Skip to main content

How Cerebral and Cerebellar Plasticities May Cooperate During Arm Reaching Movement Learning: A Neural Network Model

  • Chapter
Motor Control and Learning

Abstract

Learning process results from synaptic plasticities that occur in various sites of the brain. For arm reaching movement, three sites have been particularly studied: the cortico-cortical synapses of the cerebral cortex, the parallel fibre-Purkinje cell synapses of the cerebellar cortex and the cerebello-thalamo-cortical pathway. We intended to understand how these three adaptive processes cooperate for optimal performance. A neural network model was developed based on two main prerequisites: the columnar organisation of the cerebral cortex and the Marr-Albus-Ito theory of cerebellar learning. The adaptive rules incorporated in the model simulate the synaptic plasticities observed at the three sites. The model analytically demonstrates that 1) the adaptive processes that take place in different sites of the cerebral cortex and the cerebellum do not interfere but complement each other during learning of arm reaching movement, and 2) any linear combination of the cerebral motor commands may generate olivary signals able to drive the cerebellar learning processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albus J.A. (1971) A theory of cerebellar function. Math. Biosci. 10: 25–61.

    Article  Google Scholar 

  • Arbib M.A., Érdi P., Szentagothai J. (1988) Neural organization. A Bradford book, Cambridge MA, MIT press.

    Google Scholar 

  • Baraduc P., Guigon E., Burnod Y. (2001) Recoding arm position to learn visuomotor transformations. Cerebral Cortex 11(10): 906–917.

    Article  PubMed  CAS  Google Scholar 

  • Baranyi A., Feher O. (1978) Conditioned changes of synaptic transmission in the motor cortex of the cat. Exp. Brain Res. 33: 283–298.

    Article  PubMed  CAS  Google Scholar 

  • Burnod Y. (1989) An adaptive neural networks: the cerebral cortex, Masson, Paris.

    Google Scholar 

  • Crépel F., Jaillard D. (1991) Pairing of pre-and postsynaptic activities in cerebellar Purkinje cells induce long-term changes in synaptic efficacy. J. Physiol. (London) 432: 123–141.

    PubMed  Google Scholar 

  • Daniel H., Levenes C., Crépel F. (1998) Cellular mechanisms of cerebellar LTD. Trends in Neurosci. 21: 401–407.

    Article  CAS  Google Scholar 

  • De Zeeuw C.I., Simpson J.I., Hoogenraad C.C., Galjart N., Koekkoek S.K.E., Ruigrok T.J.H. (1998) Microcircuitry and function of the inferior olive. Trends in Neurosci. 21: 391–400.

    Article  Google Scholar 

  • Dufossé M., Ito M., Jastreboff P. J., Miyashita Y. (1978) A neuronal correlate in rabbit’s cerebellum to adaptive modification of the vestibulo-ocular reflex. Brain Res. 150: 611–616.

    Article  PubMed  Google Scholar 

  • Dufossé M., Kaladjian A., Grandguillaume P. (1997) Origin of error signals during cerebellar learning of motor sequences. Behav. Brain Sci. 20(2): 249–250.

    Article  Google Scholar 

  • Feldman A.G. (1966) Functional tuning of the nervous structures during control of movement or maintenance of a steady posture: II. Controllable parameters of the muscle. Biophysics 11: 565–578.

    Google Scholar 

  • Flash T., Hogan N. (1985) The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 5(7): 1688–1703.

    PubMed  CAS  Google Scholar 

  • Frolov A.A., Dufossé M., Rizek S., Kaladjian A. (2000) On the possibility of linear modelling the human neuromuscular apparatus. Biol. Cybern. 82(6): 499–515.

    Article  PubMed  CAS  Google Scholar 

  • Frolov A.A., Řízek S. (1995) Model of neurocontrol of redundant systems. J. Comput. Appl. Math. 63: 465–473.

    Article  Google Scholar 

  • Georgopoulos A.P., Caminiti R., Kalaska J.F. (1984) Static spatial effects in motor cortex and area 5: quantitative relations in a two-dimensional space. Exp. Brain Res. 54: 447–454.

    Article  Google Scholar 

  • Gilbert P.F.C., Thach W.T. (1977) Purkinje cell activity during motor learning. Brain Res. 128: 309–328.

    Article  PubMed  CAS  Google Scholar 

  • Gribble P.L., Ostry D.J., Sanguineti V., Laboissiére R. (1998) Are complex control signals required for human arm movement? J Neurophysiol 79:1409–1424.

    PubMed  CAS  Google Scholar 

  • Golub G.H., Van Loan C.F. (1996) Matrix compputations. The John Hopkins University Press. Baltimore and London.

    Google Scholar 

  • Inhoff A.W., Diener H.C., Rafal R.D., Ivry R. (1989) The role of cerebellar structures in the execution of serial movements. Brain 112: 565–581.

    PubMed  Google Scholar 

  • Iriki A., Pavlides C., Keller A., Asanuma H. (1989) Longterm potentation in the motor cortex. Science 245: 1385–1387.

    PubMed  CAS  Google Scholar 

  • Ito M. (1984) The cerebellum and neural control. Raven Press. New York.

    Google Scholar 

  • Ito M., Sakurai M., Tongroach P. (1982) Climbing fibre induce depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol. (Lond.) 324: 113–134.

    PubMed  CAS  Google Scholar 

  • Jordan M.I., Rumelhart D.E. (1992) Forward models: supervised learning with a distal teacher. Cognitive Sci., 16: 307–354.

    Article  Google Scholar 

  • Kawato M. (1999) Internal models and trajectory planning. Curr. Op. Neurobiol. 9(6): 718–727.

    Article  PubMed  CAS  Google Scholar 

  • Kawato M., Furukawa K., Suzuki R. (1987) A hierarchical neural-network model for control and learning of voluntary movement. Biol. Cybern. 57: 169–185.

    Article  PubMed  CAS  Google Scholar 

  • Kawato M., Maeda Y., Uno Y., Suzuki R. (1990) Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion. Biol. Cybern. 62: 275–288.

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa S., Kimura T., Yin P.B. (1988) Cerebellar complex spikes encode both destinations and errors in arm movements. Nature 392: 494–497.

    Article  Google Scholar 

  • Klein C., Huang C.H. (1983) Review of pseudo-inverse control for kinematically redundant manipulators. IEEE Trans. SMC-13: 245–250.

    Google Scholar 

  • Kuperstein M. (1988) Neural model for adaptive hand-eye coordination for single postures. Science, 239:1308–1311.

    PubMed  CAS  Google Scholar 

  • Leiner H.C., Leiner A.L., Dow R.S. (1986) Does the cerebellum contribute to mental skills? Behav. Neurosci. 100: 443–454.

    Article  PubMed  CAS  Google Scholar 

  • Mano N.L., Kanazawa I., Yamamoto K.I. (1986) Complex-spike activity of cellular Purkinje cells related to wrist tracking movement in monkey. J. Neurophysiol 56: 137–158

    PubMed  CAS  Google Scholar 

  • Marr D. (1969) A theory of cerebellar cortex. J. Physiol. (London) 202: 437–470.

    PubMed  CAS  Google Scholar 

  • Meftah E.M., Rispal-Padel L. (1992) Synaptic plasticity in the thalamo-cortical pathway as one of the neurophysiological correlates of forelimb flexion conditioning: electrophysiological investication in the cat. J. Neurophysiol. 68: 908–926.

    PubMed  Google Scholar 

  • Nakano E., Imamizu H., Osu R., Uno Y., Gomi H., Yoshioka T., Kawato M. (1999) Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J. Neurophysiol. 81: 2140–2155.

    PubMed  CAS  Google Scholar 

  • Oyama E., MacDorman K.F., Agah A., Maedo T., Tachi S. (2001) Coordination transformation learning of hand position feedback controller with time delay. Neurocomputing, 38–40: 1503–1509.

    Article  Google Scholar 

  • Pananceau M., Rispal-Padel L., Meftah E.M. (1996) Synaptic plasticity in the interpositorubral pathway functionally related to forelimb flexion movements. J. Neurophysiol. 75: 2542–2561.

    PubMed  CAS  Google Scholar 

  • Saint-Cyr J.A., Courville J. (1980) Projections from the motor cortex, midbrain and vestibular nuclei to the inferior olive in tha cat: anatomical organization and functional correlates. In: The inferior olivary nucleus (pp 97–124). J. Courville, C. deMontigny and Y. Lamarre (Eds). Raven press, New York.

    Google Scholar 

  • Schweighofer N., Arbib M.A., Kawato M. (1998) Role of cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Europ. J. Neurosci. 10: 95–105.

    Article  CAS  Google Scholar 

  • Uno Y., Kawato M., Suzuki R. (1989) Formation and control of optimal trajectory in human multijoint arm movement. Biol. Cybern. 61: 89–101.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert D.M., Miall R.C., Kawato M. (1998) Internal models in the cerebellum. Trends in Cogn. Sci. 2(9): 338–347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Frolov, A.A., Dufossé, M. (2006). How Cerebral and Cerebellar Plasticities May Cooperate During Arm Reaching Movement Learning: A Neural Network Model. In: Latash, M.L., Lestienne, F. (eds) Motor Control and Learning. Springer, Boston, MA. https://doi.org/10.1007/0-387-28287-4_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-28287-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25390-9

  • Online ISBN: 978-0-387-28287-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics