Skip to main content

Passive Electrolocation and the Sensory Guidance of Oriented Behavior

  • Chapter
Electroreception

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 21))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler J, Shi W (1988) Galvanotaxis in bacteria. Cold Spring Harbor Symp Quant Biol 53:23–25.

    PubMed  Google Scholar 

  • Assad C, Rasnow B, Stoddard PK, Bower JM (1998) The electric organ discharges of the gymnotiform fishes: II. Eigenmannia. J Comp Physiol A 183:419–432.

    Article  PubMed  CAS  Google Scholar 

  • Assad C, Rasnow B, Stoddard PK (1999) Electric organ discharges and electric images during electrolocation. J Exp Biol 202:1185–1193.

    PubMed  CAS  Google Scholar 

  • Bastian J (1982) Vision and electroreception: integration of sensory information in the optic tectum of the weakly electric fish Apteronotus albifrons. J Comp Physiol A 147: 287–297.

    Article  Google Scholar 

  • Bastian J (1986) Electrolocation: behavior, anatomy and physiology. In: Bullock TH, Heiligenberg W (eds), Electroreception. New York: John Wiley & Sons, pp. 577–612.

    Google Scholar 

  • Bastian J (1987a) Electrolocation in the presence of jamming signals: behavior. J Comp Physiol A 161:811–824.

    Article  PubMed  CAS  Google Scholar 

  • Bastian J (1987b) Electrolocation in the presence of jamming signals: electroreceptor physiology. J Comp Physiol A 161:825–836.

    Article  PubMed  CAS  Google Scholar 

  • Black-Cleworth P (1970) The role of electric discharges in the non-reproductive social behaviour of Gymnotus carapo. Anim Behav Monogr 3:1–77.

    Google Scholar 

  • Bullock TH, Heiligenberg W (1986) Electroreception. New York: John Wiley & Sons.

    Google Scholar 

  • Coombs S, New JG, Nelson M (2002) Information-processing demands in electrosensory and mechanosensory lateral line systems. J Physiol Paris 96:341–354.

    Article  PubMed  Google Scholar 

  • Crawford J (1991) Sex recognition by electric cues in a sound-producing mormyrid fish, Pollimyrus isidori. Brain Behav Evol 38:20–38.

    PubMed  CAS  Google Scholar 

  • Davis EA, Hopkins CD (1988) Behavioural analysis of electric signal localization in the electric fish, Gymnotus carapo, Gymnotiformes. Anim Behav 36:1658–1671.

    Article  Google Scholar 

  • Erdl MP (1846) Ãœber das Gehirn der Fischgattung Mormyrus. Gelehrte Anzeig Bayer Akad Wiss 22/23:403–407.

    Google Scholar 

  • Fraenkel GS, Gunn DL (1940) The Orientation of Animals. Oxford: Oxford University Press.

    Google Scholar 

  • Hartline PH, Kass L, Loop MS (1978) Merging of modalities in the optic tectum: infrared and visual integration in rattlesnakes. Science 199:56–59.

    Google Scholar 

  • Heiligenberg W (1977) Principles of electrolocation and jamming avoidance in electric fish. A neuroethological approach. In: Braitenberg V (ed), Studies in Brain Function. New York: Springer-Verlag, pp. 1–85.

    Google Scholar 

  • Hopkins CD (1986) Temporal structure of non-propagated electric communication signals. Brain Behav Evol 28:43–59.

    PubMed  CAS  Google Scholar 

  • Hopkins CD (1993) Behavioral analysis of sensory function: active and passive electrolocation. J Comp Physiol A 173:688.

    Google Scholar 

  • Hopkins CD, Comfort NC, Bastian J, Bass AH (1990) Functional analysis of sexual dimorphism in an electric fish, Hypopomus pinnicaudatus, order Gymnotiformes. Brain Behav Evol 35:350–367.

    PubMed  CAS  Google Scholar 

  • Hopkins CD, Shieh K-T, McBride DW Jr, Winslow M (1997) A quantitative analysis of passive electrolocation behavior in electric fish. Brain Behav Evol 50(Suppl 1):32–59.

    PubMed  Google Scholar 

  • Kajiura SM, Holland KN (2002) Electroreception in juvenile scalloped hammerhead and sandbar sharks. J Exp Biol 205:3609–3621.

    PubMed  Google Scholar 

  • Kalmijn AJ (1971) The electric sense of sharks and rays. J Exp Biol 55:371–383.

    PubMed  CAS  Google Scholar 

  • Kalmijn AJ (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard A (ed), Handbook of Sensory Physiology, vol. III/3: Electroreceptors and Other Specialized Receptors in Lower Vertebrates. Berlin: Springer-Verlag, pp. 147–200.

    Google Scholar 

  • Kalmijn AJ (1988a) Detection of weak electric fields. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds), Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 151–186.

    Google Scholar 

  • Kalmijn AJ (1988b) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds), Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Müntz H (eds), The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 187–215.

    Google Scholar 

  • Kalmijn AJ (1997) Electric and near-field acoustic detection, a comparative study. Acta Physiol Scand 161(Suppl): 25–38.

    Google Scholar 

  • Knudsen EI (1975) Spatial aspects of electric fields generated by weakly electric fish. J Comp Physiol 99:193–198.

    Article  Google Scholar 

  • Knudsen EI (1976) Midbrain responses to electroreceptive input in catfish: evidence for orientation preferences and somatotopic organization. J Comp Physiol A 109:51–67.

    Google Scholar 

  • Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the owl. J Neurosci 2:1177–1194.

    PubMed  CAS  Google Scholar 

  • Lissmann HW (1958) On the function and evolution of electric organs in fish. J Exp Biol 35:156–191.

    Google Scholar 

  • Lissmann HW, Machin KE (1958) The mechanisms of object location in Gymnarchus niloticus and similar fish. J Exp Biol 35:457–486.

    Google Scholar 

  • Loeb J (1918) Forced Movements, Tropisms, and Animal Conduct. Philadelphia: Lippincott.

    Google Scholar 

  • McGregor PK, Westby GWM (1992) Discrimination of individually characteristic electric organ discharges by a weakly electric fish. Anim Behav 43:977–986.

    Article  Google Scholar 

  • McGregor PK, Westby GWM (1993) Individually characteristic EOD waveforms and discrimination by Gymnotus carapo. J Comp Physiol A 173:741.

    Google Scholar 

  • McKibben JR, Hopkins CD, Yager DY (1993) Directional sensitivity of tuberous electroreceptors: polarity preferences and frequency tuning. J Comp Physiol A 173:415–424.

    Article  PubMed  CAS  Google Scholar 

  • Rasnow B, Assad C, Bower JM (1993) Phase and amplitude maps of the electric organ discharge of the weakly electric fish, Apteronotus albifrons. J Comp Physiol A 172: 481–491.

    Article  PubMed  CAS  Google Scholar 

  • Schluger J, Hopkins CD (1987) Electric fish approach stationary signal sources by following electric current lines. J Exp Biol 130:359–367.

    PubMed  CAS  Google Scholar 

  • Schöne H (1984) Spatial Orientation: the Spatial Control of Behavior in Animals and Man. Princeton: Princeton University Press.

    Google Scholar 

  • Shieh K-T, Wilson W, Winslow M, McBride DW Jr, Hopkins C (1996) Short-range orientation in electric fish: an experimental study of passive electrolocation. J Exp Biol 199:2383–2393.

    PubMed  CAS  Google Scholar 

  • Sisneros JA, Tricas TC (2002a) Neuroethology and life history adaptations of the elasmobranch electric sense. J Physiol Paris 96:379–389.

    Article  PubMed  CAS  Google Scholar 

  • Sisneros JA, Tricas TC (2002b) Ontogenetic changes in the response properties of the peripheral electrosensory system in the Atlantic stingray (Dasyatis sabina). Brain Behav Evol 59:130–140.

    Article  PubMed  Google Scholar 

  • Sisneros JA, Tricas TC, Luer CA (1998) Response properties and biological function of the skate electrosensory system during ontogeny. J Comp Physiol A 183:87–99.

    Article  PubMed  CAS  Google Scholar 

  • Sparks DL (1986) Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol Rev 66:118–171.

    PubMed  CAS  Google Scholar 

  • Stoddard PK, Rasnow B, Assad C (1999) Electric organ discharges of the gymnotiform fishes: III. Brachyhypopomus. J Comp Physiol A 184:609–630.

    Article  PubMed  CAS  Google Scholar 

  • Tricas TC, Michael SW, Sisneros JA (1995) Electrosensory optimization to conspecific phasic signals for mating. Neurosci Lett 202:129–132.

    Article  PubMed  CAS  Google Scholar 

  • von der Emde G, Schwartz S, Gomes L, Budelli R, Grant K (1998) Electric fish measure distance in the dark. Nature 395:890–894.

    Article  PubMed  Google Scholar 

  • Westby GWM (1974) Assessment of the signal value of certain discharge patterns in the electric fish, Gymnotus carapo by means of playback. J Comp Physiol A 92:327–341.

    Article  Google Scholar 

  • Westby GWM (1981) Communication and jamming avoidance in electric fish. Trends Neurosci 4:205–210.

    Article  Google Scholar 

  • Wilkens LA, Hofmann MH, Wojtenek W (2002) The electric sense of the paddlefish: a passive system for the detection and capture of zooplankton prey. J Physiol Paris 96: 363–77.

    Article  PubMed  Google Scholar 

  • Yager DY, Hopkins CD (1993) Directional characteristics of tuberous electroreceptors in the weakly electric fish, Hypopomus (Gymnotiformes). J Comp Physiol A 173:401–414.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Hopkins, C.D. (2005). Passive Electrolocation and the Sensory Guidance of Oriented Behavior. In: Bullock, T.H., Hopkins, C.D., Popper, A.N., Fay, R.R. (eds) Electroreception. Springer Handbook of Auditory Research, vol 21. Springer, New York, NY . https://doi.org/10.1007/0-387-28275-0_10

Download citation

Publish with us

Policies and ethics