Advertisement

Boundary Layer Behaviour

Chapter
  • 1.9k Downloads
Part of the Texts in Applied Mathematics book series (TAM, volume 50)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.4 Guide to the Literature

  1. 43.
    Eckhaus, W. (1979), Asymptotic Analysis of Singular Perturbations, North-Holland, Amsterdam.zbMATHGoogle Scholar
  2. 62.
    Fraenkel, L.E. (1969), On the method of matched asymptotic expansions, parts I, II and III, Proc. Cambridge Philos. Soc. 65, pp. 209–284.CrossRefMathSciNetGoogle Scholar
  3. 100.
    Kaplun, S. and Lagerstrom, P.A. (1957), Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers, J. Math. Mech. 6, pp. 585–593.zbMATHMathSciNetGoogle Scholar
  4. 104.
    Kevorkian, J.K. and Cole, J.D. (1996), Multiple Scale and Singular Perturbation Methods, Springer-Verlag, New York.zbMATHGoogle Scholar
  5. 109.
    Krupa, M. and Szmolyan, P. (2001), Extending geometric singular perturbation theory to nonhyperbolic points — fold and canard points in two dimensions, SIAM J. Math. Anal. 33, pp. 286–314.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 113.
    Lagerstrom, P.A. and Casten, R.G. (1972), Basic concepts underlying singular perturbation techniques, SIAM Rev. 14, pp. 63–120.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 154.
    Popović, N. and Szmolyan, P. (2004), A geometric analysis of the Lagerstrom model, J. Diff. Eq. 199, pp. 290–325.zbMATHCrossRefGoogle Scholar
  8. 155.
    Prandtl, L. (1905), Uber Flüssigheitsbewegung bei sehr kleine Reibung, Proceedings 3rd International Congress of Mathematicians, Heidelberg, 1904, (Krazer, A., ed.), pp. 484–491, Leipzig. (Also publ. by Kraus Reprint Ltd, Nendeln/Liechtenstein (1967).)Google Scholar
  9. 156.
    Prandtl, L. and Tietjens, O.G. (1934), Applied Hydro-and Aeromechanics, McGraw-Hill, New York.Google Scholar
  10. 195.
    Van Dyke, M. (1964), Perturbation Methods in Fluid mechanics, Academic press, New York; annotated edition, Parabolic Press (1975), Stanford, CA.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations