Skip to main content

Molecular Epidemiology of Mesothelioma

  • Chapter
  • 931 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Skrabanek P. The emptiness of the black box. Epidemiology 1994;5:553–555.

    PubMed  CAS  Google Scholar 

  2. Perera FP. Molecular cancer epidemiology: a new tool in cancer prevention. J Natl Cancer Inst 1987;78:887–898.

    PubMed  CAS  Google Scholar 

  3. Hulka BS, Wilcosky T. Biological markers in epidemiologic research. Arch Environ Health 1988;43:83–89.

    Article  PubMed  CAS  Google Scholar 

  4. Wogan GN. Molecular epidemiology in cancer risk. Assessment and prevention: recent progress and avenues for future research. Environ Health Perspect 1992;98:167–178.

    PubMed  CAS  Google Scholar 

  5. Waller DA. The role of the surgery in diagnosis and treatment of malignant pleural mesothelioma. Curr Opin Oncol 2003;15:139–143.

    Article  PubMed  Google Scholar 

  6. Selikoff IJ, Churg J, Hammond EC. Asbestos exposure and neoplasia. JAMA 1964;188:22–26.

    PubMed  CAS  Google Scholar 

  7. Wagner JC, Gilson JC, Berry G, Timbrell V. Epidemiology of asbestos cancer. B Med Bull 1971;27:71–76.

    CAS  Google Scholar 

  8. Puntoni R, Vercelli M, Merlo F, Valerio F, Santi L. Mortality among shipyard workers in Genoa, Italy. Ann NY Acad Sci 1979;330:353–377.

    PubMed  CAS  Google Scholar 

  9. Huncharek M. Genetic factors in the aetiology of malignant mesothelioma. Eur J Cancer 1995;31A:1741–1747.

    Article  PubMed  CAS  Google Scholar 

  10. Lechner JF, Tesfaiqzi J, Gerwin BI. Oncogenes and tumor-suppressor genes in mesothelioma—a synopsis. Environ Health Perspect 1997;105:1061–1067.

    PubMed  Google Scholar 

  11. Kamp DW, Weitzman SA. The molecular basis of asbestos induced lung injury. Thorax 1999;54:638–652.

    Article  PubMed  CAS  Google Scholar 

  12. Heintz NH, Janssen YM, Mossmann BT. Persistent induction of c-fos and c-jun expression by asbestos. Proc Natl Acad Sci USA 1993;90:3299–3303.

    Article  PubMed  CAS  Google Scholar 

  13. Committee on Biological Markers of the National Research Council: biological markers in environmental health research. Environ Health Perspect 1987;74:3–9.

    Google Scholar 

  14. Bonassi S, Hagmar L, Stromberg U, et al, for the European Study Group on Cytogenetic Biomarkers and Health (ESCH). Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. Cancer Res 2000;60:1619–1625.

    PubMed  CAS  Google Scholar 

  15. Bartsch H, Aitio A, Camus AM, et al. Carcinogen-metabolizing enzymes and susceptibility to chemical carcinogenesis. IARC Sci Publ 1982;39:337–350.

    PubMed  Google Scholar 

  16. Hanke JZ. Genetic susceptibility to toxic substances and its relationship to carcinogenesis. IARC Sci Publ 1984;59:99–106.

    PubMed  CAS  Google Scholar 

  17. Dejmek A, Brockstedt U, Hjerpe A. Immunoreactivity of pleural malignant mesotheliomas to glutathione S-transferases. APMIS 1998;06:489–494.

    Article  Google Scholar 

  18. Segers K, Kumar-Singh S, Weyler J, et al. Glutathione S-transferase expression in malignant mesothelioma and non-neoplastic mesothelium: an immunohistochemical study. Cancer Res Clin Oncol 1996;122:619–624.

    Article  CAS  Google Scholar 

  19. Seidegard PG, Vorachek VR, Pero RW, Pearson WR. Hereditary differences in the expression of human glutathione trasferase active in trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci USA 1988;85:7293–7297.

    Article  PubMed  CAS  Google Scholar 

  20. Zhao H, Spitz MR, Gwyn KM, Wu X. Microsomal epoxide hydrolase polymorphisms and lung cancer risk in non-Hispanic whites. Mol Carcinog 2002;33,2:99–101.

    Article  PubMed  CAS  Google Scholar 

  21. Smith CM, Kelsey KT, Wiencke JK, Leyden K, Stephen L, Christiani DC. Inherited glutathione S-transferase deficiency is a risk factor for pulmonary asbestosis. Cancer Epidemiol Biomarkers Prev 1994;3:471–477.

    PubMed  CAS  Google Scholar 

  22. Hirvonen A, Saarikoski ST, Linnainmaa K, et al. Glutathione S-transferase and N-acetyltransferase genotypes and asbestos-associated pulmonary disorders. J Natl Cancer Inst 1996;88:1853–1856.

    PubMed  CAS  Google Scholar 

  23. Stucker I, Boffetta P, Antilla S, et al. Lack of interaction between asbestos exposure and glutathione S-transferase M1 and T1 genotypes in lung carcinogenesis. Cancer Epidemiol Biomarkers Prev 2001;10:1253–1258.

    PubMed  CAS  Google Scholar 

  24. Hirvonen A, Pelin K, Tammilehto L, Karjalainen A, Mattson K, Linnainmaa K. Inherited GSTM1 and NAT2 defects as concurrent risk modifiers in asbestos-related human malignant mesothelioma. Cancer Res 1995;55:2981–2983.

    PubMed  CAS  Google Scholar 

  25. Segers K, Kumar-Singh S, Weyler J, et al. Glutathione S-transferase expression in malignant mesothelioma and non-neoplastic mesothelium: an immunohistochemical study. J Cancer Res Clin Oncol 1996;122:619–624.

    Article  PubMed  CAS  Google Scholar 

  26. Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 2003;21:1174–1179.

    Article  PubMed  CAS  Google Scholar 

  27. Berwick M, Vineis P. Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst 2000;92:874–897.

    Article  PubMed  CAS  Google Scholar 

  28. Renier A, Yegles M, Buard A, et al. Use of mesothelial cell cultures to assess the carcinogenic potency of mineral or man made fibers. Cell Biol Toxicol 1992;8:133–139.

    Article  PubMed  CAS  Google Scholar 

  29. Ollikainen T, Linnainmaa K, Kinnula VL. DNA single strand breaks induced by asbestos fibers in human pleural mesothelial cells in vitro. Environ Mol Mutagen 1999;33:153–160.

    Article  PubMed  CAS  Google Scholar 

  30. Okayasu R, Takahash S, Yamada S, Hei TK, Ullrich RL. Asbestos and DNA double strand breaks. Cancer Res 1999;59:298–300.

    PubMed  CAS  Google Scholar 

  31. Liu W, Ernst JD, Courtney Broaddus V. Phagocytosis of crocidolite asbestos induces oxidative stress, DNA damage, and apoptosis in mesothelial cells. Am J Respir Cell Mol Biol 2000;23:371–378.

    PubMed  CAS  Google Scholar 

  32. Digweed M, Demuth I, Rothe S, et al. SV40 large T-antigen disturbs the formation of nuclear DNA-repair foci containing MRE11. Oncogene 2002;21:4873–4878.

    Article  PubMed  CAS  Google Scholar 

  33. Yeh CC, Lee C, Huang MC, Dahiya R. Loss of mismatch repair activity in simian virus 40 large T antigen-immortalized BPH-1 human prostatic epithelial cell line. Mol Carcinog 2001;31:145–151.

    Article  PubMed  CAS  Google Scholar 

  34. Bowman KK, Sicard DM, Ford JM, Hanawalt PC. Reduced global genomic repair of ultraviolet light-induced cyclobutane pyrimidine dimers in simian virus 40-transformed human cells. Mol Carcinog 2000;29:17–24.

    Article  PubMed  CAS  Google Scholar 

  35. Levresse V, Moritz S, Renier A, et al. Effect of simian virus large T antigen expression on cell cycle control and apoptosis in rat pleural mesothelial cells exposed to DNA damaging agents. Oncogene 1998;16:1041–1053.

    Article  PubMed  CAS  Google Scholar 

  36. Fenech M. The in vitro micronucleus technique. Mutat Res 2000;455:81–95.

    PubMed  CAS  Google Scholar 

  37. Maluf SW, Erdtmann B. Genomic instability in Down syndrome and Fanconi anemia assessed by micronucleus analysis in single-cell gelelectrophoresis. Cancer Genet Cytogenet 2001;124:71–75.

    Article  PubMed  CAS  Google Scholar 

  38. Trenz K, Rothfuss A, Schutz P, Speit G. Mutagen sensitivity of peripheral blood from women carrying a BRCA1 or BRCA2 mutation. Mutat Res 2002;500:89–96.

    PubMed  CAS  Google Scholar 

  39. Schmid W. The micronucleous test. Mutat Res 1975;31:9–15.

    PubMed  CAS  Google Scholar 

  40. Schlegel R, MacGregor JT, Everson RB. Assessment of cytogenetic damage by quantification of micronuclei in human peripheral blood erythrocytes. Cancer Res 1986;46:3717–3721.

    PubMed  CAS  Google Scholar 

  41. Fenech M, Morley AA. Cytokinesis-block micronucleus method in human lymphocytes: effect of in vivo ageing and low dose X-irradiation. Mutat Res 1986;161:193–198.

    PubMed  CAS  Google Scholar 

  42. Lechner JF, Tokiwa T, La Veck M, et al. Asbestos-associated chromosomal changes in human mesothelial cells. Proc Natl Acad Sci USA 1985;82:3884–3888.

    Article  PubMed  CAS  Google Scholar 

  43. Dopp E, Schuler M, Schiffmann D, Eastmond DA. Induction of micronuclei, hyperploidy, and chromosomal breakage affecting the centric/pericentric regions of chromosomes 1 and 9 in human amniotic fluid cells after treatment with asbestos. Mutat Res 1977;377:77–87.

    Google Scholar 

  44. Keane MJ, Stephens JW, Zhong BZ, Miller WE, Ong TM, Wallace WA. A study of the effect of chrysotile fiber surface composition on genotoxicity in vitro. J Toxicol Environ Health 1999;57:529–541.

    Article  CAS  Google Scholar 

  45. Bolognesi C, Filiberti R, Neri M, et al. High frequency of micronuclei in peripheral blood lymphocytes as index of susceptibility to pleural mesothelioma. Cancer Res 2002;62:5418–5419.

    PubMed  CAS  Google Scholar 

  46. Rothfuss A, Schutz P, Bochum S, et al. Induced micronucleus frequencies in peripheral lymphocytes as a screening test for carriers of a BRCA1 mutation in breast cancer families. Cancer Res 2000;60:390–394.

    PubMed  CAS  Google Scholar 

  47. Partanen R, Koskinen H, Oksa P, et al. Serum oncoproteins in asbestosis patients. Clin Chem 1995;41:1844–1847.

    PubMed  CAS  Google Scholar 

  48. Taylor JA. Oncogenes and their applications in epidemiologic studies. Am J Epidemiol 1989;130:6–13.

    PubMed  CAS  Google Scholar 

  49. Brandt-Rauf PW. Biomarkers of gene expression: growth factors and oncoproteins. Environ Health Perspect 1997;105S4:807–816.

    Google Scholar 

  50. Lee WC, Testa JR. Somatic genetic alterations in human malignant mesothelioma (review). Int J Oncol 1999;14:181–188.

    PubMed  CAS  Google Scholar 

  51. Frizelle SP, Grim J, Zhou J, et al. Re-expression of p16INK4a in mesothelioma cells results in cell cycle arrest, cell death, tumor suppression and tumor regression. Oncogene 1998;16:3087–3095.

    Article  PubMed  CAS  Google Scholar 

  52. Papp T, Schipper H, Pemsel H, et al. Mutational analysis of N-ras, p53, p16INK4a, p14ARF and CDK4 genes in primary human malignant mesotheliomas. Int J Oncol 200;18:425–433.

    Google Scholar 

  53. Xio S, Li D, Vijg J, et al. Codeletion of p15 and p16 in primary malignant mesothelioma. Oncogene 1995;11(3):511–515.

    PubMed  CAS  Google Scholar 

  54. Hirao T, Bueno R, Chen CJ, et al. Alterations of the p16(INK4) locus in human malignant mesothelial tumors. Carcinogenesis 2002;23:1127–1130.

    Article  PubMed  CAS  Google Scholar 

  55. Illei PB, Ladanyi M, Rusch VW, et al. The use of CDKN2A deletion as a diagnostic marker for alignant mesothelioma in body cavity effusions. Cancer 2003;99:51–56.

    Article  PubMed  CAS  Google Scholar 

  56. Kratzke RA, Otterson GA, Lincoln CE, et al. Immunohistochemical analysis of the p16INK4 cyclin-dependent kinase inhibitor in malignant mesothelioma. J Natl Cancer Inst 1995;87:1870–1875.

    PubMed  CAS  Google Scholar 

  57. Wong L, Zhou J, Anderson D, et al. Inactivation of p16(INK4a) expression in malignant mesothelioma by methylation. Lung Cancer 2002;38:131–136.

    Article  PubMed  Google Scholar 

  58. Lubin R, Zalcman G, Bouchet, et al. Serum p53 antibodies as early markers of lung cancer. Nature Med 1995;1:701–702.

    Article  PubMed  CAS  Google Scholar 

  59. Zalcman G, Tredaniel J, Schlichtholz B, et al. Prognostic significance of serum p53 antibodies in patients with limited-stage small cell lung cancer. Int J Cancer (Pred Oncol) 2000;89:81–86.

    Article  PubMed  CAS  Google Scholar 

  60. Trivers GE, Cawley HL, DeBenedetti VM, et al. Anti-p53 antibodies in sera of workers occupationally exposed to vinyl chloride. J Natl Cancer Inst 1995;87:1400–1407.

    PubMed  CAS  Google Scholar 

  61. Trivers GE, De Benedetti VMG, Cawley H, et al. Anti-p53 antibodies in sera from patients with chronic obstructive pulmonary disease can predate a diagnosis of cancer. Clin Cancer Res 1996;2:1767–1775.

    PubMed  CAS  Google Scholar 

  62. Metcalf RA, Welsh JA, Bennett WP, et al. p53 and Kirsten-ras mutations in human mesothelioma cell lines. Cancer Res 1992;52:2610–2615.

    PubMed  CAS  Google Scholar 

  63. Mor O, Yaron P, Huszar M, et al. Absence of p53 mutations in malignant mesotheliomas. Am J Respir Cell Mol Biol 1997;16:9–13.

    PubMed  CAS  Google Scholar 

  64. Kitamura F, Araki S, Suzuki Y, et al. Assessment of the mutations of p53 suppressor gene and Ha-and Ki-ras oncogenes in malignant mesothelioma in relation to asbestos exposure: a study of 12 American patients. Ind Health 2002;40:175–181.

    PubMed  CAS  Google Scholar 

  65. Ramael M, Lemmens G, Eerdekens C, et al. Immunoreactivity for p53 protein in malignant mesothelioma and non-neoplastic mesothelium. J Pathol 1992;168: 371–375.

    Article  PubMed  CAS  Google Scholar 

  66. Esposito V, Baldi A, De L A, et al. p53 immunostaining in differential diagnosis of pleural mesothelial proliferations. Anticancer Res 1997;17:733–736.

    PubMed  CAS  Google Scholar 

  67. Creaney J, McLaren BM, Stevenson S, et al. p53 autoantibodies in patients with malignant mesothelioma: stability through disease progression. Br J Cancer 2001;84:52–56.

    Article  PubMed  CAS  Google Scholar 

  68. Isik R, Metintas M, Gibbs AR, et al. p53, p21 and metallothionein immunoreactivities in patients with malignant pleural mesothelioma: correlations with the epidemiological features and prognosis of mesotheliomas with environmental asbestos exposure. Respir Med 2001;95:588–593.

    Article  PubMed  CAS  Google Scholar 

  69. Neri M, Betta P, Marroni P, et al. Serum anti-p53 autoantibodies in pleural malignant mesothelioma, lung cancer and non-neoplastic lung diseases. Lung Cancer 2003;39:165–172.

    Article  PubMed  Google Scholar 

  70. Amin KM, Litzky LA, Smythe WR, et al. Wilms’ tumor 1 susceptibility (WT1) gene products are selectively expressed in malignant mesothelioma. Am J Pathol 1995;146:344–356.

    PubMed  CAS  Google Scholar 

  71. Hecht JL, Lee BH, Pinkus JL, et al. The value of Wilms tumor susceptibility gene 1 in cytologic preparations as a marker for malignant mesothelioma. Cancer 2002;96:105–109.

    Article  PubMed  Google Scholar 

  72. Cristaudo A, Vivaldi A, Sensales G, et al. Molecular biology studies on mesothelioma tumor samples: preliminary data on H-ras, p21, and SV40. J Environ Pathol Toxicol Oncol 1995;14:29–34.

    PubMed  CAS  Google Scholar 

  73. Ni Z, Liu Y, Keshava N, et al. Analysis of K-ras and p53 mutations in mesotheliomas from humans and rats exposed to asbestos. Mutat Res 2000;468:87–92.

    PubMed  CAS  Google Scholar 

  74. Brandt-Rauf PW, Smith S, Hemminki K, et al. Serum oncoproteins and growth factors in asbestosis and silicosis patients. Int J Cancer 1992;50:881–885.

    PubMed  CAS  Google Scholar 

  75. Baldi A, Groeger AM, Esposito V, et al. Expression of p21 in SV40 large T antigen positive human pleural mesothelioma: relationship with survival. Thorax 2002;57:353–356.

    Article  PubMed  CAS  Google Scholar 

  76. Langerak AW, De Laat PA, Van der Linden-Van Beurden CA, et al. Expression of platelet-derived growth factor (PDGF) and PDGF receptors in human malignant mesothelioma in vitro and in vivo. J Pathol 1996;178:151–160.

    Article  PubMed  CAS  Google Scholar 

  77. Ascoli V, Scalzo CC, Facciolo F, Nardi F. Platelet-derived growth factor receptor immunoreactivity in mesothelioma and nonneoplastic mesothelial cells in serous effusions. Acta Cytol 1995;39:613–622.

    PubMed  CAS  Google Scholar 

  78. Metheny-Barlow LJ, Flynn B, van Gijssel HE, et al. Paradoxical effects of platelet-derived growth factor-A overexpression in malignant mesothelioma. Antiproliferative effects in vitro and tumorigenic stimulation in vivo. Am J Respir Cell Mol Biol 2001;24:694–702.

    PubMed  CAS  Google Scholar 

  79. Mossman BT, Gruenert DC. SV40, growth factors, and mesothelioma. Another piece of the puzzle. Am J Respir Cell Mol Biol 2002;26:167–170.

    PubMed  CAS  Google Scholar 

  80. Ariad S, Seymour L, Bezwoda WR. Platelet-derived growth factor (PDGF) in plasma of breast cancer patients: correlation with stage and rate of progression. Breast Cancer Res Treat 1991;20:11–17.

    Article  PubMed  CAS  Google Scholar 

  81. Nowak AK, Lake RA, Kindler HL, et al. New approaches for mesothelioma: biologics, vaccines, gene therapy, and other novel agents. Semin Oncol 2002;29:82–96.

    Article  PubMed  CAS  Google Scholar 

  82. Thirkettle I, Harvey P, Hasleton PS, et al. Immunoreactivity for cadherins, HGF/SF, met, and erbB-2 in pleural malignant mesotheliomas. Histopathology 2000;36:522–528.

    Article  PubMed  CAS  Google Scholar 

  83. Brandt-Rauf PW, Luo JC, Carney WP, et al. Detection of increased amounts of the extracellular domain of the c-erbB-2 oncoprotein in serum during pulmonary carcinogenesis in humans. Int J Cancer 1994;56:383–386.

    PubMed  CAS  Google Scholar 

  84. Lahat N, Froom P, Kristal-Boneh E, et al. Increased serum concentration of growth factor receptors and Neu in workers previously exposed to asbestos. Occup Environ Med 1999;56:114–117.

    Article  PubMed  CAS  Google Scholar 

  85. Krajewska B, Lutz W, Pilacik B. Determination of blood serum oncoprotein NEU and antioncoprotein p-53—molecular biomarkers in various types of occupational exposure. Int J Occup Med Environ Health 1998;11:343–348.

    PubMed  CAS  Google Scholar 

  86. Filiberti R, Marroni P, Paganuzzi M, et al. c-erbB-2 protein in serum of primary lung cancer patients. Cancer Detect Prev 2002;26:64–68.

    Article  PubMed  CAS  Google Scholar 

  87. Ardizzoni A, Cafferata MA, Paganuzzi M, et al. Study of pretreatment serum levels of HER-2/neu oncoprotein as a prognostic and predictive factor in patients with advanced nonsmall cell lung carcinoma. Cancer 2001;82:1896–1904.

    Article  Google Scholar 

  88. Morocz IA, Schmitter D, Lauber B, et al. Autocrine stimulation of a human lung mesothelioma cell line is mediated through the transforming growth factor alpha/epidermal growth factor receptor mitogenic pathway. Br J Cancer 1994;70:850–856.

    PubMed  CAS  Google Scholar 

  89. Vogelzang NJ. Emerging insights into the biology and therapy of malignant mesothelioma. Semin Oncol 2002;29:35–42.

    PubMed  Google Scholar 

  90. Pache JC, Janssen YM, Walsh ES, et al. Increased epidermal growth factor-receptor protein in a human mesothelial cell line in response to long asbestos fibers. Am J Pathol 1998;152:333–340.

    PubMed  CAS  Google Scholar 

  91. Manning CB, Cummins AB, Jung MW, et al. A mutant epidermal growth factor receptor targeted to lung epithelium inhibits asbestos-induced proliferation and proto-oncogene expression. Cancer Res 2002;62:4169–4175.

    PubMed  CAS  Google Scholar 

  92. Janne PA, Taffaro ML, Salgia R, et al. Inhibition of epidermal growth factor receptor signaling in malignant pleural mesothelioma. Cancer Res 15:5242–5247.

    Google Scholar 

  93. Tolnay E, Kuhnen C, Wiethege T, et al. Hepatocyte growth factor/scatter factor and its receptor c-Met are overexpressed and associated with an increased microvessel density in malignant pleural mesothelioma. J Cancer Res Clin Oncol 1998;124:291–296.

    Article  PubMed  CAS  Google Scholar 

  94. Harvey P, Warn A, Newman P, et al. Immunoreactivity for hepatocyte growth factor/scatter factor and its receptor, met, in human lung carcinomas and malignant mesotheliomas. J Pathol 1996;180:389–394.

    Article  PubMed  CAS  Google Scholar 

  95. Maulik G, Shrikhande A, Kijima T, et al. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev 2002;13:41–59.

    Article  PubMed  CAS  Google Scholar 

  96. Siegfried JM, Weissfeld LA, Luketich JD, et al. The clinical significance of hepatocyte growth factor for non-small cell lung cancer. Ann Thorac Surg 1998;66:1915–1918.

    Article  PubMed  CAS  Google Scholar 

  97. Cacciotti P, Strizzi L, Vianale G, et al. The presence of simian-virus 40 sequences in mesothelioma and mesothelial cells is associated with high levels of vascular endothelial growth factor. Am J Respir Cell Mol Biol 2002;26:189–193.

    PubMed  CAS  Google Scholar 

  98. Catalano A, Romano M, Martinotti S, et al. Enhanced expression of vascular endothelial growth factor (VEGF) plays a critical role in the tumor progression potential induced by simian virus 40 large T antigen. Oncogene 2002;25:2896–2900.

    Article  Google Scholar 

  99. Masood R, Kundra A, Zhu S, et al. Malignant mesothelioma growth inhibition by agents that target the VEGF and VEGF-C autocrine loops. Int J Cancer 2003;104:603–610.

    Article  PubMed  CAS  Google Scholar 

  100. Strizzi L, Catalano A, Vianale G, et al. Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol 2001;193:468–475.

    Article  PubMed  CAS  Google Scholar 

  101. Strizzi L, Vianale G, Catalano A, et al. Basic fibroblast growth factor in mesothelioma pleural effusions: correlation with patient survival and angiogenesis. Int J Oncol 2001;18:1093–1098.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Puntoni, R., Cerrano, P.G., Filiberti, R. (2005). Molecular Epidemiology of Mesothelioma. In: Pass, H.I., Vogelzang, N.J., Carbone, M. (eds) Malignant Mesothelioma. Springer, New York, NY. https://doi.org/10.1007/0-387-28274-2_14

Download citation

  • DOI: https://doi.org/10.1007/0-387-28274-2_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22949-2

  • Online ISBN: 978-0-387-28274-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics