Advanced Averaging

Part of the Texts in Applied Mathematics book series (TAM, volume 50)


Periodic Solution Hamiltonian System Invariant Manifold Invariant Torus Longe Timescale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12.8 Guide to the Literature

  1. 7.
    Arnold, V.I. (1978), Mathematical Methods of Classical Mechanics, Springer-Verlag New York.zbMATHGoogle Scholar
  2. 8.
    Arnold, V.I. (1982), Geometric Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York.Google Scholar
  3. 9.
    Bakri, T, Nabergoj, R., Tondl, A., and Verhulst, F. (2004), Parametric excitation in nonlinear dynamics, Int. J. Nonlinear Mech. 39, pp. 311–329.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 14.
    Bogoliubov, N.N. and Mitropolsky, Yu.A. (1961), Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York.Google Scholar
  5. 15.
    Bogoliubov, N.N. and Mitropolsky, Yu.A. (1963), The method of integral manifolds in nonlinear mechanics, in Contributions to Differential Equations, vol.2, pp. 123–196, Interscience-John Wiley, New York.Google Scholar
  6. 20.
    Bourland, F.J. and Haberman, R. (1990), Separatrix crossing: time-invariant potentials with dissipation, SIAM J. Appl. Math. 50, pp. 1716–1744.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 26.
    Cary, J.R., Escande, D.F. and Tennyson, J.L. (1986), Adiabatic invariant change due to separatrix crossing, Phys. Rev. A 34, pp. 4256–4275.CrossRefGoogle Scholar
  8. 39.
    Diminnie, D.C. and Haberman, R. (2002), Slow passage through homoclinic orbits for the unfolding of a saddle-center bifurcation and the change in the adiabatic invariant, Physica D 162, pp. 134–52.CrossRefMathSciNetGoogle Scholar
  9. 71.
    Haberman, R. (1978), Slowly varying jump and transition phenomena associated with algebraic bifurcation problems, SIAM J. Appl. Math. 37, pp. 69–106.CrossRefMathSciNetGoogle Scholar
  10. 76.
    Hale, J.K. (1969), Ordinary Differential Equations, Wiley-Interscience, New York.zbMATHGoogle Scholar
  11. 79.
    Henrard, J. (1993), The adiabatic invariant in classical mechanics, Dynamics Reported 2, pp. 117–235, Springer-Verlag, Heidelberg.Google Scholar
  12. 80.
    Hinch, E.J. (1991), Perturbation Methods, Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  13. 82.
    Holmes, M.H. (1998), Introduction to Perturbation Methods, Texts in Applied Mathematics 20, Springer-Verlag, New York.Google Scholar
  14. 103.
    Kevorkian, J.K. (1987), Perturbation techniques for oscillatory systems with slowly varying coefficients, SIAM Rev. 29, pp. 391–461.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 104.
    Kevorkian, J.K. and Cole, J.D. (1996), Multiple Scale and Singular Perturbation Methods, Springer-Verlag, New York.zbMATHGoogle Scholar
  16. 124.
    Lochak, P. and Meunier, C. (1988), Multiphase Averaging for Classical Systems, Applied Mathematical Sciences 72, Springer-Verlag, New York.Google Scholar
  17. 125.
    Lochak, P., Marco, J.-P., and Sauzin, D. (2003), On the Splitting of Invariant Manifolds in Multidimensional Near-Integrable Hamiltonian Systems, Memoirs of the AMS 775, American Mathematical Society, Providence, RI.Google Scholar
  18. 141.
    Neishtadt, A.I. (1986), Change of an adiabatic invariant at a separatrix, Fiz. Plasmy 12, p. 992.Google Scholar
  19. 142.
    Neishtadt, A.I. (1991), Averaging and passage through resonances, Proceedings International Congress Mathematicians 1990, Math. Soc. Japan, Kyoto, pp. 1271–1283, Springer-Verlag, Tokyo; see also the paper and references in Chaos 1, pp. 42–48 (1991).Google Scholar
  20. 151.
    Perko, L.M. (1969), Higher order averaging and related methods for perturbed periodic and quasi-periodic systems, SIAM J. Appl. Math. 17, pp. 698–724.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 166.
    Sanders, J.A. and Verhulst, F. (1985), Averaging Methods in Nonlinear Dynamical Systems, Applied Mathematical Sciences 59, Springer-Verlag, New York.Google Scholar
  22. 192.
    Van der Burgh, A.H.P. (1975), On the higher order asymptotic approximations for the solutions of the equations of motion of an elastic pendulum, J. Sound Vibr. 42, pp. 463–475.zbMATHCrossRefGoogle Scholar
  23. 208.
    Verhulst, F. (1988), A note on higher order averaging, Int. J. Non-Linear Mech. 23, pp. 341–346.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 209.
    Verhulst, F. and Huveneers, R.J.A.G. (1998), Evolution towards symmetry, Regular and Chaotic Dynamics 3, pp. 45–55.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 212.
    Verhulst, F. (2000), Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer-Verlag, New York.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations