Averaging for Evolution Equations

Part of the Texts in Applied Mathematics book series (TAM, volume 50)


Periodic Solution Discrete Spectrum Invariant Manifold Initial Boundary Eigenfunction Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

13.4 Guide to the Literature

  1. 10.
    Bambusi, D. (1999), On long time stability in Hamiltonian perturbations of nonresonant linear pde’s, Nonlinearity 12, pp. 823–850.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 18.
    Bourgain, J. (1996), Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal. 6, pp. 201–230.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 19.
    Bourland, F.J. and Haberman, R. (1989), The slowly varying phase shift for perturbed, single and multi-phased strongly nonlinear dispersive waves, Physica 35D, pp. 127–147.MathSciNetGoogle Scholar
  4. 22.
    Buitelaar, R.P. (1993), The method of averaging in Banach spaces, Thesis, University of Utrecht.Google Scholar
  5. 52.
    Feckan, M. (2000), A Galerkin-averaging method for weakly nonlinear equations, Nonlinear Anal. 41, pp. 345–369.CrossRefMathSciNetGoogle Scholar
  6. 53.
    Feckan, M. (2001), Galerkin-averaging method in infinite-dimensional spaces for weakly nonlinear problems, in Progress in Nonlinear Differential Equations and Their Applications 43 (Grossinho, H.R., Ramos, M., Rebelo, C., and Sanches, L., eds.), Birkhäuser Verlag, Basel.Google Scholar
  7. 72.
    Haberman, R. (1991), Standard form and a method of averaging for strongly nonlinear oscillatory dispersive traveling waves, SIAM J. Appl. Math. 51, pp. 1638–1652.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 75.
    Hale, J.K. (1967), Periodic solutions of a class of hyperbolic equations containing a small parameter, Arch. Rat. Mech. Anal. 23, pp. 380–398.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 78.
    Heijnekamp, J.J., Krol, M.S., and Verhulst, F. (1995), Averaging in nonlinear transport problems, Math. Methods Appl. Sciences 18, pp. 437–448.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 104.
    Kevorkian, J.K. and Cole, J.D. (1996), Multiple Scale and Singular Perturbation Methods, Springer-Verlag, New York.zbMATHGoogle Scholar
  11. 107.
    Krol, M.S. (1989), On a Galerkin-averaging method for weakly non-linear wave equations, Math. Methods Appl. Sci. 11, pp. 649–664.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 126.
    Luke, J.C. (1966), A perturbation method for nonlinear dispersive wave problems, Proc. R. Soc. London Ser. A, 292.Google Scholar
  13. 137.
    Mitropolsky, Y.A., Khoma, G., and Gromyak, M. (1997), Asymptotic Methods for Investigating Quasiwave Equations of Hyperbolic Type, Kluwer, Dordrecht.Google Scholar
  14. 160.
    Rafel, G.G. (1983), Applications of a combined Galerkin-averaging method, Lecture Notes in Mathematics 985 (Verhulst, F., ed.), Springer-Verlag pp. 349–369, Berlin.Google Scholar
  15. 193.
    Van der Burgh, A.H.P. (1979), On the asymptotic validity of perturbation methods for hyperbolic differential equations, in Asymptotic Analysis, from Theory to Application (Verhulst, F., ed.) Lecture Notes in Mathematics 711, pp. 229–240, Springer-Verlag, Berlin.Google Scholar
  16. 201.
    Van Horssen, W.T. and van der Burgh, A.H.P. (1988), On initial boundary value problems for weakly nonlinear telegraph equations. Asymptotic theory and application, SIAM J. Appl. Math. 48, pp. 719–736.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 202.
    Van Horssen, W.T. (1992), Asymptotics for a class of semilinear hyperbolic equations with an application to a problem with a quadratic nonlinearity, Nonlinear Anal. 19, pp. 501–530.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 211.
    Verhulst, F. (1999), On averaging methods for partial differential equations, in Symmetry and Perturbation Theory, SPT 98 (Degasperis, A. and Gaeta, G., eds.), pp. 79–95, World Scientific, Singapore.Google Scholar
  19. 220.
    Whitham, G.B. (1974), Linear and Nonlinear Waves, John Wiley, New York.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations