Skip to main content

Resistance to Antimalarial Drugs: Parasite and Host Genetic Factors

  • Chapter
Malaria: Genetic and Evolutionary Aspects

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, B.K. and Adithan, C. (2001). Genetic polymorphism of CY2D6. Indian J. Pharmacol., 33, 147–169.

    Google Scholar 

  • Adedoyin, A., Frye, R.F., Mauro, K. et al. (1998). Chloroquine modulation of specific metabolizing enzymes activities: investigation with selective five drugs cocktail. Br. J. Clin. Pharmacol., 46, 215–219.

    Google Scholar 

  • Ahmed, A., Bararia, D., Vinayak, S. et al. (2004). Plasmodium falciparum isolates in India exhibits a progressive increase in mutations associated with sulfadoxine-pyrimethamine resistance. Antimicrob. Agents Chemother., 48, 879–889.

    Google Scholar 

  • Alonso, P.L., Sacarlal, J., Aponte, J.J. et al. (2004). Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: Randomized controlled trial. Lancet, 364, 1411–1420.

    Google Scholar 

  • Anderson, T.J. (2004). Mapping drug-resistance genes in Plasmodium falciparum by genome-wide association. Curr. Drug Targets Infect. Disord., 4, 65–78.

    Google Scholar 

  • Anderson, T.J., Nair, S., Jacobzone, C. et al. (2003). Molecular assessment of drug resistance in Plasmodium falciparum from Bahr El Gazal province, Sudan. Trop. Med. Int. Health, 8, 1068–1073.

    Google Scholar 

  • Angus, B.J., Thaiaporn, I., Chanthapadith, K. et al. (2002). Oral artesunate dose-response relationship in acute falciparum malaria. Antimicrob. Agents Chemother., 46, 778–782.

    Google Scholar 

  • Baird, J.K., Basri, H., Purnomo et al. (1991). Resistance to chloroquine by Plasmodium vivax in Irian Jaya, Indonesia. Am. J. Trop. Med. Hyg., 44, 547–552.

    Google Scholar 

  • Baird, J.K., Sustriayu Nalim, M.F., Basri, H. et al. (1996). Survey of resistance to chloroquine by Plasmodium vivax in Indonesia. Trans. R. Soc. Trop. Med. Hyg., 90, 409–411.

    Google Scholar 

  • Balint, G.A. (2001). Artemisinin and its derivatives: An important new class of antimalarial agents. Pharmaco. Ther., 90, 261–265.

    Google Scholar 

  • Ball, S. and Borman, N. (1997). Pharmacogenetics and drug metabolism. Nat. Biotechnol., 15, 925–926.

    Google Scholar 

  • Bangchang, K.N., Karbwang, J., and Back, D.J. (1992a). Mefloquine metabolism by human liver microsomes. Effect of other antimalarial drugs. Biochem. Pharmacol., 43, 1957–1961.

    Google Scholar 

  • Bangchang, K.N., Karbwang, J., and Back, D.J. (1992b). Primaquine metabolism by human liver microsomes: effect of other antimalarial drugs. Biochem. Pharmacol., 44, 587–590.

    Google Scholar 

  • Bapiro, T.E., Egnell, A.C., Hasler, J.A. et al. (2001). Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metab. Dispos., 29, 30–35.

    Google Scholar 

  • Bapiro, T.E., Andersson, T.B., Otter, C. et al. (2002a). Cytochrome P450 1A1/2 induction by antiparasitic drugs: Dose-dependent increase in ethoxyresorufin O-deethylase activity and mRNA caused by quinine, primaquine and albendazole in HepG2 cells. Eur. J. Clin. Pharmacol., 58, 537–542.

    Google Scholar 

  • Bapiro, T.E., Hasler, J.A., Ridderstrom, M. et al. (2002b). The molecular and enzyme kinetic basis for the diminished activity of the cytochrome P450 2D6.17 (CYP2D6.17) variant. Potential implications for CYP2D6 phenotyping studies and the clinical use of CYP2D6 substrate drugs in some African populations. Biochem. Pharmacol., 64, 1387–1398.

    Google Scholar 

  • Basco, L.K., Same-Ekobo, A., Ngane, V.F. et al. (2002). Therapeutic efficacy of sulfadoxine-pyrimethamine, amodiaquine and the sulfadoxine-pyrimethamine-amodiaquine combination against uncomplicated Plasmodium falciparum malaria in young children in Cameroon. Bull. World Health Organ., 80, 538–545.

    Google Scholar 

  • Baune, B., Flinois, J.P., Furlan, V. et al. (1999). Halofantrine metabolism in microsomes in man: major role of CYP 3A4 and CYP 3A5. J. Pharm. Pharmacol., 51, 419–426.

    Google Scholar 

  • Baune, B., Furlan, V., Taburet, A.M. et al. (1999). Effect of selected antimalarial drugs and inhibitors of cytochrome P-450 3A4 on halofantrine metabolism by human liver microsomes. Drug Metab. Dispos., 27, 565–568.

    Google Scholar 

  • Beaulieu, M., Levesque, E., Tchernof, A. et al. (1997). Chromosomal localization, structure, and regulation of the UGT2B17 gene, encoding a C19 steroid metabolizing enzyme. DNA Cell. Biol., 16, 1143–1154.

    Article  Google Scholar 

  • Bennett, T.N., Kosar, A.D., Ursos, L.M. et al. (2004). Drug resistance-associated pfCRT mutations confer decreased Plasmodium falciparum digestive vacuolar pH. Mol. Biochem. Parasitol., 133, 99–114.

    Google Scholar 

  • Birkett, D.J., Rees, D., Andersson, T. et al. (1994). In vitro proguanil activation to cycloguanil by human liver microsomes is mediated by CYP3A isoforms as well as by S-mephenytoin hydroxylase. Br. J. Clin. Pharmacol., 37, 413–420.

    Google Scholar 

  • Bloland, P.B. (2001). Drug resistance in malaria. WHO/CDS/CSR/DRS/2001. 4, 1–27.

    Google Scholar 

  • Bloland, P.B., Ettling, M., and Meek, S. (2000). Combination therapy for malaria in Africa: hype or hope? Bull. World Health Organ., 78, 1378–1388.

    Google Scholar 

  • Bock, K.W. (2003). Vertebrate UDP-glucuronosyltransferases: Functional and evolutionary aspects. Biochem. Pharmacol., 66, 691–696.

    Google Scholar 

  • Bolaji, O.O., Sadare, I.O., Babalola, C.P. et al. (2002). Polymorphic oxidative metabolism of proguanil in a Nigerian population. Eur. J. Clin. Pharmacol., 58, 543–545.

    Google Scholar 

  • Brabin, B.J., Ginny, M., Sapau, J. et al. (1990). Consequences of maternal anaemia on outcome of pregnancy in a malaria endemic area in Papua New Guinea. Ann. Trop. Med. Parasitol., 84, 11–24.

    Google Scholar 

  • Brega, S., Meslin, B., de Monbrison, F. et al. (2005). Identification of the Plasmodium vivax mdrlike gene (pvmdr1) and analysis of single-nucleotide polymorphisms among isolates from different areas of endemicity. J. Infect. Dis., 191, 272–277.

    Google Scholar 

  • Brockman, A., Price, R.N., van Vugt, M. et al. (2000). Plasmodium falciparum antimalarial drug susceptibility on the northwestern border of Thailand during five years of extensive use of artesunate-mefloquine. Trans. R. Soc. Trop. Med. Hyg., 94, 537–544.

    Google Scholar 

  • Brooks, D.R., Wang, P., Read, M. et al. (1994). Sequence variation of the hydroxymethyldihydropterin pyrophosphokinase: Dihydropteroate synthase gene in lines of the human malaria parasite, Plasmodium falciparum, with differing resistance to sulfadoxine. Eur. J. Biochem., 224, 397–405.

    Google Scholar 

  • Brossi, A., Venugopalan, B., Dominguez Gerpe, L. et al. (1988). Arteether, a new antimalarial drug: synthesis and antimalarial properties. J. Med. Chem., 31, 645–650.

    Google Scholar 

  • Burchell, B. (2003). Genetic variation of human UDP-glucuronosyltransferase: Implications in disease and drug glucuronidation. Am. J. Pharmacogenomics, 3, 37–52.

    Google Scholar 

  • Bustos, M.D., Gay, F., and Diquet, B. (1994). In-vitro tests on Philippine isolates of Plasmodium falciparum against four standard antimalarials and four qinghaosu derivatives. Bull. World Health Organ., 72, 729–735.

    Google Scholar 

  • Bwijo, B., Kaneko, A., Takechi, M. et al. (2003). High prevalence of quintuple mutant dhps/dhfr genes in Plasmodium falciparum infections seven years after introduction of sulfadoxine and pyrimethamine as first line treatment in Malawi. Acta. Trop., 85, 363–373.

    Google Scholar 

  • Bzik, D.J., Li, W.B., Horii, T. et al. (1987). Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene. Proc. Natl. Acad. Sci. USA, 84, 8360–8364.

    Google Scholar 

  • Caraco, Y. (1998). Genetic determinants of drug responsiveness and drug interactions. Ther. Drug Monit., 20, 517–524.

    Google Scholar 

  • Carlton, J.M., Fidock, D.A., Djimde, A. et al. (2001). Conservation of a novel vacuolar transporter in Plasmodium species and its central role in chloroquine resistance of Plasmodium falciparum. Curr. Opin. Microbiol., 4, 415–420.

    Google Scholar 

  • Cerutti, C. Jr., Durlacher, R.R., de Alencar, F.E. et al. (1999). In vivo efficacy of mefloquine for the treatment of Falciparum malaria in Brazil. J. Infect. Dis., 180, 2077–2080.

    Google Scholar 

  • Chen, G.X., Mueller, C., Wendlinger, M. et al. (1987). Kinetic and molecular properties of the dihydrofolate reductase from pyrimethamine-sensitive and pyrimethamine-resistant clones of the human malaria parasite Plasmodium falciparum. Mol. Pharmacol., 31, 430–437.

    Google Scholar 

  • Chen, N., Russell, B., Fowler, E. et al. (2002). Levels of chloroquine resistance in Plasmodium falciparum are determined by loci other than pfcrt and pfmdr1. J. Infect. Dis., 185, 405–407.

    Google Scholar 

  • Chotivanich, K., Udomsangpetch, R., Chierakul, W. et al. (2004). In vitro efficacy of antimalarial drugs against Plasmodium vivax on the western border of Thailand. Am. J. Trop. Med. Hyg., 70, 395–397.

    Google Scholar 

  • Collins, W.E. and Jeffery, G.M. (1996). Primaquine resistance in Plasmodium vivax. Am. J. Trop. Med. Hyg., 55, 243–249.

    Google Scholar 

  • Collins, W.E., Jeffery, G.M., and Roberts, J.M. (2003). A retrospective examination of anemia during infection of humans with Plasmodium vivax. Am. J. Trop. Med. Hyg., 68, 410–412.

    Google Scholar 

  • Contreras, C.E., Cortese, J.F., Caraballo, A. et al. (2002). Genetics of drug-resistant Plasmodium falciparum malaria in the Venezuelan state of Bolivar. Am. J. Trop. Med. Hyg., 67, 400–405.

    Google Scholar 

  • Cooper, R.A., Ferdig, M.T., Su, X.Z. et al. (2002). Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum. Mol. Pharmacol., 61, 35–42.

    Google Scholar 

  • Cortese, J.F., Caraballo, A., Contreras, C.E. et al. (2002). Origin and dissemination of Plasmodium falciparum drug resistance mutations in South America. J. Infect. Dis., 186, 999–1006.

    Google Scholar 

  • Cowman, A.F., Galatis, D., and Thompson, J.K. (1994). Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc. Natl. Acad. Sci. USA, 91, 1143–1147.

    Google Scholar 

  • Cowman, A.F., Karcz, S., Galatis, D. et al. (1991). A P-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole. J. Cell Biol., 113, 1033–1042.

    Google Scholar 

  • Cowman, A.F., Morry, M.J., Biggs, B.A. et al. (1988). Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 85, 9109–9113.

    Google Scholar 

  • Cox-Singh, J., Lu, H.Y., Davis, T.M. et al. (2003). Application of a multifaceted approach for the assessment of treatment response in falciparum malaria: A study from Malaysian Borneo. Int. J. Parasitol., 33, 1545–1552.

    Google Scholar 

  • De Morais, S.M., Wilkinson, G.R., Blaisdell, J. et al. (1994). Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol. Pharmacol., 46, 594–598.

    Google Scholar 

  • de Pecoulas, P.E., Basco, L.K., Tahar, R. et al. (1998a). Analysis of the Plasmodium vivax dihydrofolate reductase-thymidylate synthase gene sequence. Gene, 211, 177–185.

    Google Scholar 

  • de Pecoulas, P.E., Tahar, R., Ouatas, T. et al. (1998b). Sequence variations in the Plasmodium vivax dihydrofolate reductase-thymidylate synthase gene and their relationship with pyrimethamine resistance. Mol. Biochem. Parasitol., 92, 265–273.

    Google Scholar 

  • de Vries, P.J. and Dien, T.K. (1996). Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria. Drugs, 52, 818–836.

    Google Scholar 

  • Demar, M. and Carme, B. (2004). Plasmodium falciparum in vivo resistance to quinine: Description of two RIII responses in French Guiana. Am. J. Trop. Med. Hyg., 70, 125–127.

    Google Scholar 

  • Desowitz, R.S. and Spark, R.A. (1987). Malaria in the Maprik area of the Sepik region, Papua New Guinea: 1957–1984. Trans. R. Soc. Trop. Med. Hyg., 81, 175–176.

    Google Scholar 

  • Destenaves, B. and Thomas, F. (2000). New advances in pharmacogenomics. Curr. Opin. Chem. Biol., 4, 440–444.

    Google Scholar 

  • Dieckmann, A. and Jung, A. (1986). Mechanisms of sulfadoxine resistance in Plasmodium falciparum. Mol. Biochem. Parasitol., 19, 143–147.

    Google Scholar 

  • Dien, T.K., de Vries, P.J., Khanh, N.X. et al. (1997). Effect of food intake on pharmacokinetics of oral artemisinin in healthy Vietnamese subjects. Antimicrob. Agents Chemother., 41, 1069–1072.

    Google Scholar 

  • Djimde, A.A., Doumbo, O.K., Traore, O. et al. (2003). Clearance of drug-resistant parasites as a model for protective immunity in Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg., 69, 558–563.

    Google Scholar 

  • Dua, V.K., Gupta, N.C., Kar, P.K. et al. (2000). Chloroquine and desethylchloroquine concentrations in blood cells and plasma from Indian patients infected with sensitive or resistant Plasmodium falciparum. Ann. Trop. Med. Parasitol., 94, 565–570.

    Google Scholar 

  • Dua, V.K., Kar, P.K., and Sharma, V.P. (1996). Chloroquine resistant Plasmodium vivax malaria in India. Trop. Med. Int. Health, 1, 816–819.

    Article  Google Scholar 

  • Ducharme, J. and Farinotti, R. (1996). Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin. Pharmacokinet., 31 257–274.

    Google Scholar 

  • Duraisingh, M.T., Roper, C., Walliker, D. et al. (2000). Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum. Mol. Microbiol., 36, 955–961.

    Google Scholar 

  • Durand, R., Jafari, S., Vauzelle, J. et al. (2001). Analysis of pfcrt point mutations and chloroquine susceptibility in isolates of Plasmodium falciparum. Mol. Biochem. Parasitol., 114, 95–102.

    Google Scholar 

  • Edstein, M.D., Yeo, A.E., Kyle, D.E. et al. (1996). Proguanil polymorphism does not affect the antimalarial activity of proguanil combined with atovaquone in vitro. Trans. R. Soc. Trop. Med. Hyg., 90, 418–421.

    Google Scholar 

  • Evans, W.E. and Relling, M.V. (1999). Pharmacogenomics: Translating functional genomics into rational therapeutics. Science, 286, 487–491.

    Google Scholar 

  • Farnert, A., Lindberg, J., Gil, P. et al. (2003). Evidence of Plasmodium falciparum malaria resistant to atovaquone and proguanil hydrochloride: case reports. BMJ., 326, 628–629.

    Google Scholar 

  • Faye, F.B., Spiegel, A., Tall, A. et al. (2002). Diagnostic criteria and risk factors for Plasmodium ovale malaria. J. Infect. Dis., 186, 690–695.

    Google Scholar 

  • Ferdig, M.T., Cooper, R.A., Mu, J., et al. (2004). Dissecting the loci of low-level quinine resistance in malaria parasites. Mol. Microbiol., 52, 985–997.

    Google Scholar 

  • Fidock, D.A., Nomura, T., Talley, A.K. et al. (2000). Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol, Cell, 6, 861–871.

    Google Scholar 

  • Fivelman, Q.L., Butcher, G.A., Adagu, I.S. et al. (2002). Malarone treatment failure and in vitro confirmation of resistance of Plasmodium falciparum isolate from Lagos, Nigeria. Malar. J., 1, 1.

    Google Scholar 

  • Fontaine, F., de Sousa, G., Burcham, P.C. et al. (2000). Role of cytochrome P450 3A in the metabolism of mefloquine in human and animal hepatocytes. Life Sci., 66, 2193–2212.

    Google Scholar 

  • Foote, S.J., Galatis, D., and Cowman, A.F. (1990). Amino acids in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum involved in cycloguanil resistance differ from those involved in pyrimethamine resistance. Proc. Natl. Acad. Sci. USA, 87, 3014–3017.

    Google Scholar 

  • Foote, S.J., Kyle, D.E., Martin, R.K. et al. (1990). Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature, 345, 255–258.

    Google Scholar 

  • Garavelli, P.L. and Corti, E. (1992). Chloroquine resistance in Plasmodium vivax: The first case in Brazil. Trans. R. Soc. Trop. Med. Hyg., 86, 128.

    Google Scholar 

  • Gay, F., Ciceron, L., Litaudon, M. et al. (1994). In-vitro resistance of Plasmodium falciparum to qinghaosu derivatives in west Africa. Lancet, 343, 850–851.

    Google Scholar 

  • Giao, P.T. and de Vries, P.J. (2001). Pharmacokinetic interactions of antimalarial agents. Clin. Pharmacokinet., 40, 343–373.

    Google Scholar 

  • Giao, P.T., Binh, T.Q., Kager, P.A. et al. (2001). Artemisinin for treatment of uncomplicated falciparum malaria: Is there a place for monotherapy? Am. J. Trop. Med. Hyg., 65, 690–695.

    Google Scholar 

  • Giao, P.T., de Vries, P.J., Hung le, Q. et al. (2004). CV8, a new combination of dihydroartemisinin, piperaquine, trimethoprim and primaquine, compared with atovaquone-proguanil against falciparum malaria in Vietnam. Trop. Med. Int. Health, 9, 209–216.

    Google Scholar 

  • Goldenberg, R.L. and Thompson, C. (2003). The infectious origins of stillbirth. Am. J. Obstet. Gynecol., 189, 861–873.

    Google Scholar 

  • Goldstein, J.A. (2001). Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br. J. Clin. Pharmacol., 52, 349–355.

    Google Scholar 

  • Gong, Q.H., Cho, J.W., Huang, T. et al. (2001). Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics, 11, 357–368.

    Google Scholar 

  • Gonzalez, I.J., Varela, R.E., Murillo, C. et al. (2003). Polymorphisms in cg2 and pfcrt genes and resistance to chloroquine and other antimalarials in vitro in Plasmodium falciparum isolates from Colombia. Trans. R. Soc. Trop. Med. Hyg., 97, 318–324.

    Google Scholar 

  • Goodman & Gilman’s The Pharmacological Basis of Therapeutics (2001). J.G. Hardman, L.E. Limbird, and A.G. Gilman (eds), 10th ed. McGraw-Hill.

    Google Scholar 

  • Grace, J.M., Aguilar, A.J., Trotman, K.M. et al. (1998). Metabolism of beta-arteether to dihydroqinghaosu by human liver microsomes and recombinant cytochrome P450. Drug Metab. Dispos., 26, 313–317.

    Google Scholar 

  • Grace, J.M., Skanchy, D.J., and Aguilar, A.J. (1999). Metabolism of artelinic acid to dihydroqinqhaosu by human liver cytochrome P4503A. Xenobiotica, 29, 703–717.

    Google Scholar 

  • Griese, E.U., Ilett, K.F., Kitteringham, N.R. et al. (2001). Allele and genotype frequencies of polymorphic cytochromes P4502D6, 2C19, and 2E1 in aborigines from western Australia. Pharmacogenetics, 11, 69–76.

    Google Scholar 

  • Guengerich, F.P. (2003). Cytochromes P450, drugs, and diseases. Mol. Interv., 3, 194–204.

    Google Scholar 

  • Guillemette, C. (2003). Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. Pharmacogenomics J., 3, 136–158.

    Google Scholar 

  • Gupta, S., Thapar, M.M., Mariga, S.T. et al. (2002a). Plasmodium falciparum: in vitro interactions of artemisinin with amodiaquine, pyronaridine, and chloroquine. Exp. Parasitol., 100, 28–35.

    Google Scholar 

  • Gupta, S., Thapar, M.M., Wernsdorfer, W.H. et al. (2002b). In vitro interactions of artemisinin with atovaquone, quinine, and mefloquine against Plasmodium falciparum. Antimicrob. Agents Chemother., 46, 1510–1515.

    Google Scholar 

  • Guyatt, H.L. and Snow, R.W. (2001). Malaria in pregnancy as an indirect cause of infant mortality in sub-Saharan Africa. Trans. R. Soc. Trop. Med. Hyg., 95, 569–576.

    Google Scholar 

  • Halpaap, B., Ndjave, M., Paris, M. et al. (1998). Plasma levels of artesunate and dihydroartemisinin in children with Plasmodium falciparum malaria in Gabon after administration of 50-mg artesunate suppositories. Am. J. Trop. Med. Hyg., 58, 365–368.

    Google Scholar 

  • Hartl, D.L. (2004). The origin of malaria: mixed messages from genetic diversity. Nat. Rev. Microbiol., 2, 15–22.

    Google Scholar 

  • Hastings, I.M., Watkins, W.M., and White, N.J. (2002). The evolution of drug-resistant malaria: The role of drug elimination half-life. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 357, 505–519.

    Google Scholar 

  • Hastings, M.D., Porter, K.M., Maguire, J.D. et al. (2004). Dihydrofolate reductase mutations in Plasmodium vivax from Indonesia and therapeutic response to sulfadoxine plus pyrimethamine. J. Infect. Dis., 189, 744–750.

    Google Scholar 

  • Hay, S.I., Guerra, C.A., Tatem, A.J. et al. (2004). The global distribution and population at risk of malaria: past, present, and future. Lancet Infect. Dis., 4, 327–336.

    Google Scholar 

  • Hayton, K. and Su, X.Z. (2004). Genetic and biochemical aspects of drug resistance in malaria parasites. Curr. Drug Targets Infect. Disord., 4, 1–10.

    Google Scholar 

  • Hellgren, U., Alvan, G., and Jerling, M. (1993). On the question of interindividual variations in chloroquine concentrations. Eur. J. Clin. Pharmacol., 45, 383–385.

    Google Scholar 

  • Hellgren, U., Ericsson, O., Kihamia, C.M. et al. (1994). Malaria parasites and chloroquine concentrations in Tanzanian schoolchildren. Trop. Med. Parasitol., 45, 293–297.

    Google Scholar 

  • Hellgren, U., Kihamia, C.M., Mahikwano, L.F. et al. (1989). Response of Plasmodium falciparum to chloroquine treatment: Relation to whole blood concentrations of chloroquine and desethylchloroquine. Bull. World Health Organ., 67, 197–202.

    Google Scholar 

  • Helsby, N.A., Edwards, G., Breckenridge, A.M. et al. (1993). The multiple dose pharmacokinetics of proguanil. Br. J. Clin. Pharmacol., 35, 653–656.

    Google Scholar 

  • Hoshen, M.B., Na-Bangchang, K., Stein, W.D., et al. (2000). Mathematical modeling of the chemotherapy of Plasmodium falciparum malaria with artesunate: Postulation of “dormancy,” a partial cytostatic effect of the drug, and its implication for treatment regimens. Parasitology, 121, 237–246.

    Google Scholar 

  • Hoskins, J.M., Shenfield, G.M., and Gross, A.S. (1998). Relationship between proguanil metabolic ratio and CYP2C19 genotype in a Caucasian population. Br. J. Clin. Pharmacol., 46, 499–504.

    Google Scholar 

  • Hung, T.Y., Davis, T.M., Ilett, K.F. et al. (2004). Population pharmacokinetics of piperaquine in adults and children with uncomplicated falciparum or vivax malaria. Br. J. Clin. Pharmacol., 57, 253–262.

    Google Scholar 

  • Hyde, J.E. (1990). The dihydrofolate reductase-thymidylate synthetase gene in the drug resistance of malaria parasites. Pharmacol. Ther., 48, 45–59.

    Google Scholar 

  • Hyde, J.E. (2002). Mechanisms of resistance of Plasmodium falciparum to antimalarial drugs. Microbes Infect., 4, 165–174.

    Google Scholar 

  • Ilett, K.F., Ethell, B.T., Maggs, J.L. et al. (2002). Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab. Dispos., 30, 1005–1012.

    Google Scholar 

  • Imwong, M., Pukrittakayamee, S., Looareesuwan, S. et al. (2001). Association of genetic mutations in Plasmodium vivax dhfr with resistance to sulfadoxine-pyrimethamine: Geographical and clinical correlates. Antimicrob. Agents Chemother., 45, 3122–3127.

    Google Scholar 

  • Imwong, M., Pukrittayakamee, S., Renia, L. et al. (2003). Novel point mutations in the dihydrofolate reductase gene of Plasmodium vivax: Evidence for sequential selection by drug pressure. Antimicrob. Agents Chemother., 47, 1514–1521.

    Google Scholar 

  • Ingelman-Sundberg, M. (2001). Pharmacogenetics: an opportunity for a safer and more efficient pharmacotherapy. J. Intern. Med., 250, 186–200.

    Google Scholar 

  • Ingelman-Sundberg, M. (2004a). Human drug metabolising cytochrome P450 enzymes: Properties and polymorphisms. Naunyn Schmiedebergs. Arch. Pharmacol., 369, 89–104.

    Google Scholar 

  • Ingelman-Sundberg, M. (2004b). Pharmacogenetics of cytochrome P450 and its applications in drug therapy: The past, present and future. Trends Pharmacol. Sci., 25, 193–200.

    Google Scholar 

  • Inselberg, J. (1985). Induction and isolation of artemisinin-resistant mutants of Plasmodium falciparum. Am. J. Trop. Med. Hyg., 34, 417–418.

    Google Scholar 

  • Ittarat, W., Pickard, A.L., Rattanasinganchan, P. et al. (2003). Recrudescence in artesunate-treated patients with falciparum malaria is dependent on parasite burden not on parasite factors. Am. J. Trop. Med. Hyg., 68, 147–152.

    Google Scholar 

  • Johnson, D.J., Fidock, D.A., Mungthin, M. et al. (2004). Evidence for a central role for PfCRT in conferring Plasmodium falciparum resistance to diverse antimalarial agents. Mol, Cell, 15, 867–877.

    Google Scholar 

  • Jung, M., Lee, K., Kim, H. et al. (2004). Recent advances in artemisinin and its derivatives as antimalarial and antitumor agents. Curr. Med. Chem., 11, 1265–1284.

    Google Scholar 

  • Kain, K.C. (1995). Chemotherapy and prevention of drug-resistant malaria. Wilderness Environ. Med., 6, 307–324.

    Google Scholar 

  • Kaneko, A., Bergqvist, Y., Takechi, M. et al. (1999). Intrinsic efficacy of proguanil against falciparum and vivax malaria independent of the metabolite cycloguanil. J. Infect. Dis., 179, 974–979.

    Google Scholar 

  • Kaneko, A., Kaneko, O., Taleo, G. et al. (1997). High frequencies of CYP2C19 mutations and poor metabolism of proguanil in Vanuatu. Lancet, 349, 921–922.

    Google Scholar 

  • Karim, E.A., Ibrahim, K.E., Hassabalrasoul, M.A. et al. (1992). A study of chloroquine and desethylchloroquine plasma levels in patients infected with sensitive and resistant malaria parasites. J. Pharm. Biomed. Anal., 10, 219–223.

    Google Scholar 

  • Karunajeewa, H., Lim, C., Hung, T.Y. et al. (2004). Safety evaluation of fixed combination piperaquine plus dihydroartemisinin (Artekin) in Cambodian children and adults with malaria. Br. J. Clin. Pharmacol., 57, 93–99.

    Google Scholar 

  • Karunajeewa, H.A., Ilett, K.F., Dufall, K. et al. (2004). Disposition of artesunate and dihydroartemisinin after administration of artesunate suppositories in children from Papua New Guinea with uncomplicated malaria. Antimicrob. Agents Chemother., 48, 2966–2972.

    Google Scholar 

  • Kawamoto, F., Liu, Q., Ferreira, M.U. et al. (1999). How prevalent are Plasmodium ovale and P. imalariae in East Asia? Parasitol. Today, 15, 422–426.

    Google Scholar 

  • Ketrangsee, S., Vijaykadga, S., Yamokgul, P. et al. (1992). Comparative trial on the response of Plasmodium falciparum to halofantrine and mefloquine in Trat province, eastern Thailand. Southeast Asian J. Trop. Med. Public. Health, 23, 55–58.

    Google Scholar 

  • Kim, K.A., Park, J.Y., Lee, J.S. et al. (2003). Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch. Pharm. Res., 26, 631–637.

    Google Scholar 

  • Kofoed, P.E., Poulsen, A., Co, F. et al. (2003). No benefits from combining chloroquine with artesunate for 3 days for treatment of Plasmodium falciparum in Guinea-Bissau. Trans. R. Soc. Trop. Med. Hyg., 97, 429–433.

    Google Scholar 

  • Koopmans, R., Duc, D.D., Kager, P.A. et al. (1998). The pharmacokinetics of artemisinin suppositories in Vietnamese patients with malaria. Trans. R. Soc. Trop. Med. Hyg., 92, 434–436.

    Google Scholar 

  • Koopmans, R., Ha, L.D., Duc, D.D. et al. (1999). The pharmacokinetics of artemisinin after administration of two different suppositories to healthy Vietnamese subjects. Am. J. Trop. Med. Hyg., 60, 244–247.

    Google Scholar 

  • Korsinczky, M., Chen, N., Kotecka, B. et al. (2000). Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drugbinding site. Antimicrob. Agents Chemother., 44, 2100–2108.

    Google Scholar 

  • Korsinczky, M., Fischer, K., Chen, N. et al. (2004). Sulfadoxine resistance in Plasmodium vivax is associated with a specific amino acid in dihydropteroate synthase at the putative sulfadoxinebinding site. Antimicrob. Agents Chemother., 48, 2214–2222.

    Google Scholar 

  • Krishna, S. and White, N.J. (1996). Pharmacokinetics of quinine, chloroquine and amodiaquine. Clinical implications. Clin. Pharmacokinet., 30, 263–299.

    Google Scholar 

  • Krishna, S., Planche, T., Agbenyega, T. et al. (2001). Bioavailability and preliminary clinical efficacy of intrarectal artesunate in Ghanaian children with moderate malaria. Antimicrob. Agents Chemother., 45, 509–516.

    Google Scholar 

  • Kumar, N. and Zheng, H. (1990). Stage-specific gametocytocidal effect in vitro of the antimalaria drug qinghaosu on Plasmodium falciparum. Parasitol. Res., 76, 214–218.

    Google Scholar 

  • Lang, T. and Greenwood, B. (2003). The development of Lapdap, an affordable new treatment for malaria. Lancet Infect. Dis., 3, 162–168.

    Google Scholar 

  • Laufer, M.K. and Plowe, C.V. (2004). Withdrawing antimalarial drugs: Impact on parasite resistance and implications for malaria treatment policies. Drug Resist Updat., 7, 279–288.

    Google Scholar 

  • Le Bras, J. and Durand, R. (2003). The mechanisms of resistance to antimalarial drugs in Plasmodium falciparum. Fundam. Clin. Pharmacol., 17, 147–153.

    Google Scholar 

  • Le Mire, J., Arnulf, L., and Guibert, P. (2004). Malaria: control strategies, chemoprophylaxis, diagnosis, and treatment. Clin. Occup. Environ. Med., 4, 143–165.

    Google Scholar 

  • Le, T.A., Davis, T.M., Tran, Q.B. et al. (1997). Delayed parasite clearance in a splenectomized patient with falciparum malaria who was treated with artemisinin derivatives. Clin. Infect. Dis., 25, 923–925.

    Article  Google Scholar 

  • Leartsakulpanich, U., Imwong, M., Pukrittayakamee, S. et al. (2002). Molecular characterization of dihydrofolate reductase in relation to antifolate resistance in Plasmodium vivax. Mol. Biochem. Parasitol., 119, 63–73.

    Google Scholar 

  • Lee, I.S. and Hufford, C.D. (1990). Metabolism of antimalarial sesquiterpene lactones. Pharmacol. Ther., 48, 345–355.

    Google Scholar 

  • Lefevre, G., Bindschedler, M., Ezzet, F. et al. (2000). Pharmacokinetic interaction trial between coartemether and mefloquine. Eur. J. Pharm. Sci., 10, 141–151.

    Google Scholar 

  • Li, X.Q., Bjorkman, A., Andersson, T.B. et al. (2002). Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: A new high affinity and turnover enzymespecific probe substrate. J. Pharmacol. Exp. Ther., 300, 399–407.

    Google Scholar 

  • Li, X.Q., Bjorkman, A., Andersson, T.B. et al. (2003). Identification of human cytochrome P(450)s that metabolise antiparasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur. J. Clin. Pharmacol., 59, 429–442.

    Google Scholar 

  • Linder, M.W., Prough, R.A., and Valdes, R. Jr. (1997). Pharmacogenetics: a laboratory tool for optimizing therapeutic efficiency. Clin. Chem., 43, 254–266.

    Google Scholar 

  • Little, J.M., Lester, R., Kuipers, F. et al. (1999). Variability of human hepatic UDP-glucuronosyltransferase activity. Acta Biochim. Pol., 46, 351–363.

    Google Scholar 

  • Looareesuwan, S., Wilairatana, P., Krudsood, S. et al. (1999). Chloroquine sensitivity of Plasmodium vivax in Thailand. Ann. Trop. Med. Parasitol., 93, 225–230.

    Google Scholar 

  • Lopes, D., Rungsihirunrat, K., Nogueira, F. et al. (2002). Molecular characterization of drug-resistant Plasmodium falciparum from Thailand. Malar. J., 1, 12.

    Google Scholar 

  • Lowenthal, M.N. (1999). Plasmodium ovale in southern Africa. Trans. R. Soc. Trop. Med. Hyg., 93, 107.

    Google Scholar 

  • Lu, A.H., Shu, Y., Huang, S.L. et al. (2000). In vitro proguanil activation to cycloguanil is mediated by CYP2C19 and CYP3A4 in adult Chinese liver microsomes. Acta Pharmacol. Sin., 21, 747–752.

    Google Scholar 

  • Luxemburger, C., Brockman, A., Silamut, K. et al. (1998). Two patients with falciparum malaria and poor in vivo responses to artesunate. Trans. R. Soc. Trop. Med. Hyg., 92, 668–669.

    Google Scholar 

  • Lysenko, A.J. and Beljaev, A.E. (1969). An analysis of the geographical distribution of Plasmodium ovale. Bull. World Health Organ., 40, 383–394.

    Google Scholar 

  • Mackenzie, P.I., Gregory, P.A., Gardner-Stephen, D.A. et al. (2003). Regulation of UDP glucuronosyltransferase genes. Curr. Drug Metab., 4, 249–257.

    Google Scholar 

  • Mackenzie, P.I., Miners, J.O., and McKinnon, R.A. (2000). Polymorphisms in UDP glucuronosyltransferase genes: functional consequences and clinical relevance. Clin. Chem. Lab. Med., 38, 889–892.

    Google Scholar 

  • Mackenzie, P.I., Owens, I.S., Burchell, B. et al. (1997). The UDP glycosyltransferase gene superfamily: Recommended nomenclature update based on evolutionary divergence. Pharmacogenetics, 7, 255–269.

    Google Scholar 

  • Maguire, J.D., Sumawinata, I.W., Masbar, S. et al. (2002). Chloroquine-resistant Plasmodium malariae in south Sumatra, Indonesia. Lancet, 360, 58–60.

    Google Scholar 

  • Maitland, K., Bejon, P., and Newton, C.R. (2003). Malaria. Curr. Opin. Infect. Dis., 16, 389–395.

    Google Scholar 

  • Maitland, K., Williams, T.N., Kotecka, B.M. et al. (1997). Plasma chloroquine concentrations in young and older malaria patients treated with chloroquine. Acta Trop., 66, 155–161.

    Google Scholar 

  • Marlar-Than, Myat-Phone-Kyaw, Aye-Yu-Soe et al. (1995). Development of resistance to chloroquine by Plasmodium vivax in Myanmar. Trans. R. Soc. Trop. Med. Hyg., 89, 307–308.

    Google Scholar 

  • Masimirembwa, C., Bertilsson, L., Johansson, I. et al. (1995). Phenotyping and genotyping of S mephenytoin hydroxylase (cytochrome P450 2C19) in a Shona population of Zimbabwe. Clin. Pharmacol. Ther., 57, 656–661.

    Google Scholar 

  • Masimirembwa, C.M., Gustafsson, L.L., Dahl, M.L. et al. (1996). Lack of effect of chloroquine on the debrisoquine (CYP2D6) and S-mephenytoin (CYP2C19) hydroxylation phenotypes. Br. J. Clin. Pharmacol., 41, 344–346.

    Google Scholar 

  • Masimirembwa, C.M., Thompson, R., and Andersson, T.B. (2001). In vitro high throughput screening of compounds for favorable metabolic properties in drug discovery. Comb. Chem. High Throughput Screen., 4, 245–263.

    Google Scholar 

  • Masta, A., Lum, J.K., Tsukahara, T. et al. (2003). Analysis of Sepik populations of Papua New Guinea suggests an increase of CYP2C19 null allele frequencies during the colonization of Melanesia. Pharmacogenetics, 13, 697–700.

    Google Scholar 

  • May, D.G., Porter, J., Wilkinson, G.R. et al. (1994). Frequency distribution of dapsone N-hydroxylase, a putative probe for P4503A4 activity, in a white population. Clin. Pharmacol. Ther., 55, 492–500.

    Article  Google Scholar 

  • May, J. and Meyer, C.G. (2003). Association of Plasmodium falciparum chloroquine resistance transporter variant T76 with age-related plasma chloroquine levels. Am. J. Trop. Med. Hyg., 68, 143–146.

    Google Scholar 

  • Mberu, E.K., Wansor, T., Sato, H. et al. (1995). Japanese poor metabolizers of proguanil do not have an increased risk of malaria chemoprophylaxis breakthrough. Trans. R. Soc. Trop. Med. Hyg., 89, 658–659.

    Google Scholar 

  • McGready, R. and Nosten, F. (1999). The Thai-Burmese border: Drug studies of Plasmodium falciparum in pregnancy. Ann. Trop. Med. Parasitol., 93, S19–S23.

    Google Scholar 

  • McKinnon, R.A. (2000). Cytochrome P450. 1. Multiplicity and function. Aust. J. Hosp. Pharm., 30, 54–56.

    Google Scholar 

  • Meech, R. and Mackenzie, P.I. (1997). Structure and function of uridine diphosphate glucuronosyltransferases. Clin. Exp. Pharmacol. Physiol., 24, 907–915.

    Google Scholar 

  • Meech, R. and Mackenzie, P.I. (1998). Determinants of UDP glucuronosyltransferase membrane association and residency in the endoplasmic reticulum. Arch. Biochem. Biophys., 356, 77–85.

    Google Scholar 

  • Mehlotra, R.K., Lorry, K., Kastens, W. et al. (2000). Random distribution of mixed species malaria infections in Papua New Guinea. Am. J. Trop. Med. Hyg., 62, 225–231.

    Google Scholar 

  • Mendis, K., Sina, B.J., Marchesini, P. et al. (2001). The neglected burden of Plasmodium vivax malaria. Am. J. Trop. Med. Hyg., 64, 97–106.

    Google Scholar 

  • Mihara, K., Svensson, U.S., Tybring, G. et al. (1999). Stereospecific analysis of omeprazole supports artemisinin as a potent inducer of CYP2C19. Fundam. Clin. Pharmacol., 13, 671–675.

    Article  Google Scholar 

  • Miller, J.L. and Trepanier, L.A. (2002). Inhibition by atovaquone of CYP2C9-mediated sulphamethoxazole hydroxylamine formation. Eur. J. Clin. Pharmacol., 58, 69–72.

    Google Scholar 

  • Miller, M.S., McCarver, D.G., Bell, D.A. et al. (1997). Genetic polymorphisms in human drug metabolic enzymes. Fundam. Appl. Toxicol., 40, 1–14.

    Google Scholar 

  • Miners, J.O. and Birkett, D.J. (1998). Cytochrome P4502C9: An enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol., 45, 525–538.

    Google Scholar 

  • Miners, J.O. and Mackenzie, P.I. (1991). Drug glucuronidation in humans. Pharmacol. Ther., 51, 347–369.

    Google Scholar 

  • Miners, J.O., McKinnon, R.A., and Mackenzie, P.I. (2002). Genetic polymorphisms of UDP-glucuronosyltransferases and their functional significance. Toxicology, 181–182, 453–456.

    Google Scholar 

  • Mita, T., Akira, K., Lum, J.K. et al. (2004). Expansion of wild-type allele rather than back mutation in pfcrt explains the recent recovery of chloroquine sensitivity of Plasmodium falciparum in Malawi. Mol. Biochem. Parasitol., 135, 159–163.

    Google Scholar 

  • Mockenhaupt, F.P. (1995). Mefloquine resistance in Plasmodium falciparum. Parasitol. Today, 11, 248–253.

    Google Scholar 

  • Mockenhaupt, F.P., May, J., Bergqvist, Y. et al. (2000). Concentrations of chloroquine and malaria parasites in blood in Nigerian children. Antimicrob. Agents Chemother., 44, 835–839.

    Google Scholar 

  • Mohapatra, P.K., Namchoom, N.S., Prakash, A. et al. (2003). Therapeutic efficacy of antimalarials in Plasmodium falciparum malaria in an Indo-Myanmar border area of Arunachal Pradesh. Indian J. Med. Res., 118, 71–76.

    Google Scholar 

  • Monaghan, G., Clarke, D.J., Povey, S. et al. (1994). Isolation of a human YAC contig encompassing a cluster of UGT2 genes and its regional localization to chromosome 4q13. Genomics, 23, 496–499.

    Google Scholar 

  • Mu, J., Ferdig, M.T., Feng, X. et al. (2003). Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol. Microbiol., 49, 977–989.

    Google Scholar 

  • Muehlen, M., Schreiber, J., Ehrhardt, S. et al. (2004). Short communication: Prevalence of mutations associated with resistance to atovaquone and to the antifolate effect of proguanil in Plasmodium falciparum isolates from northern Ghana. Trop. Med. Int. Health, 9, 361–363.

    Google Scholar 

  • Murphy, G.S., Basri, H., Purnomo et al. (1993). Vivax malaria resistant to treatment and prophylaxis with chloroquine. Lancet, 341, 96–100.

    Google Scholar 

  • Nagata, K. and Yamazoe, Y. (2002). Genetic polymorphism of human cytochrome P450 involved in drug metabolism. Drug Metabol. Pharmacokin., 17, 167–189.

    Google Scholar 

  • Nagesha, H.S., Din-Syafruddin, Casey, G.J. et al. (2001). Mutations in the pfmdr1, dhfr and dhps genes of Plasmodium falciparum are associated with in vivo drug resistance in west Papua, Indonesia. Trans. R. Soc. Trop. Med. Hyg., 95, 43–49.

    Google Scholar 

  • Nair, S., Williams, J.T., Brockman, A. et al. (2003). A selective sweep driven by pyrimethamine treatment in southeast asian malaria parasites. Mol. Biol. Evol.. 20, 1526–1536.

    Google Scholar 

  • Navaratnam, V., Mansor, S.M., Sit, N.W. et al. (2000). Pharmacokinetics of artemisinin-type compounds. Clin. Pharmacokinet., 39, 255–270.

    Google Scholar 

  • Nelson, D.R., Zeldin, D.C., Hoffman, S.M. et al. (2004). Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics, 14, 1–18.

    Google Scholar 

  • Nielsen, T.L., Rasmussen, B.B., Flinois, J.P. et al. (1999). In vitro metabolism of quinidine: the (3S)-3-hydroxylation of quinidine is a specific marker reaction for cytochrome P-4503A4 activity in human liver microsomes. J. Pharmacol. Exp. Ther., 289, 31–37.

    Google Scholar 

  • Nomura, T., Carlton, J.M., Baird, J.K. et al. (2001). Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J. Infect. Dis., 183, 1653–1661.

    Google Scholar 

  • Nosten, F. and Ashley, E. (2004). The detection and treatment of Plasmodium falciparum malaria: Time for change. J. Postgrad. Med., 50, 35–39.

    Google Scholar 

  • Nosten, F., Hien, T.T., and White, N.J. (1998). Use of artemisinin derivatives for the control of malaria. Med. Trop. (Mars), 58, 45–49.

    Google Scholar 

  • Nosten, F., McGready, R., Simpson, J.A. et al. (1999). Effects of Plasmodium vivax malaria in pregnancy. Lancet, 354, 546–549.

    Google Scholar 

  • Ochong, E.O., van den Broek, IV, Keus, K. et al. (2003). Short report: association between chloroquine and amodiaquine resistance and allelic variation in the Plasmodium falciparum multiple drug resistance 1 gene and the chloroquine resistance transporter gene in isolates from the upper Nile in southern Sudan. Am. J. Trop. Med. Hyg., 69, 184–187.

    Google Scholar 

  • Oduola, A.M., Sowunmi, A., Milhous, W.K. et al. (1992). Innate resistance to new antimalarial drugs in Plasmodium falciparum from Nigeria. Trans. R. Soc. Trop. Med. Hyg., 86, 123–126.

    Google Scholar 

  • Olliaro, P.L. and Taylor, W.R. (2004). Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review. J. Postgrad. Med., 50, 40–44.

    Google Scholar 

  • Omari, A.A., Gamble, C., and Garner, P. (2004). Artemether-lumefantrine for uncomplicated malaria: A systematic review. Trop. Med. Int. Health, 9, 192–199.

    Google Scholar 

  • O’Neill, P.M., Scheinmann, F., Stachulski, A.V. et al. (2001). Efficient preparations of the betaglucuronides of dihydroartemisinin and structural confirmation of the human glucuronide metabolite. J. Med. Chem., 44, 1467–1470.

    Google Scholar 

  • Owens, I.S. and Ritter, J.K. (1995). Gene structure at the human UGT1 locus creates diversity in isozyme structure, substrate specificity, and regulation. Prog. Nucleic Acid Res. Mol. Biol., 51, 305–338.

    Google Scholar 

  • Payne, D. (1987). Spread of chloroquine resistance in Plasmodium falciparum. Parasitol. Today, 3, 241–246.

    Google Scholar 

  • Persson, I., Aklillu, E., Rodrigues, F. et al. (1996). S-mephenytoin hydroxylation phenotype and CYP2C19 genotype among Ethiopians. Pharmacogenetics, 6, 521–526.

    Google Scholar 

  • Peters, W. (1987). Chemotherapy and Drug Resistance in Malaria, 2nd ed. Academic, London, UK. p. 1091.

    Google Scholar 

  • Peters, W. (1998). Drug resistance in malaria parasites of animals and man. Adv. Parasitol., 41, 1–62.

    Google Scholar 

  • Peterson, D.S., Milhous, W.K., and Wellems, T.E. (1990). Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Proc. Natl. Acad. Sci. USA, 87, 3018–3022.

    Google Scholar 

  • Peterson, D.S., Walliker, D., and Wellems, T.E. (1988). Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc. Natl. Acad. Sci. USA, 85, 9114–9118.

    Google Scholar 

  • Pettinelli, F., Pettinelli, M.E., Eldin de Pecoulas, P. et al. (2004). Short report: High prevalence of multidrug-resistant Plasmodium falciparum malaria in the French territory of Mayotte. Am. J. Trop. Med. Hyg., 70, 635–637.

    Google Scholar 

  • Phan, G.T., de Vries, P.J., Tran, B.Q. et al. (2002). Artemisinin or chloroquine for blood stage Plasmodium vivax malaria in Vietnam. Trop. Med. Int. Health, 7, 858–864.

    Google Scholar 

  • Phillips, E.J., Keystone, J.S., and Kain, K.C. (1996). Failure of combined chloroquine and high-dose primaquine therapy for Plasmodium vivax malaria acquired in Guyana, South America. Clin. Infect. Dis., 23, 1171–1173.

    Google Scholar 

  • Pickard, A.L., Wongsrichanalai, C., Purfield, A. et al. (2003). Resistance to antimalarials in Southeast Asia and genetic polymorphisms in pfmdr1. Antimicrob. Agents Chemother., 47, 2418–2423.

    Google Scholar 

  • Plowe, C.V., Cortese, J.F., Djimde, A. et al. (1997). Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance. J. Infect. Dis., 176, 1590–1596.

    Article  Google Scholar 

  • Ploypradith, P. (2004). Development of artemisinin and its structurally simplified trioxane derivatives as antimalarial drugs. Acta Trop., 89, 329–342.

    Google Scholar 

  • Price, R.N. (2000). Artemisinin drugs: novel antimalarial agents. Expert Opin. Investig. Drugs, 9, 1815–1827.

    Google Scholar 

  • Projean, D., Baune, B., Farinotti, R. et al. (2003). In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab. Dispos., 31, 748–754.

    Google Scholar 

  • Randrianarivelojosia, M., Raharimalala, L.A., Randrianasolo, L. et al. (2001). Madagascan isolates of Plasmodium falciparum showing low sensitivity to artemether in vitro. Ann. Trop. Med. Parasitol., 95, 237–243.

    Google Scholar 

  • Reed, M.B., Saliba, K.J., Caruana, S.R. et al. (2000). Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature, 403, 906–909.

    Google Scholar 

  • Ringwald, P., Bickii, J., and Basco, L.K. (1999). In vitro activity of dihydroartemisinin against clinical isolates of Plasmodium falciparum in Yaounde, Cameroon. Am. J. Trop. Med. Hyg., 61, 187–192.

    Google Scholar 

  • Ringwald, P., Same Ekobo, A., Keundjian, A. et al. (2000). Chemoresistance of P. falciparum in urban areas of Yaounde, Cameroon. Part 1: Surveillance of in vitro and in vivo resistance of Plasmodium falciparum to chloroquine from 1994 to 1999 in Yaounde, Cameroon. Trop. Med. Int. Health, 5, 612–619.

    Google Scholar 

  • Ritter, J.K., Chen, F., Sheen, Y.Y. et al. (1992). A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J. Biol. Chem., 267, 3257–3261.

    Google Scholar 

  • Rodrigues, A.D. (1999). Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native human liver microsomes. Biochem. Pharmacol., 57, 465–480.

    Google Scholar 

  • Schwartz, E., Bujanover, S., and Kain, K.C. (2003). Genetic confirmation of atovaquone-proguanil-resistant Plasmodium falciparum malaria acquired by a nonimmune traveler to East Africa. Clin. Infect. Dis., 37, 450–451.

    Google Scholar 

  • Schwartz, E., Regev-Yochay, G., and Kurnik, D. (2000). Short report: A consideration of primaquine dose adjustment for radical cure of Plasmodium vivax malaria. Am. J. Trop. Med. Hyg., 62, 393–395.

    Google Scholar 

  • Scopel, K.K., Fontes, C.J., Nunes, A.C. et al. (2004). High prevalence of Plamodium malariae infections in a Brazilian Amazon endemic area (Apiacas-Mato Grosso State) as detected by polymerase chain reaction. Acta Trop., 90, 61–64.

    Google Scholar 

  • Sen, S. and Ferdig, M. (2004). QTL analysis for discovery of genes involved in drug responses. Curr. Drug Targets Infect. Disord., 4, 53–63.

    Google Scholar 

  • Shmuklarsky, M.J., Klayman, D.L., Milhous, W.K. et al. (1993). Comparison of beta-artemether and beta-arteether against malaria parasites in vitro and in vivo. Am. J. Trop. Med. Hyg., 48, 377–384.

    Google Scholar 

  • Sibley, C.H., Hyde, J.E., Sims, P.F. et al. (2001). Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: What next? Trends Parasitol., 17, 582–588.

    Google Scholar 

  • Sidhu, A.B., Verdier-Pinard, D., and Fidock, D.A. (2002). Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science, 298, 210–213.

    Google Scholar 

  • Simonsson, U.S., Jansson, B., Hai, T.N. et al. (2003). Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin. Pharmacol. Ther., 74, 32–43.

    Google Scholar 

  • Simooya, O.O., Sijumbil, G., Lennard, M.S. et al. (1998). Halofantrine and chloroquine inhibit CYP2D6 activity in healthy Zambians. Br. J. Clin. Pharmacol., 45, 315–317.

    Google Scholar 

  • Sims, P., Wang, P., and Hyde, J.E. (1999). Selection and synergy in Plasmodium falciparum. Parasitol. Today, 15, 132–134.

    Google Scholar 

  • Singh, B., Kim Sung, L., Matusop. A. et al. (2004). A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet, 363, 1017–1024.

    Google Scholar 

  • Sirima, S.B., Tiono, A.B., Konate, A. et al. (2003). Efficacy of artesunate plus chloroquine for the treatment of uncomplicated malaria in children in Burkina Faso: A double-blind, randomized, controlled trial. Trans. R. Soc. Trop. Med. Hyg., 97, 345–349.

    Google Scholar 

  • Skjelbo, E., Mutabingwa, T.K., Bygbjerg, I. et al. (1996). Chloroguanide metabolism in relation to the efficacy in malaria prophylaxis and the S-mephenytoin oxidation in Tanzanians. Clin. Pharmacol. Ther., 59, 304–311.

    Google Scholar 

  • Smoak, B.L., DeFraites, R.F., Magill, A.J. et al. (1997). Plasmodium vivax infections in U.S. Army troops: Failure of primaquine to prevent relapse in studies from Somalia. Am. J. Trop. Med. Hyg., 56, 231–234.

    Google Scholar 

  • Snewin, V.A., England, S.M., Sims, P.F. et al. (1989). Characterisation of the dihydrofolate reductase-thymidylate synthetase gene from human malaria parasites highly resistant to pyrimethamine. Gene, 76, 41–52.

    Google Scholar 

  • Snow, R.W., Trape, J.F., and Marsh, K. (2001). The past, present and future of childhood malaria mortality in Africa. Trends Parasitol., 17, 593–597.

    Google Scholar 

  • Somogyi, A.A., Reinhard, H.A., and Bochner, F. (1996). Pharmacokinetic evaluation of proguanil: A probe phenotyping drug for the mephenytoin hydroxylase polymorphism. Br. J. Clin. Pharmacol., 41, 175–179.

    Article  Google Scholar 

  • Soto, J., Toledo, J., Gutierrez, P. et al. (2001). Plasmodium vivax clinically resistant to chloroquine in Colombia. Am. J. Trop. Med. Hyg., 65, 90–93.

    Google Scholar 

  • Srivastava, I.K. and Vaidya, A.B. (1999). A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob. Agents Chemother, 43, 1334–1339.

    Google Scholar 

  • Steketee, R.W., Nahlen, B.L., Parise, M.E. et al. (2001). The burden of malaria in pregnancy in malaria-endemic areas. Am. J. Trop. Med. Hyg., 64, 28–35.

    Google Scholar 

  • Stormer, E., von Moltke, L.L., and Greenblatt, D.J. (2000). Scaling drug biotransformation data from cDNA-expressed cytochrome P-450 to human liver: A comparison of relative activity factors and human liver abundance in studies of mirtazapine metabolism. J. Pharmacol. Exp. Ther., 295, 793–801.

    Google Scholar 

  • Suh, K.N., Kain, K.C., and Keystone, J.S. (2004). Malaria. CMAJ. 170, 1693–1702.

    Google Scholar 

  • Svensson, U.S. and Ashton, M. (1999). Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin. Br. J. Clin. Pharmacol., 48, 528–535.

    Google Scholar 

  • Svensson, U.S., Ashton, M., Trinh, N.H. et al. (1998). Artemisinin induces omeprazole metabolism in human beings. Clin. Pharmacol. Ther., 64, 160–167.

    Google Scholar 

  • Tahar, R., Ringwald, P., and Basco, L.K. (1998). Heterogeneity in the circumsporozoite protein gene of Plasmodium malariae isolates from subSaharan Africa. Mol. Biochem. Parasitol., 92, 71–78.

    Google Scholar 

  • Talisuna, A.O., Bloland, P., and D’Alessandro, U. (2004). History, dynamics, and public health importance of malaria parasite resistance. Clin. Microbiol. Rev., 17, 235–254.

    Google Scholar 

  • Taylor, W.R. and White, N.J. (2004). Antimalarial drug toxicity: A review. Drug Saf., 27, 25–61.

    Google Scholar 

  • ter Kuile, F., White, N.J., Holloway, P. et al. (1993). Plasmodium falciparum: In vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp. Parasitol., 76, 85–95.

    Google Scholar 

  • ter Kuile, F.O., Dolan, G., Nosten, F. et al. (1993). Halofantrine versus mefloquine in treatment of multidrug-resistant falciparum malaria. Lancet, 341, 1044–1049.

    Google Scholar 

  • Thapar, M.M., Ashton, M., Lindegardh, N. et al. (2002). Time-dependent pharmacokinetics and drug metabolism of atovaquone plus proguanil (Malarone) when taken as chemoprophylaxis. Eur. J. Clin. Pharmacol., 58, 19–27.

    Google Scholar 

  • Tobian, A.A., Mehlotra, R.K., Malhotra, I. et al. (2000). Frequent umbilical cord-blood and maternal-blood infections with Plasmodium falciparum, P. malariae, and P. ovale in Kenya. J. Infect. Dis., 182, 558–563.

    Google Scholar 

  • Tran, T.H., Dolecek, C., Pham, P.M. et al. (2004). Dihydroartemisinin-piperaquine against multidrug-resistant Plasmodium falciparum malaria in Vietnam: randomized clinical trial. Lancet, 363, 18–22.

    Google Scholar 

  • Tredger, J.M. and Stoll, S. (2002). Cytochrome P450 their impact on drug treatment. Hospital Pharmacy, 9, 167–173.

    Google Scholar 

  • Treeprasertsuk, S., Viriyavejakul, P., Silachamroon, U. et al. (2000). Is there any artemisinin resistance in falciparum malaria? Southeast Asian J. Trop. Med. Public Health, 31, 825–828.

    Google Scholar 

  • Triglia, T. and Cowman, A.F. (1994). Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA., 91, 7149–7153.

    Google Scholar 

  • Triglia, T., Menting, J.G., Wilson, C. et al. (1997). Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 94, 13,944–13,949.

    Google Scholar 

  • Triglia, T., Wang, P., Sims, P.F. et al. (1998). Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine-resistant malaria. EMBO. J., 17, 3807–3815.

    Google Scholar 

  • Turgeon, D., Carrier, J.S., Levesque, E. et al. (2000). Isolation and characterization of the human UGT2B15 gene, localized within a cluster of UGT2B genes and pseudogenes on chromosome 4. J. Mol. Biol., 295, 489–504.

    Google Scholar 

  • Ukpe, I.S. (1998). Plasmodium ovale in South Africa. Trans. R. Soc. Trop. Med. Hyg., 92, 574.

    Google Scholar 

  • van Agtmael, M.A., Gupta, V., van der Graaf, C.A., and van Boxtel, C.J. (1999a). The effect of grapefruit juice on the time-dependent decline of artemether plasma levels in healthy subjects. Clin. Pharmacol. Ther., 66, 408–414.

    Google Scholar 

  • van Agtmael, M.A., Gupta, V., van der Wosten, T.H. et al. (1999b). Grapefruit juice increases the bioavailability of artemether. Eur. J. Clin. Pharmacol., 55, 405–410.

    Google Scholar 

  • van Agtmael, M.A., Van Der Graaf, C.A., Dien, T.K. et al. (1998). The contribution of the enzymes CYP2D6 and CYP2C19 in the demethylation of artemether in healthy subjects. Eur. J. Drug Metab. Pharmacokinet., 23, 429–436.

    Google Scholar 

  • Vieira, P.P., Ferreira, M.U., Das Gracas Alecrim, M. et al. (2004). pfcrt Polymorphism and the Spread of Chloroquine Resistance in Plasmodium falciparum Populations across the Amazon Basin. J. Infect. Dis., 190, 417–424.

    Google Scholar 

  • Volkman, S. and Wirth, D. (1998). Functional analysis of pfmdr1 gene of Plasmodium falciparum. Methods Enzymol., 292, 174–181.

    Article  Google Scholar 

  • Walker, O., Dawodu, A.H., Adeyokunnu, A.A. et al. (1983). Plasma chloroquine and desethylchloroquine concentrations in children during and after chloroquine treatment for malaria. Br. J. Clin. Pharmacol., 16, 701–705.

    Google Scholar 

  • Wang, P., Lee, C.S., Bayoumi, R. et al. (1997). Resistance to antifolates in Plasmodium falciparum monitored by sequence analysis of dihydropteroate synthetase and dihydrofolate reductase alleles in a large number of field samples of diverse origins. Mol. Biochem. Parasitol., 89, 161–177.

    Google Scholar 

  • Wang, P., Read, M., Sims, P.F. et al. (1997). Sulfadoxine resistance in the human malaria parasite Plasmodium falciparum is determined by mutations in dihydropteroate synthetase and an additional factor associated with folate utilization. Mol. Microbiol., 23, 979–986.

    Google Scholar 

  • Wang, P., Wang, Q., Aspinall, T.V. et al. (2004). Transfection studies to explore essential folate metabolism and antifolate drug synergy in the human malaria parasite Plasmodium falciparum. Mol. Microbiol., 51, 1425–1438.

    Google Scholar 

  • Wanwimolruk, S., Bhawan, S., Coville, P.F. et al. (1998). Genetic polymorphism of debrisoquine (CYP2D6) and proguanil (CYP2C19) in South Pacific Polynesian populations. Eur. J. Clin. Pharmacol., 54, 431–435.

    Google Scholar 

  • Wanwimolruk, S., Pratt, E.L., Denton, J.R. et al. (1995). Evidence for the polymorphic oxidation of debrisoquine and proguanil in a New Zealand Maori population. Pharmacogenetics, 5, 193–198.

    Google Scholar 

  • Wanwimolruk, S., Wong, S.M., Zhang, H. et al. (1995). Metabolism of quinine in man: identification of a major metabolite, and effects of smoking and rifampicin pretreatment. J. Pharm. Pharmacol., 47, 957–963.

    Google Scholar 

  • Ward, S.A., Helsby, N.A., Skjelbo, E. et al. (1991). The activation of the biguanide antimalarial proguanil cosegregates with the mephenytoin oxidation polymorphism—a panel study. Br. J. Clin. Pharmacol., 31, 689–692.

    Google Scholar 

  • Watkins, W.M., Mberu, E.K., Nevill, C.G. et al. (1990). Variability in the metabolism of proguanil to the active metabolite cycloguanil in healthy Kenyan adults. Trans. R. Soc. Trop. Med. Hyg., 84, 492–495.

    Google Scholar 

  • Weinshilboum, R. (2003). Inheritance and drug response. N. Engl. J. Med., 348, 529–537.

    Google Scholar 

  • Wellems, T.E. and Plowe, C.V. (2001). Chloroquine-resistant malaria. J. Infect. Dis., 184, 770–776.

    Google Scholar 

  • Wellems, T.E., Walker-Jonah, A., and Panton, L.J. (1991). Genetic mapping of the chloroquine-resistance locus on Plasmodium falciparum chromosome 7. Proc. Natl. Acad. Sci. US., 88, 3382–3386.

    Google Scholar 

  • Wells, P.G., Mackenzie, P.I., Chowdhury, J.R. et al. (2004). Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug. Metab. Dispos., 32, 281–290.

    Google Scholar 

  • Wen, X., Wang, J.S., Backman, J.T. et al. (2002). Trimethoprim and sulfamethoxazole are selective inhibitors of CYP2C8 and CYP2C9, respectively. Drug Metab. Dispos., 30, 631–635.

    Google Scholar 

  • Wernsdorfer, W.H. (1992). The biological and epidemiological basis of drug resistance in malaria parasites. Southeast Asian J. Trop. Med. Public Health, 23, 123–129.

    Google Scholar 

  • Wernsdorfer, W.H. and Noedl, H. (2003). Molecular markers for drug resistance in malaria: Use in treatment, diagnosis and epidemiology. Curr. Opin. Infect. Dis., 16, 553–558.

    Google Scholar 

  • Wernsdorfer, W.H. (1994). Epidemiology of drug resistance in malaria. Acta Trop., 56, 143–156.

    Google Scholar 

  • Wernsdorfer, W.H. and Payne, D. (1991). The dynamics of drug resistance in Plasmodium falciparum. Pharmacol. Ther., 50, 95–121.

    Google Scholar 

  • White, N.J. (1994). Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans. R. Soc. Trop. Med. Hyg., 88, S41–43.

    Google Scholar 

  • White, N.J. (1999). Delaying antimalarial drug resistance with combination chemotherapy. Parassitologia, 41, 301–308.

    Google Scholar 

  • White, N.J. (2003). Malaria. In: G.C. Cook and A. Zumla (eds), Manson’s Tropical Diseases, 21st ed. W.B. Saunders. pp. 1205–1295.[j15]

    Google Scholar 

  • White, N.J. (2004). Antimalarial drug resistance. J. Clin. Invest., 113, 1084–1092.

    Google Scholar 

  • White, N.J. and Olliaro, P. (1998). Artemisinin and derivatives in the treatment of uncomplicated malaria. Med. Trop. (Mars), 58, 54–56.

    Google Scholar 

  • Wichmann, O., Betschart, B., Loscher, T. et al. (2003). Prophylaxis failure due to probable mefloquine resistant P. falciparum from Tanzania. Acta. Trop., 86, 63–65.

    Google Scholar 

  • Wichmann, O., Jelinek, T., Peyerl-Hoffmann, G. et al. (2003). Molecular surveillance of the antifolate-resistant mutation I164L in imported African isolates of Plasmodium falciparum in Europe: Sentinel data from TropNetEurop. Malar. J., 2, 17.

    Google Scholar 

  • Wichmann, O., Muehlen, M., Gruss, H. et al. (2004). Malarone treatment failure not associated with previously described mutations in the cytochrome b gene. Malar. J. 3, 14.

    Google Scholar 

  • Wilairatana, P., Silachamroon, U., Krudsood, S. et al. (1999). Efficacy of primaquine regimens for primaquine-resistant Plasmodium vivax malaria in Thailand. Am. J. Trop. Med. Hyg., 61, 973–977.

    Google Scholar 

  • Wilson, C.M., Volkman, S.K., Thaithong, S. et al. (1993). Amplification of pfmdr1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Mol. Biochem. Parasitol., 57, 151–160.

    Google Scholar 

  • Win, T.T., Lin, K., Mizuno, S. et al. (2002). Wide distribution of Plasmodium ovale in Myanmar. Trop. Med. Int. Health, 7, 231–239.

    Google Scholar 

  • Winstanley, P (2001). Chlorproguanil-dapsone (LAPDAP) for uncomplicated falciparum malaria. Trop. Med. Int. Health, 6, 952–954.

    Google Scholar 

  • Winstanley, P.A. (2000). Chemotherapy for falciparum malaria: The armoury, the problems, and the prospects. Parasitol. Today, 16, 146–153.

    Google Scholar 

  • Winstanley, P.A. and Watkins, W.M. (1992). Pharmacology and parasitology: Integrating experimental methods and approaches to falciparum malaria. Br. J. Clin. Pharmacol., 33, 575–581.

    Google Scholar 

  • Winstanley, P.A., Ward, S.A., and Snow, R.W. (2002). Clinical status and implications of antimalarial drug resistance. Microbes Infect., 4, 157–164.

    Google Scholar 

  • Winter, H.R., Wang, Y., and Unadkat, J.D. (2000). CYP2C8/9 mediate dapsone N-hydroxylation at clinical concentrations of dapsone. Drug Metab. Dispos., 28, 865–868.

    Google Scholar 

  • Wongsrichanalai, C., Nguyen, T.D., Trieu, N.T. et al. (1997). In vitro susceptibility of Plasmodium falciparum isolates in Vietnam to artemisinin derivatives and other antimalarials. Acta Trop., 63, 151–158.

    Google Scholar 

  • Wongsrichanalai, C., Pickard, A.L., Wernsdorfer, W.H. et al. (2002). Epidemiology of drug-resistant malaria. Lancet Infect. Dis., 2, 209–218.

    Google Scholar 

  • Wrighton, S.A., Brian, W.R., Sari, M.A. et al. (1990). Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol. Pharmacol., 38, 207–213.

    Google Scholar 

  • Wu, Y., Kirkman, L.A., and Wellems, T.E. (1996). Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc. Natl. Acad. Sci. USA., 93, 1130–1134.

    Google Scholar 

  • Yang, H., Liu, D., Yang, Y. et al. (2003). Changes in susceptibility of Plasmodium falciparum to artesunate in vitro in Yunnan Province, China. Trans. R. Soc. Trop. Med. Hyg., 97, 226–228.

    Google Scholar 

  • Yusuf, I., Djojosubroto, M.W., Ikawati, R. et al. (2003). Ethnic and geographical distributions of CYP2C19 alleles in the populations of Southeast Asia. Adv. Exp. Med. Biol., 531, 37–46.

    Google Scholar 

  • Yuthavong, Y. (2002). Basis for antifolate action and resistance in malaria. Microbes Infect., 4, 175–182.

    Google Scholar 

  • Zhang, H., Coville, P.F., Walker, R.J. et al. (1997). Evidence for involvement of human CYP3A in the 3-hydroxylation of quinine. Br. J. Clin. Pharmacol., 43, 245–252.

    Google Scholar 

  • Zhang, S.Q., Hai, T.N., Ilett, K.F. et al. (2001). Multiple dose study of interactions between artesunate and artemisinin in healthy volunteers. Br. J. Clin. Pharmacol., 52, 377–385.

    Google Scholar 

  • Zhao, X.J., Yokoyama, H., Chiba, K. et al. (1996). Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human live microsomes and nine recombinant human cytochromes P450. J. Pharmacol. Exp. Ther., 279, 1327–1334.

    Google Scholar 

  • Zolg, J.W., Plitt, J.R., Chen, G.X. et al. (1989). Point mutations in the dihydrofolate reductase-thymidylate synthase gene as the molecular basis for pyrimethamine resistance in Plasmodium falciparum. Mol. Biochem. Parasitol., 36, 253–262.

    Google Scholar 

  • Zuidema, J., Hilbers-Modderman, E.S., and Merkus, F.W. (1986). Clinical pharmacokinetics of dapsone. Clin. Pharmacokinet., 11, 299–315.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Mehlotra, R.K., Zimmerman, P.A. (2006). Resistance to Antimalarial Drugs: Parasite and Host Genetic Factors. In: Malaria: Genetic and Evolutionary Aspects. Emerging Infectious Diseases of the 21st Century. Springer, Boston, MA. https://doi.org/10.1007/0-387-28295-5_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-28295-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28294-7

  • Online ISBN: 978-0-387-28295-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics