Skip to main content

Behavior of Animals with Passive, Low-Frequency Electrosensory Systems

  • Chapter
Electroreception

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 21))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andres KH, von Düring M, Iggo A, Proske U (1991) The anatomy and fine structure of the echidna Tachyglossus aculeatus snout with respect to its different trigeminal sensory receptors including the electroreceptors. Anat Embryol 184:371–393.

    Article  PubMed  CAS  Google Scholar 

  • Asano M, Hanyu I (1987) Sensitivity to electricity in the catfish, Parasilurus asotus. Comp Biochem Physiol 86A:485–489.

    Google Scholar 

  • Baranyuk GV (1979) Differential sensitivity of the brown bullhead Ictalurus nebulosus to intensity and frequency of an electric field. Fiziologicheskii Zhurnal Sssr Imeni I M Sechenova 65:826–829.

    Google Scholar 

  • Basov BM (1999) Behavior of sterlet Acipenser ruthenus and Russion sturgeon A. gueldenstaedtii in low-frequency electric fields. J Ichthyol 39:782–787.

    Google Scholar 

  • Bass AH (1986) Electric organs revisited. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 13–70.

    Google Scholar 

  • Bennett MVL (1970) Comparative physiology: electric organs. Annu Rev Physiol 32: 471–528.

    Article  PubMed  CAS  Google Scholar 

  • Bodznick D, Boord RL (1986) Electroreception in chondrichthyes. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 225–256.

    Google Scholar 

  • Bodznick D, Preston DG (1983) Physiological characterization of electroreceptors in the lampreys Ichthyomyzon unicupsis and Petromyzon marinus. J Comp Physiol 152:209–217.

    Article  Google Scholar 

  • Bogorov VG, Demenitskaya RM, Gorodnitskiy AM, Kazanskiy MM et al. (1969) Character and causes of the vertical variation of the natural electric field in the ocean. Oceanology 9:622–626.

    Google Scholar 

  • Bratton BO, Ayers JL (1987) Observations on the electric organ discharge of two skate species (Chondrichthyes: Rajidae) and its relationship to behavior. Environm Biol Fishes 20:241–254.

    Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46.

    Article  Google Scholar 

  • Burr HS, Northrop FSC (1939) Evidence for the existence of an electro-dynamic field in living organisms. Proc Natl Acad Sci USA 25:284–288.

    Article  PubMed  CAS  Google Scholar 

  • Claas B, Fritzsch B, Münz H (1982) Electrosensitivity in the lateral line system of urodele amphibians. Neurosci Lett (Suppl) 10:115–116.

    Google Scholar 

  • Coggi A (1905) Le ampolle di Lorenzini nei Gimnofioni. Monit Zool Ital 16:49–56.

    Google Scholar 

  • Dijkgraaf S (1968) Electroreception in the catfish, Amiurus nebulosus. Experientia 24: 187.

    Article  PubMed  CAS  Google Scholar 

  • Dijkgraaf S, Kalmijn AJ (1962) Verhaltensversuche zur Funktion der Lorenzinischen Ampullen. Naturwissenschaften 49:400.

    Article  Google Scholar 

  • Drewes CD, Callahan CA, Fender WM (1983) Species specificity of giant nerve fiber conduction velocity in oligochaetes. Can J Zool 12:2688–2694.

    Article  Google Scholar 

  • Fahrenholz C (1929) Über die “Drüsen” und die Sinnesorgane in der Haut des Lungenfisches. Z Mikr-Anat Forsch 16:55–74.

    Google Scholar 

  • Fields RD, Bullock TH, Lange, GD (1993) Ampullary sense organs, peripheral, central and behavioral electroreception in chimeras (Hydrolagus, Holocephali, Chondrichthyes). Brain Behav Evol 41:269–289.

    PubMed  CAS  Google Scholar 

  • Fischer JH, Freake MJ, Borland SC, Phillips JC (2001) Evidence for the use of magnetic map information by an amphibian. Anim Behav 62:1–10.

    Article  Google Scholar 

  • Fritzsch B (1981a) The pattern of lateral-line afferents in Urodeles. A horseradishperoxidase study. Cell Tissue Res 218:581–594.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B (1981b) Electroreceptors and direction specific arrangements in the lateralline system of salamanders? Z Naturforsch 36C:493–495.

