Google Scholar 

  61. Lee, Y.H., P. Bandyopadhyay and B. Kaminski, “Cutting Tool Wear Measurement Using Computer Vision”, Proc. of NAMRC, (1987), pp. 195–212.

    Google Scholar 

  62. Altintas, Y., “In-Process Detection of Tool Breakages Using Time Series Monitoring of Cutting Forces”, Int. J. Mach. Tools Manufact., (Vol. 28, No. 2, 1988), pp. 157–172.

    Article  MathSciNet  Google Scholar 

  63. Bandyopadhyay, P., and S.M. Wu, “Signature Analysis of Drilling Dynamics for On-Line Drill Life Monitoring”, Sensors and Control for Manufacturing, ASME Annual Winter Meeting, (PED-Vol. 18, 1985), pp. 101–110.

    Google Scholar 

  64. Chryssolouris, G. and M. Domroese, “Some Aspects of Acoustic Emission Modeling for Machining Control”, Proc. of NAMRC, (1989), pp. 228–234.

    Google Scholar 

  65. Liang, S.Y., and D.A. Dornfeld, “Tool Wear Detection Using Time Series Analysis of Acoustic Emission”, J. Eng. Ind., (Vol. 111, 1989), pp. 199–212.

    Google Scholar 

  66. Chow, J.G., and P.K. Wright, “On-Line Estimation of Tool/Chip Interface Temperatures for a Turning Operation”, J. Eng. Ind., (Vol. 110, 1988), pp. 56–64.

    Google Scholar 

  67. Liu, T.I., and S.M. Wu, “On-Line Drill Wear Monitoring” Sensors and Controls for Manufacturing, ASME Annual Winter Meeting, (PED-Vol. 33, 1988), pp. 99–104.

    MathSciNet  Google Scholar 

  68. Kazuaki, J., Sensing Technologies for Improving Machine Tool Function, NMBTA Data Files.

    Google Scholar 

  69. Chryssolouris, G., S.R. Patel, “In-Process Control for Quality Assurance,” in Manufacturing High Technology Handbook, Tijunelis and McKee Eds., Marcel Dekker, New York (1987), pp. 609–643.

    Google Scholar 

  70. Rolstadas, A., “Architecture for integrating PPC in CIM”, Proceedings of the IFIP TC5/WG 5.3, Eighth International PROLAMAT Conference, Man in CIM, Tokyo, (1992), pp. 187–195.

    Google Scholar 

  71. David, S.T. and K., Cheballah “User interface for project management in the CIM environment”, Proceedings of the IFIP TC5/WG 5.3, Eighth International PROLAMAT Conference, Man in CIM, Tokyo, (1992), pp. 525–533.

    Google Scholar 

  72. Bunce, P., “Planning for CIM,” The Production Engineer, (Vol. 64, No. 2, 1985), pg. 21.

    Article  Google Scholar 

  73. General Motor’s Manufacturing Automation Protocol, A Communications Network Protocol for Open Systems Interconnection, Warren, MI. GM MAP Task Force, 1984.

    Google Scholar 

  74. Society of Manufacturing Engineers, Tool and Manufacturing Engineers Handbook, McGraw-Hill, New York, 1988.

    Google Scholar 

  75. Chang, T.C., R.A. Wysk and H.P. Wang, Computer Aided Manufacturing, Prentice-Hall, Englewood Cliffs, N.J., 1991.

    Google Scholar 

  76. Hardt, D.E., T. Jenne, M. Domroese and R. Farra, “Real-Time Control of Twist Deformation Processes”, Annals of the CIRP, (1987).

    Google Scholar 

  77. Hardt, D.E., A. Suzuki and L. Valvani, “Application of Adaptive Control Theory to On-Line GTA Weld Geomery Regulation”, ASME Journal of Dynamic Systems, Measurement and Control, (Vol. 113, 1991), pp. 93–103.

    Article  Google Scholar 

  78. Ko, T.R., and Y. Koren, “Cutting Force Model for Tool Wear Estimation,” Proc. of NAMRC XVII, (1989), pp. 166–169.

    Google Scholar 

  79. Park, J.J., and A.G. Ulsoy, “On-Line Flank Wear Estimation Using Adaptive Observers”, Automation of Manufacturing Processes, ASME Winter Annual Meeting, (1990), pp. 11–20.

    Google Scholar 

  80. Fassois, S.D., K.F. Eman and S.M. Wu, “A Fast Algorithm for On-Line Machining Process Modeling and Adaptive Control”, ASME Journal of Engineering for Industry (Vol. 111, May 1989), pp. 133–139

    Article  Google Scholar 

  81. Altintas, Y., I. Yellowley and J. Tlusty, “The Detection of Tool Breakage in Milling Operations”, ASME Journal of Engineering for Industry, (Vol. 110, 1988), pp. 271–277.

    Article  Google Scholar 

  82. Tlusty, J., and G.C. Andrews, “A Critical Review of Sensor for Unmanned Machining,” Annals of the CIRP (1983).

    Google Scholar 

  83. Chryssolouris, G., M. Domroese and P. Beaulieu, “Sensor Synthesis for Control of Manufacturing Processes”, Proceedings of the Symposium on Control of Manufacturing Processes, ASME Winter Annual Meeting, (1990), pp. 67–76.

    Google Scholar 

  84. Chryssolouris, G., V. Subramaniam and M. Domroese, “A Game Theory Approach to the Operation of Machining Processes,” ASME Winter Annual Meeting, (1991).

    Google Scholar 

  85. Chryssolouris, G., M. Domroese and P. Beaulieu, “A Statistical Approach to Sensor Synthesis,” Proceedings of NAMRC XIX, (1991), pp. 333–337.

    Google Scholar 

  86. Rangwala, S., and D. Dornfeld, “Integration of Sensors via Neural Networks for Detection of Tool Wear States,” Intelligent and Integrated Manufacturing Analysis and Synthesis, ASME Winter Annual Meeting, (1987).

    Google Scholar 

  87. Ranky, P.G., Computer Integrated Manufacturing, Prentice-Hall, Englewood Cliffs, N.J., 1986.

    Google Scholar 

  88. Kusiak, A., Intelligent Manufacturing Systems, Prentice-Hall, Englewood Cliffs, N.J., 1990.

    Google Scholar 

Other sources

  1. Forging & Industrial Equipment, www.whitemachinery.com

    Google Scholar 

  2. SMS EUMUCO GmbH, www.sms-eumuco.de

    Google Scholar 

  3. www.jelsigrad.com

    Google Scholar 

  4. FU SHENG Group, www.fusheng.com

    Google Scholar 

  5. Elix LTD, www.elixmec.gr

    Google Scholar 

  6. College of Engineering, www.eng.fiu.edu

    Google Scholar 

  7. ENCO, www.enco.at

    Google Scholar 

  8. RAFAMET, www.rafamet.com

    Google Scholar 

  9. www.machinetooldistribution.com

    Google Scholar 

  10. RMT Technology, www.rmt.net

    Google Scholar 

  11. GOTTOPI, www.gottoppi.com

    Google Scholar 

  12. Hardinge Machine Tools, www.hardinge.com

    Google Scholar 

  13. DANOBAT, www.danobat.com

    Google Scholar 

  14. SAMPUTENSILI, www.samputensili.com

    Google Scholar 

  15. TRUMPF GmbH, www.trumpf.com

    Google Scholar 

  16. 3D Systems, www.3dsystems.com

    Google Scholar 

  17. Stratasys Inc., www.stratasys.com

    Google Scholar 

  18. www.cubictechnologies.com

    Google Scholar 

  19. Electro Optical Systems GmbH, www.eos-gmbh.de

    Google Scholar 

  20. Z Corporation, www.zcorp.com

    Google Scholar 

  21. ANSYS Inc, www.ansys.com

    Google Scholar 

  22. SYSWELD Software, www.sysweld.com

    Google Scholar 

  23. MSC software Corp., www.mscsoftware.com

    Google Scholar 

  24. ADINA R&D Inc., www.adina.com

    Google Scholar 

  25. FAG, www.fag.com

    Google Scholar 

  26. Faulhaber Group, www.micromo.com

    Google Scholar 

  27. SKF, www.skf.com

    Google Scholar 

  28. ROLLVIS S.A., www.rollvis.com

    Google Scholar 

  29. European Commitee for Cooperation of Machine Tools Industry: Cecimo, www.cecimo.be

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). Machine Tools and Manufacturing Equipment. In: Manufacturing Systems: Theory and Practice. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/0-387-28431-1_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-28431-1_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-25683-2

  • Online ISBN: 978-0-387-28431-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics