Skip to main content

Central Neuroanatomy of Electrosensory Systems in Fish

  • Chapter
Electroreception

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 21))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baron VD, Orlov AA, Golubtsov AS (1994) African Clarias catfish elicits long-lasting weak electric pulses. Experientia 50:644–647.

    Article  Google Scholar 

  • Bass AH, Hopkins CH (1982) Comparative aspects of brain organization of an African “wave” electric fish, Gymnarchus niloticus. J Morphol 174:313–334.

    Article  Google Scholar 

  • Bastian J (1975) Receptive fields of cerebellar cells receiving exteroceptive input in a gymnotid fish. J Neurophysiol 38:285–300.

    PubMed  CAS  Google Scholar 

  • Bastian J (1986) Gain control in the electrosensory system mediated by descending inputs to the electrosensory lateral line lobe. J Neurosci 6:553–562.

    PubMed  CAS  Google Scholar 

  • Bastian J (1995) Pyramidal-cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs. J Comp Physiol A 176:63–78.

    Article  PubMed  CAS  Google Scholar 

  • Bastian J, Courtright J (1991) Morphological correlates of pyramidal cell adaptation rate in the electrosensory lateral line lobe of weakly electric fish. J Comp Physiol A 168:393–407.

    Article  PubMed  CAS  Google Scholar 

  • Bastian J, Courtright J, Crawford J (1993) Commissural neurons of the electrosensory lateral line lobe of Apteronotus leptorhynchus: morphological and physiological characteristics. J Comp Physiol A 173:257–274.

    Article  PubMed  CAS  Google Scholar 

  • Bastian J, Schniederjan S, Nguyenkim J (2001) Arginine vasotocin modulates a sexually dimorphic communication behavior in the weakly electric fish Apteronotus leptorhynchus. J Exp Biol 204:1909–1923.

    PubMed  CAS  Google Scholar 

  • Bastian J, Chacron MJ, Maler L (2002) Receptive field organization determines pyramidal cell stimulus-encoding capability and spatial stimulus selectivity. J Neurosci 22:4577–4590.

    PubMed  CAS  Google Scholar 

  • Behrend K, Donicht M (1990) Descending connections from the brainstem to the spinal cord in the electric fish Eigenmannia. Brain Behav Evol 35:227–239.

    PubMed  CAS  Google Scholar 

  • Bell CC (1981) Some central connections of medullary octavolateral centers in a mormyrid fish. In: Fay RR, Popper AN, Tavolga WN (eds), Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 383–392.

    Google Scholar 

  • Bell CC (1982) Properties of a modifiable efference copy in an electric fish. J Neurophysiol 47:1043–1056.

    PubMed  CAS  Google Scholar 

  • Bell CC (1986) Electroreception in mormyrid fish: central physiology. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 423–452.

    Google Scholar 

  • Bell CC (1990) Mormyromast electroreceptor organs and their afferents in mormyrid electric fish: III. Physiological differences between two morphological types of fibers. J Neurophysiol 63:319–332.

    PubMed  CAS  Google Scholar 

  • Bell CC (2002) Evolution of cerebellum-like structures. Brain Behav Evol 59:312–326.

    Article  PubMed  Google Scholar 

  • Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish. J Neurosci 9:1029–1044.

    PubMed  CAS  Google Scholar 

  • Bell CC, Szabo T (1986) Electroreception in mormyrid fish: central anatomy. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 375–421.

    Google Scholar 

  • Bell CC, von der Emde G (1995) Electric organ corollary discharge pathways in mormyrid fish: II. The medial juxtalobar nucleus. J Comp Physiol A 177:463–479.

    Google Scholar 

  • Bell CC, Finger TE, Russell CJ (1981) Central connections of the posterior lateral line lobe in mormyrid fish. Exp Brain Res 42:9–22.

    Article  PubMed  CAS  Google Scholar 

  • Bell CC, Libouban S, Szabo T (1983) Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. J Comp Neurol 216:327–338.

    Article  PubMed  CAS  Google Scholar 

  • Bell CC, Zakon H, Finger TE (1989) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish: I. Morphology. J Comp Neurol 286:391–407.

    Article  PubMed  CAS  Google Scholar 

  • Bell CC, Grant K, Serrier J (1992) Sensory processing and corollary discharge effects in the mormyromast regions of the mormyrid electrosensory lobe: I. Field potentials and cellular activity in associated structures. J Neurophysiol 68:843–858.

    PubMed  CAS  Google Scholar 

  • Bell C, Dunn K, Hall C, Caputi A (1995) Electric organ corollary discharge pathways in mormyrid fish: I. The mesencephalic command associated nucleus. J Comp Physiol A 177:449–462.

    Article  Google Scholar 

  • Bell C, Bodznick D, Montgomery J, Bastian J (1997a) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50:17–31.

    PubMed  Google Scholar 

  • Bell CC, Caputi A, Grant K (1997b) Physiology and plasticity of morphologically identified cells in the mormyrid electrosensory lobe. J Neurosci 17:6409–6422.

    PubMed  CAS  Google Scholar 

  • Bennett MVL (1971) Electric organs. In: Hoar WS, Randall DJ (eds), Fish Physiology. New York: Academic Press, pp. 347–491.

    Google Scholar 

  • Berman NJ, Maler L (1999) Neural architecture of the electrosensory lateral line lobe: adaptations for coincidence detection, a sensory searchlight and frequency-dependent adaptive filtering. J Exp Biol 202:1243–1253.

    PubMed  Google Scholar 

  • Berman NJ, Hincke MT, Maler L (1995) Inositol 1,4,5-trisphosphate receptor localization in the brain of a weakly electric fish (Apteronotus leptorhynchus) with emphasis on the electrosensory system. J Comp Neurol 361:512–524.

    Article  PubMed  CAS  Google Scholar 

  • Berman NJ, Plant J, Turner R, Maler L (1997) Excitatory amino acid transmission at a feedback pathway in the electrosensory system. J Neurophysiol 78:1869–1881.

    PubMed  CAS  Google Scholar 

  • Bodznick D (1993) The specificity of an adaptive filter that suppresses unwanted reafference in electrosensory neurons of the skate medulla. Biol Bull 185:312–314.

    Google Scholar 

  • Bodznick D, Boord RL (1986) Electroreception in Chondrichthyes: central Anatomy and Physiology. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 225–256.

    Google Scholar 

  • Bodznick D, Northcutt RG (1984) An electrosensory area in the telencephalon of the little skate, Raja erinacea. Brain Res 298:117–124.

    Article  PubMed  CAS  Google Scholar 

  • Boord RL, Northcutt RG (1982) Ascending lateral line pathways to the midbrain of the clearnose skate, Raja eglanteria. J Comp Neurol 207:274–282.

    Article  PubMed  CAS  Google Scholar 

  • Braford MR (1986) African knife fishes: the Xenomystines. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 453–464.

    Google Scholar 

  • Braford MR (1995) Comparative aspects of forebrain organization in the ray-finned fishes: touchstone or not? Brain, Behav Evol 46:259–274.

    Google Scholar 

  • Braford MR, McCormick CA (1992) Brain organization in teleost fish: lessons from the electrosense. J Comp Physiol A 173:704–708.

    Google Scholar 

  • Bratton B, Bastian J (1990) Descending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe. J Neurosci 10:1241–1253.

    PubMed  CAS  Google Scholar 

  • Bullock TH, Heiligenberg W (1986) Electroreception. New York: John Wiley & Sons.

    Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46.

    Article  Google Scholar 

  • Caputi AA, Aguilera PA, Castello ME (2002) Probability and amplitude of novelty responses as a function of the change in contrast of the reafferent image in G. carapo. J Exp Biol 206:999–1010.

    Article  Google Scholar 

  • Carlson BA (2002) Neuroanatomy of the mormyrid electromotor control system. J Comp Neurol 454:440–455.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE (1986) Time coding in electric fish and barn owls. Brain Behav Evol 28:122–133.

    PubMed  CAS  Google Scholar 

  • Carr CE, Maler L (1981) Laminar organization of the afferent and efferent systems of the torus semicircularis of gymnotiform fish: morphological substrates for parallel processing in the electrosensory system. J Comp Neurol 203:649–670.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Maler L (1985) A Golgi study of the cell types of the dorsal torus semicircularis of the electric fish Eigenmannia: functional and morphological diversity in the midbrain. J Comp Neurol 235:207–240.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Maler L (1986) Electroreception in gymnotiform fish: central anatomy and physiology. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 319–374.

    Google Scholar 

  • Carr CE, Maler L, Sas E (1982) Peripheral organization and central projections of the electrosensory organs in gymnotiform fish. J Comp Neurol 211:139–153.

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Maler L, Taylor B (1986) A time-comparison circuit in the electric fish midbrain. II. Functional morphology. J Neurosci 6:1372–1383.

    PubMed  CAS  Google Scholar 

  • Castello ME, Caputi A, Trujillo-Cenoz O (1998) Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo. J Comp Neurol 401:549–563.

    Article  PubMed  CAS  Google Scholar 

  • Chacron MJ, Doiron B, Maler L, Longtin A, Bastian J (2003) Non-classical receptive field mediates switch in a sensory neuron’s frequency tuning. Nature 423:77–81.

    Article  PubMed  CAS  Google Scholar 

  • Correa SA, Zupanc GK (2002) Connections between the central posterior/prepacemaker nucleus and hypothalamic areas in the weakly electric fish Apteronotus leptorhynchus: evidence for an indirect, but not a direct, link. J Comp Neurol 442:348–364.

    Article  PubMed  Google Scholar 

  • Crick F (1984) Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci USA 81:4586–5490.

    Article  PubMed  CAS  Google Scholar 

  • Doiron B, Chacron MJ, Maler L, Longtin A, Bastian J (2003) Inhibitory feedback required for network oscillatory responses to communication but not prey stimuli. Nature 421:539–543.

    Article  PubMed  CAS  Google Scholar 

  • Dulka JG, Maler L, Ellis W (1995) Androgen-induced changes in electrocommunicatory behavior are correlated with changes in substance P-like immunoreactivity in the brain of the electric fish Apteronotus leptorhynchus. J Neurosci 15:1879–1890.

    PubMed  CAS  Google Scholar 

  • Duman CH, Bodznick D (1996) A role for GABAergic inhibition in electrosensory processing and common mode rejection in the dorsal nucleus of the little skate, Raja erinacea. J Comp Physiol A 179:797–807.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap KD, Larkins-Ford J (2003) Diversity in the structure of electrocommunication signals within a genus of electric fish. J Comp Physiol A 189:153–161.

    CAS  Google Scholar 

  • Finger TE (1986) Electroreception in catfish: behavior, Anatomy, and electrophysiology. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 287–318.

    Google Scholar 

  • Finger TE, Bell CC, Russell CJ (1981) Electrosensory pathways to the valvula cerebelli in mormyrid fish. Exp Brain Res 42:23–33.

    Article  PubMed  CAS  Google Scholar 

  • Friedman MA, Hopkins CD (1998) Neural substrates for species recognition in the time-coding electrosensory pathway of mormyrid electric fish. J Neurosci 18:1171–1185.

    PubMed  CAS  Google Scholar 

  • Grant K, Clausse S, Libouban S, Szabo T (1989) Serotinergic neurons in the mormyrid brain and their projection to the preelectromotor and primary electrosensory centers: immunohistochemical study. J Comp Neurol 281:114–128.

    Article  PubMed  CAS  Google Scholar 

  • Grant K, Meek J, Sugawara Y, Veron M, Denizot JP, Hafmans J, Serrier J, Szabo T (1996) Projection neurons of the mormyrid electrosensory lateral line lobe: morphology, immunocytochemistry and synaptology. J Comp Neurol 375:18–42.

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn M, Heiligenberg W (1985) Court and spark: electric signals in the courtship and mating behavior of gymnotid fish. Anim Behav 33:254–265.

    Article  Google Scholar 

  • Hagedorn M, Womble M, Finger TE (1990) Synodontid catfish: a new group of weakly electric fish. Behavior and anatomy. Brain Behav Evol 35:268–277.

    PubMed  CAS  Google Scholar 

  • Hall JC, Bell C, Zelick R (1995) Behavioral evidence of a latency code for stimulus intensity in mormyrid electric fish. J Comp Physiol A 177:29–39.

    Article  Google Scholar 

  • Han VZ, Bell CC, Grant G, Sugawara Y (1999) In vitro studies of the mormyrid electrosensory lobe: I. Morphology of cells and circuits. J Comp Neurol 404:359–374.

    Article  PubMed  CAS  Google Scholar 

  • Han VZ, Grant K, Bell CC (2000) Rapid activation of GABAergic interneurons and possible calcium independent GABA release in the mormyrid electrosensory lobe. J Neurophysiol 83:1592–1604.

    PubMed  CAS  Google Scholar 

  • Haugedé-Carré F (1979) The mesencephalic exterolateral posterior nucleus of the mormyrid fish Bryenomyrus niger: efferent connections studied by the HRP method. Brain Res 178:79–84.

    Google Scholar 

  • Haugedé-Carré F (1980) Contribution a l’Jtude des connexions du torus semicircularis et du cervelet chez certains mormyrides. Ph. D. Thesis. L’Univ. Pierre et Marie Curie, Paris.

    Google Scholar 

  • Heiligenberg W (1991) Neural Nets in Electric Fish. Cambridge, MA: MIT Press.

    Google Scholar 

  • Heiligenberg W, Dye J (1982) Labeling of electrosensory afferents in a gymnotid fish by intracellular injection of HRP: the mystery of multiple maps. J Comp Physiol 148:287–296.

    Article  Google Scholar 

  • Heiligenberg W, Rose GJ (1987) The optic tectum of the gymnotiform electric fish, Eigenmannia: labeling of physiologically identified cells. Neuroscience 22:331–340.

    Article  PubMed  CAS  Google Scholar 

  • Hjelmstad G, Parks G, Bodznick D (1996) Motor corollary discharge activity and sensory responses related to ventilation in the skate vestibulolateral cerebellum: implications for electrosensory processing. J Exp Biol 199:673–681.

    PubMed  Google Scholar 

  • Hofmann MH, Wojtenek W, Wilkens LA (2002) Central organization of the electrosensory system in the paddle fish (Polyodon spathula). J Comp Neurol 446:25–36.

    Article  PubMed  Google Scholar 

  • Hopkins CD, Bass AH (1981) Temporal coding of species recognition signals in an electric fish. Science 212:85–87.

    PubMed  CAS  Google Scholar 

  • Kawasaki M (1993) Independently evolved jamming avoidance responses employ identical computational algorithms: a behavioral study of the African electric fish, Gymnarchus niloticus. J Comp Physiol A 173:9–22.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki M (1994) The African wave-type electric fish, Gymnarchus niloticus, lacks corollary discharge mechanisms for electrosensory gating. J Comp Physiol A 174:133–144.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki M (1996) Comparative analysis of the jamming avoidance response in African and South American wave-type electric fishes. Biol Bull 191:103–108.

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Guo YX (1996) Neuronal circuitry for comparison of timing in the electrosensory lateral line lobe of the African wave-type electric fish Gymnarchus niloticus. J Neurosci 16:380–391.

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Guo YX (1998) Parallel projection of amplitude and phase information from the hindbrain to the midbrain of the African electric fish Gymnarchus niloticus. J Neurosci 18:7599–7611.

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Maler L, Rose GJ, Heiligenberg W (1988) Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus. J Comp Neurol 276:113–131.

    Article  PubMed  CAS  Google Scholar 

  • Keller CH, Heiligenberg W (1989) From distributed sensory processing to discrete motor representations in the diencephalon of the electric fish, Eigenmannia. J Comp Physiol A 164:565–576.

    Article  PubMed  CAS  Google Scholar 

  • Keller CH, Maler L, Heiligenberg W (1990) Structural and functional organization of a diencephalic sensory-motor interface in the gymnotiform fish, Eigenmannia. J Comp Neurol 293:347–376.

    Article  PubMed  CAS  Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444.

    PubMed  CAS  Google Scholar 

  • Losier BJ, Matsubara JA (1990a) Light and electron microscopical studies on the spherical neurons in the electrosensory lateral line lobe of the gymnotiform fish, Sternopygus. J Comp Neurol 298:237–249.

    Article  PubMed  CAS  Google Scholar 

  • Losier BJ, Matsubara JA (1990b) Comparison of calbindin D 28K and cytochrome c oxidase in electrosensory nuclei of high-and low-frequency weakly electric fish (Gymnotiformes). Cell Tissue Res 260:29–39.

    Article  CAS  Google Scholar 

  • Maler L (1979) The posterior lateral line lobe of certain gymnotiform fish. Quantitative light microscopy. J Comp Neurol 183:323–363.

    Article  PubMed  CAS  Google Scholar 

  • Maler L, Ellis WG (1987) Inter-male aggressive signals in weakly electric fish are modulated by monoamines. Behav Brain Res 25:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Maler L, Mugnaini E (1994) Correlating gamma-aminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish. J Comp Neurol 345:224–252.

    Article  PubMed  CAS  Google Scholar 

  • Maler L, Sas EK, Rogers J (1981) The cytology of the posterior lateral line lobe of high frequency weakly electric fish (Gymnotoidei): differentiation and synaptic specificity in a simple cortex. J Comp Neurol 195:87–139.

    Article  PubMed  CAS  Google Scholar 

  • McCreery DB (1977) Two types of electroreceptive lateral lemniscal neurons of the lateral line lobe of the catfish Ictalurus nebulosus: connections from the lateral line nerve and steady-state frequency response characteristics. J Comp Physiol A 113: 317–339.

    Article  Google Scholar 

  • Meek J (1998) Holosteans and teleosts. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds), The Central Nervous System of Vertebrates. Berlin: Springer-Verlag, pp. 759–937.

    Google Scholar 

  • Meek J, Nieuwenhuys R (1991) Palisade pattern of mormyrid Purkinje cells: a correlated light and electron microscopic study. J Comp Neurol 306:156–192.

    Article  PubMed  CAS  Google Scholar 

  • Meek J, Joosten HWJ, Hafmans TGM (1993) Distribution of noradrenalineimmunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. J Comp Neurol 328:145–160.

    Article  PubMed  CAS  Google Scholar 

  • Meek J, Grant K, Sugawara S, Hafmans TGM, Veron M, Denizot JP (1996) Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: morphology, immunocytochemistry, and synaptology. J Comp Neurol 375:43–65.

    Article  PubMed  CAS  Google Scholar 

  • Meek J, Grant, K., and Bell, C. (1999) Structural organization of the mormyrid electrosensory lateral line lobe. J Exp Biol 202:1291–1300.

    PubMed  Google Scholar 

  • Meek J, Hafmans TGM, Han VZ, Bell CC, Grant K (2001) Myelinated dendrites in the mormyrid electrosensory lobe. J Comp Neurol 431:255–275.

    Article  PubMed  CAS  Google Scholar 

  • Metzner W (1999) Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J Exp Biol 202:1365–1375.

    PubMed  CAS  Google Scholar 

  • Mohr C, Roberts PD, Bell CC (2003) Cells of the mormyromast region of the mormyrid electrosensory lobe: I. Responses to the electric organ corollary discharge and to electrosensory stimuli. J Neurophysiol 90:1193–1210.

    Article  PubMed  Google Scholar 

  • Montgomery JC, Coombs S, Conley RA, Bodznick D (1995) Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: a comparative overview of anatomical and functional similarities. Audit Neurosci 1:207–231.

    Google Scholar 

  • Mugnaini E, Maler L (1987a) Cytology and immunohistochemistry of the nucleus exterolateralis anterior of the mormyrid brain: possible role of GABAergic synapses in temporal analysis. Anat Embryol 176:313–336.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E, Maler L (1987b) Cytology and immunohistochemistry of the nucleus of the lateral line lobe in the electric fish Gnathonemus petersii (Mormyridae) brain. Evidence suggesting that GABAergic synapses mediate an inhibitory corollary discharge. Synapse 1:32–56.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Nicholson C (1969) Aspects of the histology of mormyrid fishes. In: Llinas R (ed) Neurobiology of Cerebellar Evolution and Development. American Medical Association, Chicago, pp. 135–169.

    Google Scholar 

  • Northcutt RG (1986) Electroreception in Nonteleost Bony Fishes. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 257–286.

    Google Scholar 

  • Paul DH, Roberts BL (1977) Studies on a primitive cerebellar cortex I. The anatomy of the lateral-line lobes of the dogfish, Scyliorhinus canicula. Proc R Soc Lond B 195: 453–466.

    Article  PubMed  CAS  Google Scholar 

  • Paulin MG (1993) The role of the cerebellum in motor control and perception. Brain Behav Evol 41:39–50.

    PubMed  CAS  Google Scholar 

  • Post N, von der Emde G (1999) The “novelty response” in an electric fish: response properties and habituation. Physiol Behav 68:115–128.

    Article  PubMed  CAS  Google Scholar 

  • Prechtl JC, von der Emde G, Wolfart J, Karamursel S, Akoev GN, Andrianov YN, Bullock TH (1998) Sensory processing in the pallium of a mormyrid fish. J Neurosci 18: 7381–7393.

    PubMed  CAS  Google Scholar 

  • Réthelyi M, Szabo T (1973a) A particular nucleus in the mesencephalon of a weakly electric fish, Gymnotus carapo (Gymnotidae) I. Light microscopic structure. Exp Brain Res 17:229–241.

    Article  PubMed  Google Scholar 

  • Réthelyi M, Szabo T (1973b) Neurohistological analysis of the lateral lobe in an electric fish, Gymnotus carapo (Gymnotidae). Exp Brain Res 18:323–339.

    Article  PubMed  Google Scholar 

  • Ronan MC (1986) Electroreception in Cyclostomes. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 209–224.

    Google Scholar 

  • Rose GJ, Call SJ (1992) Differential distribution of ampullary and tuberous processing in the torus semicircularis of Eigenmannia. J Comp Physiol A 170:253–261.

    Article  PubMed  CAS  Google Scholar 

  • Russell CJ, Bell CC (1978) Neuronal responses to electrosensory input in the mormyrid valvula cerebelli. J Neurophysiol 41:1495–1510.

    PubMed  CAS  Google Scholar 

  • Russell CJ, Myers JP, Bell CC (1974) The echo response in Gnathonemus petersii. J Comp Physiol 92:181–200.

    Article  Google Scholar 

  • Sas E, Maler L (1986a) The optic tectum of gymnotiform teleosts Eigenmannia viriscens and Apteronotus leptorhynchus: a Golgi study. Neuroscience 18:215–246.

    Article  PubMed  CAS  Google Scholar 

  • Sas E, Maler L (1986b) Retinofugal projections in a weakly electric gymnotid fish (Apteronotus leptorhynchus). Neuroscience 18:247–259.

    Article  PubMed  CAS  Google Scholar 

  • Sas E, Maler L (1987) The organization of afferent input to the caudal lobe of the cerebellum of the gymnotid fish Apteronotus leptorhynchus. Anat Embryol 177:55–79.

    Article  PubMed  CAS  Google Scholar 

  • Saunders J, Bastian J (1984) The physiology and morphology of two classes of electrosensory neurons in the weakly electric fish Apteronotus leptorhynchus. J Comp Physiol A 154:199–209.

    Article  Google Scholar 

  • Schmidt AW, Bodznick D (1987) Afferent and efferent connections of the vestibulolateral cerebellum of the little skate, Raja erinacea. Brain Behav Evol 30:282–302.

    PubMed  CAS  Google Scholar 

  • Smeets WJAJ (1982) The afferent connections of the tectum mesencephali in two chondrichthyans, the shark, Scyliorhinus canicula, and the ray, Raja clavata. J Comp Neurol 205:139–152.

    Article  PubMed  CAS  Google Scholar 

  • Springer AD, Easter SS, Agranoff BW (1977) The role of the optic tectum in various visually mediated behaviors of goldfish. Brain Res 128:393–404.

    Article  PubMed  CAS  Google Scholar 

  • Stendell W (1914) Die Faseranatomie des Mormyridengehirns. Abh Senckenb Naturforsch Ges 36:3–40.

    Google Scholar 

  • Szabo T (1957a) Organisation particuliere de la commande nerveuse centrale de la dé-charge chez un poisson électrique, Gymnarchus niloticus. Compt Rend Acad Sci Paris 248:3488–3489.

    Google Scholar 

  • Szabo T (1957b) Un noyau particulier dans la formation reticuleJ bulbaire de certains poissons Jlectriques (Mormyrides). Arch Anat Microsc Morphol Exp 46:81–92.

    CAS  Google Scholar 

  • Szabo T (1974) Anatomy of the specialized lateral line organs of electroreception. In: Fessard A (ed), Handbook of Sensory Physiology. New York: Springer-Verlag, pp. 13–58.

    Google Scholar 

  • Szabo T, Fessard A (1965) Le fonctionnement des electrorecepteurs etudies chez les Mormyres. J Physiol (Paris) 57:343–360.

    CAS  Google Scholar 

  • Szabo T, Moller P (1984) Neuroethological basis for electrocommunication. In: Bolis L, Keynes RD, Maddrell SHP (eds), Comparative Physiology of Sensory Systems. Cambridge, UK: Cambridge University Press, Cambridge, pp. 455–474.

    Google Scholar 

  • Szabo T, Ravaille M, Libouban S, Enger DS (1983) The mormyrid rhombencephalon: I. Light and EM investigations on the structure and connections of the lateral line lobe nucleus with HRP labeling. Brain Res 266:1–19.

    Article  PubMed  CAS  Google Scholar 

  • von der Emde G (1990) Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii. J Comp Physiol A 167:413–421.

    Google Scholar 

  • von der Emde G, Bleckman H (1992) Extreme phase sensitivity of afferents which innervate mormyromast electroreceptors. Naturwissenschaften 79:131–133.

    Article  Google Scholar 

  • von der Emde G, Prechtl JC (1999) Anatomical connections of auditory and lateral line areas of the dorsal telencephalon (Dm) in the osteoglossomorph teleost, Gnathonemus petersii. Brain Res 818:355–367.

    Article  PubMed  Google Scholar 

  • Wong CJH (1997a) Connections of the basal forebrain of the weakly electric fish, Eigenmannia viriscens. J Comp Neurol 389:49–64.

    Article  PubMed  CAS  Google Scholar 

  • Wong CJH (1997b) Afferent and efferent connections of the diencephalic prepacemaker nucleus in the weakly electric fish, Eigenmannia viriscens: interactions between the electromotor system and the neuroendocrine axis. J Comp Neurol 383:18–41.

    Article  PubMed  CAS  Google Scholar 

  • Wullimann MF, Northcutt RG (1990) Visual and electrosensory circuits of the diencephalons in mormyrids: an evolutionary perspective. J Comp Neurol 297:537–552.

    Article  PubMed  CAS  Google Scholar 

  • Wullimann MF, Rooney DJ (1990) A direct cerebello-telencephalic projection in an electrosensory mormyrid fish. Brain Res 520:354–357.

    Article  PubMed  CAS  Google Scholar 

  • Xu-Friedman MA, Hopkins CD (1999) Central mechanisms of temporal analysis in the knollenorgan pathway of mormyrid electric fish. J Exp Biol 202:1311–1318.

    PubMed  Google Scholar 

  • Zupanc G, Maler L (1997) Neuronal control of behavioral plasticity: the prepacemaker nucleus of weakly electric fish. J Comp Physiol A 180:99–111.

    Article  Google Scholar 

  • Zupanc GKH, Airey JA, Maler L, Sutko JL, Ellisman MH (1992) Immunohistochemical localization of ryanodine binding protein in the central nervous system of gymnotiform fish. J Comp Neurol 325:135–151.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bell, C.C., Maler, L. (2005). Central Neuroanatomy of Electrosensory Systems in Fish. In: Bullock, T.H., Hopkins, C.D., Popper, A.N., Fay, R.R. (eds) Electroreception. Springer Handbook of Auditory Research, vol 21. Springer, New York, NY . https://doi.org/10.1007/0-387-28275-0_4

Download citation

Publish with us

Policies and ethics