    Google Scholar 

  • Fritzsch B, Wahnschaffe U (1983) The electroreceptive ampullary organs of urodeles. Cell Tissue Res 229:483–503.

    Article  PubMed  CAS  Google Scholar 

  • Gregory JE, Iggo A, McIntyre AK, Proske U (1989) Responses of electroreceptors in the snout of the echidna. J Physiol 414:521–538.

    PubMed  CAS  Google Scholar 

  • Gurgens C, Russell DF, Wilkens LA (2000) Electrosensory avoidance of metal obstacles by the paddlefish. J Fish Biol 57:277–290.

    Article  Google Scholar 

  • Haine OS, Ridd PV, Rowe RJ (2001) Range of electrosensory detection of prey by Carcharhinus melanopterus and Himantura granulata. Mar Freshwater Res 52:291–296.

    Article  Google Scholar 

  • Hetherington TE, Wake MH (1979) The lateral-line system in larval Ichthyophis (Amphibia: Gymnophiona). Zoomorphology 93:209–225.

    Article  Google Scholar 

  • Himstedt W, Fritzsch B (1990) Behavioural evidence for electroreception in larvae of the caecilian Ichthyophis kohtaoensis (Amphibia, Gymnophiona). Zool Jb Physiol 94: 486–492.

    Google Scholar 

  • Himstedt W, Kopp J, Schmidt W (1982) Electroreception guides feeding behavior in amphibians. Naturwissenschaften 69:552–553.

    Article  Google Scholar 

  • Hodson RB (2000) Magnetoreception in the short-tailed stingray, Dasyatis brevicaudata. MSc thesis, University of Aukland, New Zealand.

    Google Scholar 

  • Ikeya M, Matsuda T, Yamanaka C (1998) Reproduction of mimosa and clock anomalies before earthquakes: are they “Alice in Wonderland” syndrome? Proc Jpn Acad Ser B 74:60–64.

    Google Scholar 

  • Irwin WP, Lohmann, KJ (2003) Magnet-induced disorientation in hatchling loggerhead sea turtles. J Exp Biol 206:497–501.

    Article  PubMed  Google Scholar 

  • Istenic L, Bulog B (1984) Some evidence for the ampullary organs in the European cave salamander Proteus anguineus (Urodela Amphibia). Cell Tissue Res 235:393–402.

    PubMed  CAS  Google Scholar 

  • Johnson CS, Scronce BL, McManus MW (1984) Detection of DC electric dipoles in background fields by the nurse shark. J Comp Physiol A 155:681–687.

    Article  Google Scholar 

  • Jørgensen JM, Flock A, Wersall J (1972) The Lorenzinian ampullae of Polyodon spathula. Z Zellforsch 130:362–377.

    Article  PubMed  Google Scholar 

  • Kajiura SM, Holland KN (2002) Electroreception in juvenile scalloped hammerhead and sandbar sharks. J Exp Biol 205:3609–3621.

    PubMed  Google Scholar 

  • Kalmijn AJ (1966) Electro-perception in sharks and rays. Nature 212:1232–1233.

    Article  Google Scholar 

  • Kalmijn AJ (1971) The electric sense of sharks and rays. J Exp Biol 55:371–383.

    PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1972) Bioelectric fields in the sea water and the function of the ampullae of Lorenzini in elasmobranch fishes. Scripps Inst Oceanogr Ref Ser 72–83:1–21.

    Google Scholar 

  • Kalmijn AJ (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A (ed), Handbook of Sensory Physiology, Vol. III/3. New York: Springer-Verlag, pp. 147–200.

    Google Scholar 

  • Kalmijn AJ (1978) Experimental evidence of geomagnetic orientation in elasmobranch fishes. In: Schmidt-Koenig K, Keeton WT (eds), Animal Migration, Navigation, and Homing. Berlin: Springer-Verlag, pp. 347–353.

    Google Scholar 

  • Kalmijn AJ (1982) Electric and magnetic field detection in elasmobranch fishes. Science 218:916–918.

    PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1988) Detection of weak electric fields. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds), Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 151–186.

    Google Scholar 

  • Kalmijn AJ, Kolba CA, Kalmijn V (1976a) Orientation of catfish (Ictalurus nebulosus) in strictly uniform electric fields: I. Sensitivity of response. Biol Bull 151:415.

    Google Scholar 

  • Kalmijn V, Kolba CA, Kalmijn AJ (1976b) Orientation of catfish (Ictalurus nebulosus) in strictly uniform electric fields: II. Spatial discrimination. Biol Bull 151:415.

    Google Scholar 

  • Kleerekoper H, Sibakin K. (1956a) Spike potentials produced by the sea lamprey (Petromyzon marinus) in the water surrounding the head region. Nature (Lond) 178:490–491.

    Article  Google Scholar 

  • Kleerekoper H, Sibakin K (1956b) An investigation of the electrical “spike” potentials produced by the sea lamprey (Petromyzon marinus) in the water surrounding the head region. J Fish Res Bd Can 13:375–383.

    Google Scholar 

  • Kleerekoper H, Sibakin K (1957) An investigation of the electrical “spike” potentials produced by the sea lamprey (Petromyzon marinus) in the water surrounding the head region. II. J Fish Res Bd Can 14:145–151.

    Google Scholar 

  • Klimley AP (1993) Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geological field. Mar Biol 117:1–22.

    Article  Google Scholar 

  • Knudtson BK, Stimers JR (1977) Notes on the behavior of elasmobranch fishes exposed to magnetic fields. Bull S Calif Acad Sci 76:202–204.

    Google Scholar 

  • Krajew AP (1957) Grundlagen der Geoelektrik. Berlin: VEB Verlag Technik.

    Google Scholar 

  • Krubitzer L, Manger PR, Pettigrew JD, Calford MB (1995) Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J Comp Neurol 352: 261–306.

    Article  Google Scholar 

  • Ladich F, Popper AN (2004) Parallel evolution in fish hearing organs. In: Manley GA, Popper AN, Fay RR (eds), Evolution of the Vertebrate Auditory System. New York: Springer-Verlag, pp. 95–127.

    Google Scholar 

  • Lissmann HW, Machin KE (1963) Electric receptors in a non-electric fish (Clarias). Nature 199:88–89.

    Article  PubMed  CAS  Google Scholar 

  • Manger PR, Pettigrew JD (1995) Electroreception and the feeding behaviour of the platypus (Ornithorhyncus anatinus: Monotremata: Mammalia). Philos Trans R Soc Lond B 347:359–381.

    Google Scholar 

  • Manger PR, Collins R, Pettigrew JD (1997) Histological observations on presumed electroreceptors and mechanoreceptors in the beak skin of the long-beaked echidna, Zaglossus bruijnii. Proc R Soc Lond B 264:165–172.

    Article  Google Scholar 

  • Münz H, Claas B, Fritzsch B (1982) Electrophysiological evidence of electroreception in the axolotl Siredon mexicanum. Neurosci Lett 28:107–111.

    Article  PubMed  Google Scholar 

  • Münz H, Claas B, Fritzsch B (1984) Electroreceptive and mechanoreceptive units in the lateral line of the axolotl Ambystoma mexicanum. J Comp Physiol 154:33–44.

    Article  Google Scholar 

  • Murray RW (1962) The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation. J Exp Biol 39:119–128.

    PubMed  CAS  Google Scholar 

  • Nachtrieb HF (1910) The primitive pores of Polyodon spathula (Walbaum). J Exp Zool 9:455–468.

    Article  Google Scholar 

  • New JG (1994) Electric organ discharge and electrosensory reafference in skates. Biol Bull 187:64–75.

    PubMed  CAS  Google Scholar 

  • Northcutt RG (1980) Anatomical evidence of electroreception in the coelacanth (Latimeria chalumnae). Zbl Vet Med C Anat Histol Embryol 9:289–295.

    CAS  Google Scholar 

  • Northcutt RG (1986) Electroreception in nonteleost bony fishes. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 257–285.

    Google Scholar 

  • Pals N, Schoenhage AAC (1979) Marine electric fields and fish orientation. J Physiol (Paris) 75:349–353.

    CAS  Google Scholar 

  • Pals N, Peters RC, Schoenhage AAC (1982a) Local geoelectric fields at the bottom of the sea and their relevance for electrosensitive fish. Neth J Zool 32:479–494.

    Google Scholar 

  • Pals N, Valentijn P, Verwey D (1982b) Orientation reactions of the dogfish, Scyliorhinus canicula, to local electric fields. Neth J Zool 32:495–512.

    Article  Google Scholar 

  • Parker GH, van Heusen AP (1917) The responses of the catfish, Amiurus nebulosus, to metallic and non-metallic rods. Am J Physiol 44:405–420.

    Google Scholar 

  • Paulin MG (1995) Electroreception and the compass sense of sharks. J Theor Biol 174: 325–339.

    Article  Google Scholar 

  • Peters RC, Bretschneider F (1972) Electric phenomena in the habitat of the catfish Ictalurus nebulosus LeS. J Comp Physiol 81:345–362.

    Article  Google Scholar 

  • Peters RC, Meek J (1973) Catfish and electric fields. Experientia 29:299–300.

    Article  Google Scholar 

  • Peters RC, van Wijland F (1974) Electro-orientation in the passive electric catfish, Ictalurus nebulosus LeS. J Comp Physiol 92:273–280.

    Article  Google Scholar 

  • Peters RC, Loos WJG, Bretschneider F, Baretta AB (1999) Electroreception in catfish: patterns from motion. Belg J Zool 129:263–268.

    Google Scholar 

  • Pettigrew JD (1999) Electroreception in monotremes. J Exp Biol 202:1447–1454.

    PubMed  CAS  Google Scholar 

  • Pettigrew JD, Wilkens L (2003) Paddlefish and platypus: parallel evolution of passive electroreception in a rostral bill organ. In: Collin SP, Marshall NJ (eds), Sensory Processing in Aquatic Environments. New York: Springer-Verlag, pp. 420–433.

    Google Scholar 

  • Pettigrew JD, Manger PR, Fine SLB (1998) The sensory world of the platypus. Philos Trans R Soc Lond B 353:1199–1210.

    Article  CAS  Google Scholar 

  • Pfeiffer W (1968) Die Fahrenholzschen Organe der Dipnoi und Brachiopterygii. Z Zellforsch 90:127–147.

    Article  PubMed  CAS  Google Scholar 

  • Phillips JB (1986) Magnetic compass orientation in the eastern red-spotted newt (Notophthalmus viridescens). J Comp Physiol A 158:103–109.

    Article  PubMed  CAS  Google Scholar 

  • Ronan M (1986) Electroreception in cyclostomes. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 209–224.

    Google Scholar 

  • Ronan M (1988) Anatomical and physiological evidence for electroreception in larval lampreys. Brain Res 448:173–177.

    Article  PubMed  CAS  Google Scholar 

  • Ronan M, Northcutt RG (1987) Primary lateral line projections in adult lampreys. Brain Behav Evol 30:62–81.

    PubMed  CAS  Google Scholar 

  • Roth A (1969) Elektrische Sinnesorgane beim Zwergwels Ictalurus nebulosus (Amiurus nebulosus). Z Vergl Physiol 65:368–388.

    Article  Google Scholar 

  • Roth A (1972) Wozu dienen die Elektrorezeptoren der Welse? J Comp Physiol 79:113–135.

    Article  Google Scholar 

  • Roth A (1973) Electroreceptors in Brachiopterygii and Dipnoi. Naturwissenschaften 60: 106.

    Article  PubMed  CAS  Google Scholar 

  • Roth A, Schlegel P (1988) Behavioral evidence and supporting electrophysiological observations for electroreception in the blind cave salamander, Proteus anguinus (Urodela). Brain Behav Evol 32:277–280.

    PubMed  CAS  Google Scholar 

  • Schlegel P (1997) Behavioral sensitivity of the European blind cave salamander, Proteus anguinus, and a Pyrenean newt, Euproctus asper, to electrical fields in water. Brain Behav Evol 49:121–131

    PubMed  CAS  Google Scholar 

  • Schlegel P, Bulog B (1997) Population-specific behavioral electrosensitivity of the European blind cave salamander, Proteus anguinus. J Physiol (Paris) 91:75–79.

    Article  CAS  Google Scholar 

  • Sisneros JA, Tricas TC, Luer CA (1998) Response properties and biological function of the skate electrosensory system during ontogeny. J Comp Physiol A 183:87–99.

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG, Manger PR, Pettigrew JD, Hall LS (1992) Electromyographic potentials of a variety of Platypus prey items: an amplitude and frequency analysis. In: Augee ML (ed), Platypus and Echidna. Sydney: The Royal Zoological Society of NSW. pp. 216–224.

    Google Scholar 

  • Tricas TC (1982) Bioelectric-mediated predation by swell sharks, Cephaloscyllium ventriosum. Copeia 1982:948–952.

    Article  Google Scholar 

  • Tricas TC (2001) The neuroecology of the elasmobranch electrosensory world: why peripheral morphology shapes behavior. Environ Biol Fish 60:77–92

    Article  Google Scholar 

  • Tricas TC, McCosker JE (1984) Predatory behavior of the white shark (Carcharodon carcharias), with notes on its biology. Proc Calif Acad Sci 43:221–238.

    Google Scholar 

  • Tricas TC, New JG (1998) Sensitivity and response dynamics of elasmobranch electrosensory primary afferent neurons to near threshold fields. J Comp Physiol A 182:89–101.

    Article  PubMed  CAS  Google Scholar 

  • Tricas TC, Michael SW, Sisneros JA (1995) Electrosensory optimization to conspecifics phasic signals for mating. Neurosci Lett 202:129–132.

    Article  PubMed  CAS  Google Scholar 

  • Uzuka K (1934) Some notes of the behavior of the catfish, Parasilurus asotus, as seen through the responses to weak electric current. Sci Rep Tohoku Imp Univ Ser 4 8: 369–381.

    Google Scholar 

  • Walker MM, Diebel CE, Haugh CV, Pankhurst PM, Montgomery JC (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376.

    Article  CAS  PubMed  Google Scholar 

  • Walker MM, Diebel CE, Kirschvink JL (2003) Detection and use of the earth’s magnetic field by aquatic vertebrates. In: Collin SP, Marshall NJ (eds) Sensory Processing in Aquatic Environments. New York: Springer-Verlag, pp. 53–74.

    Google Scholar 

  • Watt M, Evans CS, Joss JMP (1999) Use of electroreception during foraging by the Australian lungfish. Anim Behav 58:1039–1045.

    Article  PubMed  Google Scholar 

  • Westby GWM (1988) The ecology discharge diversity and predatory behavior of gymnotiform electric fish in the coastal streams of French Guiana. Behav Ecol Sociobiol 22:341–354.

    Google Scholar 

  • Wilkens LA, Russell DF, Pei X, Gurgens C (1997) The paddlefish rostrum functions as an electrosensory antenna in plankton feeding. Proc R Soc Lond B 264:1723–1729.

    Article  Google Scholar 

  • Wilkens LA, Wettring BA, Wagner E, Wojtenek W, Russel DF (2001) Prey detection in selective plankton feeding by the paddlefish: is the electric sense sufficient? J Exp Biol 204:1381–1389.

    PubMed  CAS  Google Scholar 

  • Wojtenek W, Pei X, Wilkens LA (2001a) Paddlefish strike at artificial dipoles simulating the weak electric fields of planktonic prey. J Exp Biol 204:1391–1399.

    PubMed  CAS  Google Scholar 

  • Wojtenek W, Hofmann, MH, Wilkens LA (2001b) Primary afferent electrosensory neurons represent paddlefish natural prey. Neurocomputing 38:451–458.

    Article  Google Scholar 

  • Zakon HH (1986) The electroreceptive periphery. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 103–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Wilkens, L.A., Hofmann, M.H. (2005). Behavior of Animals with Passive, Low-Frequency Electrosensory Systems. In: Bullock, T.H., Hopkins, C.D., Popper, A.N., Fay, R.R. (eds) Electroreception. Springer Handbook of Auditory Research, vol 21. Springer, New York, NY . https://doi.org/10.1007/0-387-28275-0_9

Download citation

Publish with us

Policies and ethics